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Synthesis of Dual Beam Pattern of Planar Array Antenna in a Range
of Azimuth Plane Using Evolutionary Algorithm
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Abstract—In this paper a pattern synthesis method based on Differential Evolution Algorithm (DE)
is presented to generate dual beam patterns from a planar array of isotropic antennas. These are
cosec2 pattern and pencil beam pattern. These patterns are obtained by finding out an optimum set of
common elements amplitude (for cosec2 pattern as well as a pencil beam pattern), and a set of phases,
for cosec2 pattern only. 4-bit discrete amplitudes and 5-bit discrete phases are used to reduce the design
complexity of feed network. The beam patterns have been generated in two different azimuth planes
instead of one particular plane. The evaluated excitations are also verified by considering a range of
arbitrarily chosen azimuth planes, where the patterns are generated with some minor variations of the
desired parameters. Obtained results clearly established the effectiveness of the proposed method.

1. INTRODUCTION

A reconfigurable planar array antenna is often required in satellite communication and radar related
applications. However, generation of cosec2 beam and pencil beam using a common set of discrete
elements amplitudes often faces high side lobe with large ripple problem. Several approaches reported
in the literature for generating beam patterns are as follows [1–10].

Diaz et al. proposed a method of generation of phase differentiated multiple beam patterns using
simulated annealing algorithm [3]. Durr et al. generates shaped beams (flattop and cosecant) from linear
antenna array where both uniform and Gaussian distributions of common amplitudes are used for the
generation of patterns, and different sets of phases for both beams are computed using Woodward-
Lawson technique [4]. Azaro et al. find the desired values of VSWR by minimizing the linear dimension
of a monopole antenna using PSO, and the simulated results are also compared with experimental
values [5]. An integrated multifunction/multiband [6] antenna was designed using the stochastic
multiphases optimization technique by Azaro et al. Morabito et al. proposed a technique for optimal
synthesis of linear phase-only reconfigurable arrays which are able to commute their pattern among
different radiation models. Numerical results of actual interest and its implementation of realistic
element patterns are also assessed [7]. Chatterjee et al. developed a method based on GSA for finding
out optimum sets of 4-bit radial amplitudes and 5-bit phases to generate dual beams such as pencil-
pencil, pencil-flattop and flattop-flattop of the concentric ring array antenna [8]. A noble method to
eliminate interfering signals adaptively for planar array antenna using customized genetic algorithm was
proposed by Massa et al. [9]. Mandal et al. proposed a method of synthesizing dual radiation patterns,
flattop and pencil from a rectangular planar array antenna using evolutionary algorithm [10].

In this paper, a cosec2 beam and a pencil beam patterns from a planar array [1, 2] of isotropic
elements are obtained by finding out the optimum set of common elements amplitudes for both the
patterns and a set of phases for cosec2 shaped beam using DE. The patterns have been generated in two

Received 8 June 2016, Accepted 26 August 2016, Scheduled 13 September 2016
* Corresponding author: Debasis Mandal (deb.mandal22@gmail.com).
The authors are with the Department of Electronics and Communication Engineering, Bengal College of Engineering and Technology,
Durgapur, India.



66 Mandal et al.

predefined ϕ planes using these excitations, where the excitations for both amplitudes and phases are
discrete in nature to provide lower Dynamic Range Ratio (DRR). As the DRR is low, lower number of
attenuators and phase shifters are required, thus reducing the design complexity of the feed networks.
These patterns are not restricted to a single predefined ϕ plane rather a range of azimuth planes with
some minor variations in design parameters.

2. PROBLEM FORMULATIONS

A planar array of isotropic elements is considered. The far-field pattern of the array shown in Figure 1
can be written as [1, 2]:

AF (θ, ϕ) =
M∑

m=1

N∑
n=1

Imnej[kmdx sin θ cos ϕ+kndy sin θ sin ϕ+αmn] (1)

where, Imn is the excitation amplitude of the mn-th element; M and N denote number of isotropic
elements in x and y directions, respectively; k = 2π

λ represents wave number; inter element spacing
along x and y directions, represented by dx and dy respectively, are considered as 0.5λ; θ, ϕ are polar
and azimuth angles; phase excitation of the mn-th element is denoted by αmn.

The fitness function for the dual beam patterns is defined as:

F (ρ)=k1{peakSLLd1−maxθ∈A1{AF ρ
dB(θ, ϕ)}}2+k2×�+k3{peakSLLd2−maxθ∈A2(AF ρ

dB(θ, ϕ))}2 (2)
where, � is defined as:

� =
∑

θi∈{0◦−30◦}
|AF ρ

dB(θi, ϕ) − D(θi, ϕ)| (3)

In Equations (2) and (3), ϕ ∈ (10◦–20◦) plane.
ρ is the unknown parameter set responsible for the desired beam patterns for this approach. ρ is

defined as follows:
ρ = {Imn, αmn} ; 1 ≤ m ≤ M & 1 ≤ n ≤ N (4)

peakSLLd1 and peakSLLd2 are the desired values of peak SLL for cosec2 and pencil beam pattern.
A1 and A2 are the sidelobe region for both patterns. DdB(θ, φ) is the desired pattern shown in Figure 2
at ϕ = 10◦, 20◦ plane. The range of θi for this approach is 0◦ to 30◦. k1, k2 and k3 are the weighting
factors. The fitness function has to be minimized by finding out optimum set of 4-bit amplitudes and
5-bit phases using Differential Evolution (DE) Algorithm.
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Figure 1. Geometry of a planar array of 50
isotropic elements.
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Figure 2. Desired cosec2 pattern for predefined
planes.
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3. DIFFERENTIAL EVOLUTION ALGORITHM (DE)

Differential Evolution is a population-based stochastic evolutionary algorithm and was first introduced
by Storn and Price in the year 2005. The main advantages of DE are lying in the fact that it
has fast convergence time and is capable of determining true global minima utilizing fewer control
parameters [10–13].

In D-dimensional search space, the individuals of population NP in generation G, generated by
the algorithm, can be written as:

Xi,G = {x1i,G, x2i,G, . . . , xDi,G} (5)

where, i = 1, 2, . . . , NP. The entire search space is covered by the initial population.
The initialization of the jth parameter at a generation G = 0 can be described as:

xji,0 = rand(0, 1) · (xup
j − xlow

j ) + xlow
j (6)

where i = 1, 2, . . . , NP , j = 1, 2, . . . ,D, and rand(0, 1) is uniformly distributed random variable within
the range (0,1); xlow

j and xup
j are the lower and upper bounds of the jth parameter, respectively. The

three main steps involved in DE algorithm are mutation, crossover and selection.
Mutation: In mutation operation, mutant vector Vi,G is generated for each target vector Xi,G

based on the strategy of “DE/best/1/bin” which can be defined as follows:

Vi,G = Xbest,G + F · (Xr1,G − Xr2,G) (7)

r1, r2 ∈ [1, NP ] and r1 �= r2 �= i . F is a real and constant factor and satisfies F ∈ [0, 2], and
Xbest,G is the vector which has the best fitness at the Gth generation.
Crossover: In cross over operation, the trial vector Ui,G = {u1i,G, u2i,G, . . . , uDi,G} is generated
utilizing the target vector Xi,G and mutant vector Vi,G which can be described as follows:

uji,G =
{

vji,G, if rand(0, 1) ≤ CR

xji,G, otherwise
(8)

Selection: In this operation, for each trial vector f(Ui,G) and target vector f(Xi,G) the objective
function values are compared, and the smaller fitness function value remains in the next generations.
The selection operation can be described as follows:

Xi,G+1 =
{

Ui,G, if f(Ui,G) < f(Xi,G)
Xi,G, otherwise

(9)

These steps are repeated till the predefined generation has been completed which results in the best
vector in the current population (Xbest,G) as the solution of the problem.

4. RESULTS

A planar array of 50 isotropic elements has been considered. M = 10 and N = 5 are chosen. The inter
element spacing is considered as 0.5λ, i.e., dx = 0.5λ and dy = 0.5λ. The population size, scale factor
(F) and cross over rate (CR) in DE are taken as 50, 0.8 and 0.2, respectively. Here the applied DE
scheme is “DE/best/1/bin”. The termination condition is considered as a maximum iteration of 2500.

The design specification of the dual beam patterns and its corresponding obtained results are shown
in Table 1. From Table 1, it has been observed that the obtained values of the peak SLL for the cosec2

beam pattern in two different pre-specified planes are −14.53 dB and −16.45 dB corresponding to its
desired value of −20.00 dB. The parameter � is introduced to measure the total deviation between the
obtained and desired patterns within the angular region (θ = 0◦ − 30◦). The values of ripple (�) are
28.48 and 21.99 for ϕ = 10◦ and ϕ = 20◦, respectively, whereas for pencil beam pattern the obtained
values of peak SLL are −16.74 dB and −13.34 dB, respectively, for the same azimuth planes.

The obtained cosec2 pattern along with the pencil beam for two predefine azimuth planes are
shown in Figure 3. Figure 3(a) is for ϕ = 10◦ plane and Figure 3(b) for ϕ = 20◦ plane. The excitation
amplitudes and phases of the array elements obtained using DE for generating the beam patterns are
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Table 1. Desired and obtained values of design parameters.

ϕ in degree
Design cosec2 Pattern Pencil beam Pattern

Parameters Desired Obtained Desired Obtained

ϕ = 10◦ Peak SLL (dB) −20.00 −14.53 −20.00 −16.74
� (dB) 0.00 28.48 – –

ϕ = 20◦ Peak SLL (dB) −20.00 −16.45 −20.00 −13.34
� (dB) 0.00 21.99 – –
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Figure 3. Obtained dual beam patterns for (a) ϕ = 10◦ and (b) ϕ = 20◦ plane.
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Figure 4. Excitations of the array elements: (a) Normalized Amplitudes, (b) phases in degrees.

shown in Figure 4. Figure 4(a) shows the 4-bit discrete amplitudes, and Figure 4(b) shows the 5-bit
discrete phases.

In Figure 5, the beam patterns in three arbitrarily chosen azimuth planes for the same excitations
with some minor variation in pattern have been achieved. In Figures 5(a), (b) and (c), the arbitrary
azimuth angles are chosen as 7.5 degrees (< 10◦, below the pre-specified ϕ plane), 15 degrees (within
the pre-specified ϕ plane) and 22.5 degrees (> 20◦, beyond the predefined azimuth plane), respectively.
Figure 3 and Figure 5 clearly show that the obtained cosec2 beam patterns follow the desired beam
pattern shown in Figure 2 within the coverage range of elevation angle (0◦–30◦). The obtained values
of design parameters for arbitrarily selected ϕ planes have been presented in Table 2. Figure 6 shows
the convergence curve of DE algorithm. The convergence time taken to optimize the array pattern is
1 hr and 36 min. Computations have been done in MATLAB 2010a with core 2 duo processor, 3 GHz,
2GB RAM.
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Table 2. Obtained results for arbitrary ϕ planes.

ϕ in degree
Design cosec2 Pencil beam

Parameters Pattern Pattern

ϕ = 7.5◦ Peak SLL (dB) −11.50 −16.15
� (dB) 28.15 –

ϕ = 15◦ Peak SLL (dB) −13.85 −18.32
� (dB) 26.77 –

ϕ = 22.5◦ Peak SLL (dB) −14.73 −13.69
� (dB) 27.89 –
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Figure 5. Dual beam patterns for three arbitrarily chosen ϕ planes.
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Figure 6. Convergence curve of Differential Evolution Algorithm (DE).
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5. CONCLUSION

A dual-beam planar array antenna of two different azimuth angles has been synthesized. A shaped
beam (cosec2 beam) and a pencil beam are generated using 4-bit discrete amplitudes and 5-bit discrete
phases for keeping low dynamic range ratio (DRR). The peak side-lobe level and ripple are also reduced
by finding the optimum set of array excitations using DE algorithm. This also ensures the desired
patterns within a range of azimuth plane rather in a pre-specified ϕ plane. A good agreement between
the desired and obtained results validates the proposal. The presented method can also be applied to
synthesize other array configurations.
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