Progress In Electromagnetics Research C, Vol. 67, 135-141, 2016

ISAR Imaging Based on L1 LO Norms Homotopy 2D Block Sparse
Signal Recovery Algorithm

Changzheng Ma'> *, Boon Poh Ng!, and Jun Jie Feng?

Abstract—Many traditional sparse signal recovery based ISAR imaging methods did not utilize the
block scatterers information of targets. Some block Bayesian learning based ISAR imaging algorithms
are computational expensive. In this paper, a 2D block ¢; £y norms homotopy sparse signal recovery
algorithm (the BL1LO algorithm) is proposed and utilized to form the ISAR image. Compared with
Bayesian-based algorithms, this algorithm can obtain ISAR images with similar image quality, but the
computation speed is faster. Real data experiments verify the merits of our algorithm.

1. INTRODUCTION

Inverse synthetic aperture radar imaging has received much attention in the last three decades [1,2].
Due to its “all day and all weather imaging” ability, ISAR imaging has been widely used in military and
civilian fields. As ISAR transmitting wideband signals, scatterers on a target can be separated in the
range direction via pulse compression technique. Due to the cross-range movement of the target relative
to the radar, the scatterers on different cross-range positions have different relative Doppler frequencies.
Using spectrum analysis, scatterers can then be separated in cross-range domain. The range and
cross-range resolutions increase with the increase in bandwidth and Coherent Processing Interval (CPI)
respectively. But the cross-range resolution can not be increased arbitrarily with the increase of CPI
when Range-Doppler algorithm is used. One reason is that with the rotation of the target, scatterers
will move through a range cell and coherent processing of the data is then not achievable by using the
conventional Range-Doppler method. Another reason is that with the increase of the CPI, the rotation
of the target may not be kept uniform, especially for maneuvering targets, conventional Fast Fourier
Transform (FFT) based algorithm is not available. In order to improve the cross-range resolution in a
short CPI, super-resolution method can be used.

By utilizing the sparse distribution of a signal, sparse signal recovery algorithm has the property
of super-resolution and has been used in ISAR/SAR imaging [3-7]. In ISAR imaging, wide band signal
processing can easily be implemented. After range compression and motion compensation (envelope
alignment and phase compensation), the range profile signals can be expressed as S = AE+ .4, where
S, A, E and .4 are the matrices corresponding to one dimensional range profiles, cross processing
coefficients, scatterer amplitudes (ISAR image) and noise processes, respectively. The scatterers of man
made targets are usually clusters or blocks. In order to use the block property of the scatterers, block
sparse Bayesian learning based on Markov random fields and pattern-coupled sparse Bayesian learning
(PC-SBL) algorithms are proposed [8-10]. However, these two methods are computational expensive,
especially of [9], where forming a 128 x 64 ISAR image needs over one hour using a prevalent personal
computer. ¢1 £y norms homotopy based algorithm, by varying a parameter o, builds a homotopy between
/1 norm and ¢y norm, and has superior performance [11,12]. Another merit is that ¢; £y norms homotopy
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algorithm is easily extended to 2D and block sparse signal recovery cases and the computation speed is
fast. In this paper, ¢1 £y norms homotopy algorithm is extended to the 2D signal model S = AE + A4/,
where E is assumed to be block sparse. Although the scatterers of the target are not regular block
scatterers, in this paper, we assume that they can be approximated by small regular block scatterers.
Real target imaging results show that this approximation is valid.

2. INVERSE SYNTHETIC APERTURE RADAR SIGNAL MODEL

Assume that the target is located in the far field and that the signal transmitted is a linear chirp signal:

dﬂzexp(ﬁw(ﬁt+%mf>>, te[—%xg], (1)

where fj is the center frequency, po the chirp rate, and T the pulse duration. After mixing, the signal

backscattered from a scatterer on the target can be expressed as ae d2m o) +imuo(t=m(0)* where 7(t) is
the time delay, « is the signal amplitude. After range compression, the signal can be expressed as

s(t) = aexp(—j2m for(t))sinc(ueT (t — 7(t))). (2)

After envelope alignment and motion compensation, in a short CPI, the target can be regarded as
rotating uniformly around an axis with rotation speed w. Denote Y as the radar line of sight,
Z the rotation axis of the target, (O,X,Y,Z) forms the right-hand coordinate system on the
target, where O is the rotation origin. The initial position of a scatterer is (zo,yo,20). Because
the delay of a scatterer with a small 2y has no relation with 2y, we omit the z coordinate and
assume that the scatterers are all located on the (X,Y) plane. The instantaneous position of the
scatterer is (rocos(wt) — yosin(wt), xpsin(wt) 4+ yocos(wt)). The time delay is mainly determined by
zosin(wt) 4+ yocos(wt). By Taylor expression and omitting the high order terms, zgsin(wt) + yocos(wt)
can be expressed as

zosin(wt) + yocos(wt) = yo + xowt. (3)

2(yo+zowt)
C

Then the time delay 7(t) can be expressed as 7(t) ~ 79 + , where 7q is the delay of the origin

and c the speed of light. The signal at range unit 7y + 2% can be expressed as
—jamxgwt
s(t) = e~ A, (4)
where A = f—CO is the wavelength, and « includes the initial phase term and the reflection coefficient.

After discretization, the signal can be expressed as s(n) = aa(n), where a(n) = e/27fan f; = Qxfwdt,

dy is the sampling interval. When there are multiple scatterers, the total received signals from one range
unit can be expressed as
s=Ae+n, (5)

where the columns of A, which are the basis functions (vectors), are composed of the set of vectors a’s
with different f;, e is a column vector composed of the reflection coefficient « of different scatterers,
n is the noise term. Because different range profile signals share a common coefficient matrix A, by
combining the signals from different range units as a matrix S, the total signals can be expressed as

S=AE+ ./, (6)

where E is the matrix formed by the reflection coefficients of the scatterers on the target, that is the
ISAR image. From the point of sparse signal recovery algorithm, this signal model is similar to the
multiple measurement vectors (MMV) model. In the MMV model, the non-zero signals in all columns
of E have the same supportting set. However, in (6), generally speaking, the non-zero signals of two
columns of E have different supportting set. The non-zero signals of E are irregular block sparse. This
can be shown in Fig. 3, the ISAR image of a real Yak-42 plane.
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3. /1 {o NORMS HOMOTOPY BLOCK SPARSE SIGNAL RECOVERY ALGORITHM

Because the ISAR image is block sparse, it can be obtained by solving the following optimization
problem:
mEi:n |E|lps s.t. [|S(:;,n) — AE(:;,n)|l2<e, n=1,...,N (7)

where ||-||ps expresses a block sparse norm of a matrix, and ¢ is the error bound due to noise and model
error, N the number of columns of E.

The scatterers of ISAR images are distributed as clusters, and the block character is not regular.
Defining a block sparse norm of a non-regular block sparse signal is difficult, especially when the non-
regular block character is unknown. In this paper, we combine the pixels as small regular blocks, then
define a spare norm for regular block sparse signals.

lel

For a one dimensional sparse signal e, define an exponential function g,(e) = ¢~ = and a sparse
pseudo norm G,(e) = M — > gs(e(m)) [12,13], where M is the length of e. It had been shown that
when o approaches +00, G, (e) approaches ¢; norm with a ratio difference; when o approaches 0, G, (e)
approaches ¢y norm. Hence, when ¢ moves from +oo to 0, G,(e) moves smoothly from ¢; norm to £
norm.

For a one dimensional block sparse signal, assume that the signal vector e can be expressed as e =
[€1,...,€ds€ds1s---s€2d,--.,€pq], where P is the number of blocks, every d elements are considered as a
block, i.e., elements in a block have non-zero values (big values) or zero values (small values) at the same

time. Block ¢; norm and block ¢y norm can be expressed as ||e|[p1 = 25:1 \/Zgzl le((p —1)d +1)]?

and |lello = 30—, I(X 0y le((p—1)d+14)[?), where I(e) = 1 for e # 0 and I(e) = 0 for e = 0. Similarly,
G, (e) for block e can be expressed as

P d
Go(e) =P —=> go | 4| D le(lp—Dd+0)2 | . (8)
p=1 i=1

Steepest descent algorithm is usually used in finding the minimum point of a non-constraint
optimization cost function. For linear constraint equations s = Ae, the feasible set is a linear subspace.
Denote é as an estimate of e by using steepest descent algorithm. € may do not belong to the feasible
set. By letting & = & — A(AAH)~1(Aé —s), then & satisfies s = A&, i.e., & belongs to the feasible set.
For the inequality constraint |[s — Ael|]2 < &, projection on the boundary of the feasible set is difficult,
but because the feasible set of s = Ae belongs to the feasible set of ||s — Ae||2 < &, we can project € on
the feasible set of the equality constraint instead of the inequality constraint.

Similar to the smoothed ¢y norm procedure for Single Measurement Vector (SMV) signal model,
the ¢4 norm £g norm homotopy sparse signal recovery algorithm for MMV signal model can be described
as:

¢1 norm ¢y norm homotopy 2D block sparse signal recovery algorithm (BL1L0)

(i) Initialization:
(a) Define constants Lo, L1, J, e, where Lo, L; determine the searching steps, J is the iteration
numbers, choose a suitable decreasing sequence [o1,...,07], 0i41 = poi, p < 1.
(b) Let Eg be the minimum ¢, norm solution of S = AE, obtained by Eg = AfS, where 1 is the
pseudo inverse.
(ii) forj=1,...,J:
(a) Let 0 = 0j, E= Ejfl.
(b) Lfet‘]g‘ be the gradient of G,(E), p = min(Emax/Lo, 0j/L1), where Ey,x is the maximum value
0 .
(c) For every element of E, let E(m,n) < E(m,n) — |§E2:Z§| x min(|E(m,n)|, |po;é(m,n)|).
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(d) If |AE(:,n) — S(,n)l2 > ¢, prOJect E(:,n) back into the feasible set: E(;,n) «— E(:
)+AH(AAH) '(S(:,n) — AE(:,n)).
(e) Set E; =E.

(ili) Final answer is E = E;

The descent searching in this program is different from the conventional steepest descent algorithm.
Fig. 1 shows a simple example in two-dimensional case. Denote point ) the sparsest solution. P; is a
start searching point in the feasible set. P» is the next searching point using steepest descent algorithm.
However, because the x coordinate changes from a positive value to a negative value when moves from
P, to P,, we force its x coordinate to be zero. This means that the next searching point is P;. Because
P53 does not belong to the feasible set, it should be projected to Py, which belongs to the feasible set.

Ay
Sparest _»Q
solution
Py -~

Figure 1. Descent search and projection on feasible set.

One important factor in steepest descent method is the design of step size. If the cost function is a
smoothed convex function, by approximating the cost function with a quadratic function, an appropriate
step size can be obtained by searching the minimum point of the quadratic function. But the cost
function G, is not a convex function for a finite o, there is no method to select an appropriate step size.
For a large step size, it may not converge, but for a very small step size, the computation efficiency is
low. Taking the minimum value, min(|E(m,n)|, |uo;6(m,n)|), ensures that the step size is not too big.

In the following, we discuss the selection criteria of the parameters 01,07, Ly, L1 and €. Denote the
dimension of matrix A as M x N. If there is only one isolated scatterer in one range unit with amplitude

«, the maximum value of the initial estimate Eq = ATS will be approximately aM/N. For the definition
of the block cost function, G,(e) = P -}, 90(\/2?:1 le((p — 1)d + 1) \/ZZ Llel(p —1)d +14)]? is

the 5 norm of one block. Denote €qpmax the maximum value of the €2 norm of the blocks of E. Then
o1 should be larger than éqmax/N/M. o can be chosen as o1/L, where L can be chosen as 50 ~ 100,
which is related with the expected dynamic range of the image.

For ISAR imaging, the noise variance é can be estimated from the range profiles. Then € can be
chosen as 2Mé.

Generally speaking, the step size p is only related with o;, such as letting u = 0j/L;. However,
because oq is larger than égmaxN/M at the first few iterations, the descent movement step length
|po6(m, n)| may be larger than the value of the signal E(m,n), then min(|E(m, n)|, |po;é(m,n)|) may

equal |E(m,n)|. Then E(m,n) — |§E22§| x min(|E(m,n)|, |po;jé(m,n)|) will be zero. After projection
E(:,n) «— E(;,n) + AT(AAT)L(S(:,n) — AE(;,n)), E(:,n) = AT(AAT)~1S(:,n), which is still the
minimum #5 norm estimation. This means that after one iteration, the searching point returns to the
starting point. By choosing Ly to be a large value, such as 20, and letting p = min(Emax/Lo, 0j/L1),
we can ensure that the next searching point does not equal to the last searching point at the first few
searching steps.
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In the following, we discuss the choice of L;. We explain it by no-block signal case. The gradient

of g,(e), denoted as 4, is el %. o0 is —e_%sign(e). When e is much smaller than o, ¢d

approximately equals =1. Then the term |uo ;0| will be larger than |e| and e < e — % x min(|e|, |uo;0])

le]

will be zero. When e is much larger than o, e~ ¢ is a small value, in the descent movement step,
it moves a very small step. So the most efficient time that e converges to the true value is when o
approximates e. Assume K iterations are needed for o changes from o to 01/2, then 01/2 = 01 X K,

that is K = m. Without considering projection, K descent movement steps move about K (L%efl).

Let K (L%e_l) equal o, we have L; = Ke~!. Sometimes, when the number of iterations is chosen as a
small value, L1 will be a small value. This will give rise to a big step size and affect the convergence.
In real implementations, we can choose L; = max(25, Ke~!) to ensure that L; is not too small.

4. SIMULATION RESULTS

In this section, a set of real data of a Yak-42 aircraft is used to demonstrate the performance of the
proposed sparse signal recovery algorithm. The Yak-42 aircraft, which is shown in Fig. 2, has an uptilted
tail and its length/width/height are 36.38 m/34.2m/9.83 m, respectively. The distance of the aircraft
to the radar is about 33.5km and the height is about 5km. The carrier frequency is on the C band
with signal bandwidth of 400 MHz, corresponding to a range resolution of 0.375 m. The pulse repetition
frequency is 100 Hz. 256 pulses within dwell time [—1.28, 1.28]s are used in conventional FFT method
and the ISAR image is shown in Fig. 3.
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Figure 2. The shape of the Yak-42 plane. Figure 3. ISAR image using FFT method and
256 pulses.

Fig. 4 and Fig. 5 show the ISAR images using PC-SBL (the comparsion between PC-SBL and
other methods can be refered in [10]) and BL1LO0 algorithm with pulses of 16 and 32. The Matlab
program of PC-SBL is down loaded from http://www.junfang-uestc.net/codes/ISAR.rar. For the PC-
SBL algorithm, the parameters used are the default parameters in the downloaded program, where
8 = 1, four contiguous range profiles are combined as the data of a MMV equation. Even though the
original PC-SBL algorithm can process more contiguous range profiles at one time, due to the huge
coefficient matrix formed, [10] used four contiguous range profiles to save memories and computations.
For the BL1LO algorithm, as in [3], the noise level is estimated from the range profiles, that is, using
range cells from 1 to 25 to estimate the noise variance. Lg is chosen as 20, 01 = N/Mégmax X 8,
oy = 01/60. For every implementation, 500 iterations are used to recover the image. The ISAR image
is divided as 4 x 2 small blocks, where 4 expresses 4 cross-range units. It can be seen that the image
qualities are similar for the two methods. For both cases, the ISAR images using the BL1LO0 algorithm
show more information about the neck of the target, and at the same time, it seems that the edges of
the wing of the BL1L0 ISAR images are clearer. Because the PC-SBL method does not assume the
shape of the block, it is more flexible. The computation time using the BL1L0O method for 16 and 32
pulses are all about 53s, but 135s and 77 s respectively, for the PC-SBL method. It can be seen that
the BL1LO0 algorithm is computational economical.
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Figure 4. ISAR image using 16 pulses. (a) PC-SBL algorithm. (b) BL1LO0 algorithm, the block size is

4 x

2, where 4 expresses 4 cross-range units.
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Figure 5. ISAR image using 32 pulses. (a) PC-SBL algorithm. (b) BL1LO0 algorithm, the block size is
4 x 2, where 4 expresses 4 cross-range units.

5. CONCLUSION

For

ISAR imaging, range profiles are formed at first, then after envelope alignment and motion

compensation, the range profiles form a two-dimensional matrix. In this paper, a two-dimensional
block sparse signal recovery algorithm based on MMV signal model is used to form the ISAR image.

Although the block is not regular, using a small regular block signal model can improve the image
quality.
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