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Studying the Influence of the Number Vanishing Moments of
Daubechies Wavelets for the Analysis of Microstrip Lines

Mohamed Bayjja*, Mohamed Boussouis, and Naima Amar Touhami

Abstract—Using Daubechies wavelet with one, two, three, and four vanishing moments, basis functions
for the efficient solution of electromagnetic integral equations are studied. Due to the vanishing
moments, the moment matrices resulting in these problems are sparsified by wavelet, and consequently,
the solution can be obtained rapidly. The microstrip line is examined in order to demonstrate the
advantages of this suggested wavelet-moments method over the traditional moment method. To
demonstrate the effectiveness and accuracy of the proposed technique, numerical results for error relative
for different vanishing moments of Daubechies wavelets are presented. It is found that Daubechies
wavelets with larger number of vanishing moments generally give higher accuracy.

NOMENCLATURE

MoM Method of Moments
TEM Transverse electromagnetic
dbN Daubechies wavelet with N vanishing moments
nfb Number of basic functions
nfe Number of testing functions
Thr Threshold
IM Impedance Matrix
CPU Central Processing Unit

1. INTRODUCTION

Wavelet theory is a relevant continuously emerging area in mathematical research. It has been
applied to a wide range of engineering disciplines and received considerable attention in computational
electromagnetics, particularly in solving integral equations [2, 10]. Researchers are now faced with an
ever increasing variety of wavelet bases to choose from. While the choice of the “best” wavelet is
obviously application-dependent, it can be useful to isolate a number of properties and features that
are of general interest to the user. Since wavelets may have some nice properties, including symmetry,
vanishing moments, compact support and orthogonality, the construction of a wavelet has become a
very popular scientific research subject, especially in mathematics and engineering [23].

Planar transmission structures are widely used in microwave, millimeter-wave circuits and high
speed digital circuits. These are stripline, microstrip and coplanar waveguides [1–12]. In analyzing
planar microstrip structures, the method of moments (MoM) can be applied either in the spectral
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domain [19–21] or in the spatial domain [9–21]. However, in the conventional form of the spatial domain
approach, the Green’s functions for the microstrip structures involve the evaluation of the Sommerfeld
integrals, whose integrands are highly oscillatory and slowly decaying functions; hence their computation
is very time consuming. However, it has been demonstrated in [21] that this problem can be obviated
by using the newly-developed closed-form spatial domain Green’s functions [22]. Using traditional basis
functions in the MoM, the arising matrices become very large and densely populated, such that the
solution of the underlying system of equations requires long computation times and huge memory [21].
It takes O(N2) units of storage and O(N3) multiplications/divisions to solve the matrix equations [2].

Wavelets found their application in solving integral equations, resulting in sparse impedance
matrices. This is due to features of vanishing moments, orthogonality and multiresolution analysis
in wavelets [5]. The conversion of dense matrices into a sparse form requires O(N2) operations. The
algorithm for solving the resulting sparse system requires only O(N log 2N) operations, as shown in [4].
This technique will be shown to be versatile and efficient.

In this paper, we propose to study the merit of Daubechies wavelets for N number of vanishing
moments in order to model the microstrip line by the MoM. The paper is organized as follows. Section 2
is devoted to microstrip line formulation of the integral equation, using Green’s function. The MoM is
used to approximate the integral equation. A brief review of the theory of wavelets, Daubechies wavelets,
and wavelet expansion is presented. In Section 3, we report our numerical finding and demonstrate the
accuracy of the proposed numerical scheme by considering numerical examples.

2. THEORETICAL FORMULATION

2.1. Method of Moments

In the analysis, we consider a shielded microstrip line with the cross-section shown in Figure 1 [7, 8].

Figure 1. Shielded microstrip line geometry.

We assume that the metal and dielectric losses in this line are negligible, and the propagation mode
in direction Oz is almost TEM. Green function determined by the Fourier method is written [12, 19]:

G(x, x0) =
∞∑
n=1

2
a

1
βn

1
Kn

sin (βnx) sin (βnx0) (1)

Function G satisfies the boundary and the interface conditions of the microstrip equation. The following
form can be formulated and solved to determine the charge distribution [12]:

V (x, y0) = V (x) =
∫ a+w

2

a−w
2

G (x, x0) ρ (x0) dx0 (2)

In the method of Galerkin, the weighting functions are identical to the trial functions. We make the
scalar product of the relation giving V (x) with ϕq(x) by integrating on the domain of definition of
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impulsion function ϕq(x), that is:

〈V (x) |ϕq(x) 〉 =
Nfe∑
p=1

∞∑
n=1

Anαpγpn 〈sin (βnx) |ϕq(x) 〉 (3)

For bases functions, choose ϕq(x − xq) = δ(x − xq), with xq = (q − 0.5) ∗ δ, and take the potential
V (x) = 1 when x is located in the metal. We have:

〈V (x) |ϕq(x)〉 =
∫ xq+δ/2

xq−δ/2

1√
δ
dx =

⎡
⎢⎣

√
δ
...√
δ

⎤
⎥⎦ (4)

This set of equations can be written in matrix from as
[D] [α] = [V ] (5)

2.2. Daubechies Wavelets

Wavelets ψ such as dilated and translated family is an orthonormal basis of L2(R) [10, 11].{
ψj, n(t) =

1√
2j
ψ

(
t− 2jn

2j

)}
(j, n)∈Z2

(6)

Behind this simple statement lie very different points of view that open a fruitful exchange between
harmonic analysis and discrete signal processing. Orthogonal wavelets dilated by 2j carry signal
variations at the resolution 2j .

The Daubechies is the first one to make the handle orthogonal wavelets with compact support and
arbitrary regularity. We will call N the order, or the vanishing moments number of the dbN wavelet.
This family contains the Haar wavelet, db1, which is the simplest and certainly the oldest of wavelets.
It is discontinuous, resembling a square form. The coefficients for Compactly Supported Daubechies
Wavelets in [5–13] will be employed to construct the Daubechies scalets and wavelets of different orders.
In general, for Daubechies scalets hn = 0 for n < 0 and n > 2N + 1, the support φ = [0, 2N − 1], and
the support ψ = [1 −N,N ], where N is the order, or the number of vanishing moments.

2.3. Wavelet Expansion

It is easier to expand a given function in a wavelet basis than to expand an unknown function in wavelets
while solving the corresponding integral equation by the MoM. In this paper, we will apply the wavelet
based MoM [11–17].

Therefore, {ψm·n}m,n∈Z is an orthonormal basis of L2(R). For all f(x) ∈ L2(R), we have

f(x) =
∑
m,n

〈f(x), ψm·n(x)〉ψm·n(x) (7)

The wavelets are applied directly upon the integral equation. The density of charge will be represented
as a linear combination of the set wavelet functions and scaling functions, and we obtain:

ρ (x0) =
∑
n

an∅j·n (x0) +
2j−1∑
m=j

∑
n

Cm·nψm·n (x0) (8)

The main mathematical properties which enable sparse matrix generation are the orthogonal and
vanishing moment. A function ψ(x) is said to have vanished moment of N order if:∫ +∞

−∞
xnψ(x)dx = 0 ∀n = 0, 1 . . . (N − 1) (9)

Applying Equation (8) into Equation (2), we obtain the set of matrix equation given by [14–16]:[ [
Z∅,∅

] [
Z∅,ψ

][
Zψ,∅

]
[Zψ,ψ]

] [
an
cm,n

]
=

[ 〈V, ∅j,n〉
〈V,ψm,n〉

]
(10)
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where: [
Z∅,∅

]
=
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2
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〉
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〈
ψm,n,

∫ a+w
2
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2

ψm,nG (x, x0)dx0

〉
(11)

3. NUMERICAL RESULTS AND DISCUSSIONS

The geometrical and physical parameters of the microstrip line are summarized in Table 1.

Table 1. Parameters of structure.

Parameters εr1 h (mm) w/h b (mm) nfe nfb v Frequency
Values 9.6 0.635 0.1 to 5 25 + h 10 250 3 × 108 2GHz to 18 GHz

3.1. Moment Method

In this section, we study the convergence of moment method for various nfb values. Figure 2 shows the
characteristic impedance in function of W/h, for several values of nfb.
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Figure 2. Characteristic impedance of microstrip line.

We observe that the characteristic impedance decreases when the ratio W/h increases. This
variation is due to the microstrip line width, w, and when w increases, the capacity of the line increases.
In Figure 2, we see that we need Nfb = 250 pulses per ribbon to obtain a stable solution. This result
is in a good agreement with the ones published in [12], [19], and [15].

3.2. Moments Method and Daubechies Wavelet

Most applications of wavelet bases exploit their ability to efficiently approximate particular classes
of functions with few nonzero wavelet coefficients. In this section, we study the merit of number of
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vanishing moments in order to modeling the microstrip line bay the MoM.
It has been previously proved that a basis pulse functions of MoM is in a good agreement with

the experimental results [21]. For this reason, the MoM was chosen as a reference for the accuracy
evaluation. Figure 3 shows the characteristic impedance of the shielded microstrip line using MoM
and Daubechies wavelet with one, two, three, and four vanishing moments. We see a good agreement
between the two methods, especially for number of vanishing moments superior to two for Daubechies
wavelet. These results agree with the previous work published in [12, 15, 19].
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Figure 3. Characteristic impedance of the microstrip line versus w/h with different thresholds: (a)
db1, (b) db2, (c) db3, and (d) db4.

Table 2. Comparison of the computation time, and sparsity the IM for conventional MoM, db1, db2,
db3 and db4 wavelet bases in characterizing microstrip line.

MoM db1 db2 db3 db4
Sparsity % 46.14 66.16 70.80 73.60

CPU Time to reverse IM (ms) 7.931 7.554 5.252 4.559 3.648
CPU Time reduction % 4.75 33.77 42.51 54

The calculations are made on a PC computer with AMD Dual-Core 1.30 GHz CPU, 2 Gb memory
and Windows 7 Professional system. Table 2 compares the performance of Daubechies wavelet bases
with one, two, three, and four vanishing moments in terms of the computational time and percentage
sparsity achieved in the IM. As seen in Table 2, the Daubechies wavelet expansion extracts the variation
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of characteristic impedance more rapidly than the conventional MoM. On the other hand, it is clear that
with increasing the vanishing moment’s number of the Daubechies wavelets, the CPU Time decreases,
and the sparsity of IM increases. In particular, db4 wavelet appears to be the most appropriate choice
for solving the microstrip line integral equation. Fig. 4 shows the sparsity pattern of the most ill-
conditioned IM for different Daubechies wavelets. By means of Fig. 4, priori locations of non-significant
matrix elements have been estimated, and evaluation of small elements at impedance matrix has been
avoided.

The relative error in function of the threshold for various Daubechies wavelets is shown in Fig. 5. We
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Figure 4. Gray-image of a typical coefficient matrix.
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Figure 5. Relative error of the characteristic impedance versus threshold for different Daubechies
wavelet.
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observe that the relative error increases exponentially when increasing the threshold, due to canceling
of the impedance matrix elements. On the other hand, it is clear that with increasing the vanishing
moment’s number of the Daubechies wavelets, the relative error decreases. These results agree with
previous work published in [21].

4. CONCLUSIONS

In this paper, we propose a numerical method for evaluating the characteristic impedance of microstrip
line based on Daubechies wavelet with one, two, three, and four vanishing moments. A rigorous integral
equation formulation for the charge distribution on the microstrip line surface with finite thickness of an
isotropic stratified medium is derived. The comparison between MoM and Daubechies wavelet provides a
good agreement. A sparse matrix equation is attained from the microstrip line integral equation by using
this technique (The sparsity of 73.60% is obtained using db4 wavelets). These examples demonstrate
that the Daubechies wavelet with increasing number of vanishing moments works effectively in terms
of computational time and numerical accuracy. The error decreases when the number of vanishing
moments of Daubechies wavelet increases (Fig. 5). The propose method is suitable for the analysis of
wideband metal-dielectric composite problems with high accuracy.
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