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Calculation of Force between Two Ring Magnets Using Adaptive
Monte Carlo Technique with Experimental Verification

Tapan Santra1, *, Debabrata Roy1, and Sotoshi Yamada2

Abstract—This paper represents a new simple technique to calculate force between two ring magnets
using adaptive Monte Carlo integration technique. Elementary magnetic force is calculated by
discretizing the pole faces of the passive magnets into tiny surfaces. To obtain the resultant force,
this elementary force equation is integrated over the dimensions of the ring magnets which incur a
multidimensional integration with complicated integral function. This multidimensional integration
is solved using adaptive Monte Carlo technique considering singularity treatment and importance
sampling. This method is advantageous over existing analytical or quasi analytical methods regarding
singularity treatment and computational burden. It is more flexible, especially for using in digital
computer. The result of the proposed technique is verified with finite element method and also validated
by laboratory experiment. It is observed that the proposed result matches very well with the practical
test result, particularly if self demagnetization is considered. So taking into account of simplicity, less
computational burden and usefulness, the proposed method may be an alternative choice for magnetic
force calculation.

1. INTRODUCTION

Magnet configuration consists of two passive ring magnets and is customarily used in flywheel energy
storage [1], turbo molecular pump, conveyor system [2], turbo machines, micro mass measurement [3],
magnetic bearing [4] and space application. To develop the mathematical model of these devices we
need to calculate force between two ring magnets. This developed model finds application in the design
of magnetic devices, performance analysis, control and dimension optimization. So there are some
aspects in force calculation, which should be precise, simple and have less computational burden. Some
analytical or quasi-analytical methods have already been developed by Lang [5], Jiang et al. [6], Ravaud
et al. [7–9] and Bekinal et al. [10] for modelling the magnetic field. Lijesh and Hirani [11] developed
some analytical equations for design and optimization of axially polarized radial passive magnetic
bearing and performed some wonderful case studies. But these methods do not handle singularity of the
integral over the integration domain satisfactorily. Most of the existing methods require some analytical
transformation or preprocessing for singularity treatment, but in this method singularity is taken care
only by avoiding samples in the singular zone by writing a simple computer code. Moreover, some
existing methods involve elliptic integral which is tedious to solve analytically, and computation burden
is also high. So these methods are not suitable for dimension optimization, design and control of the
magnetic system. In this paper, a 3D model of magnetic force is developed using surface charge density
method. The expression of this magnetic force involves a four-dimensional integration with complicated
integral, which is solved by Monte Carlo Integration [12] technique. The integral may involve singularity
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and irregular distribution of integral values in the domain. We investigate the singularity of the integral
over the domain. In our problem, the integrand does not contain any singularity due to some practical
constraints imposed, but there are some large peaks in the domain which gives the principal contribution
to the integral. Due to these peaks, there is some error in the estimation.

The flat distribution of sample points invites error in the calculation unless numbers of samples are
very large. On the contrary, if number of samples is very large, computational cost will be high. Due to
this uneven distribution of integrand, we consider adaptive distribution of sample points [13–15] so that
more samples are selected near peak and few samples in the flat region in the domain. Thus integration
error is minimized by reducing the variance. This is called Adaptive Monte Carlo integration (AMC).
The result of the proposed AMC technique is verified with finite element method (FEM, MAXWELL)
and also validated by laboratory experiment. The results of these three methods, thus obtained, are
found to be in close agreement with each other.

2. CALCULATION OF FORCE BETWEEN TWO RING MAGNETS

2.1. Configuration and Dimensions of the Magnetic System

Figure 1 shows that the magnetic configuration consists of two concentric ring magnets with axial
polarization. It is a very popular configuration due to its simplicity and application perspective in
energy storing flywheel, micro mass measurement, magnetic bearing and space application. Generally,
the outer magnet is attached with the static frame, and the inner magnet is free to move along different
axes. The dimensions of the system are shown in Figure 1. R1, R2 are the inner and outer radii of
inner magnet. R3, R4 are the inner and outer radii of outer magnet. L is the thickness of the magnets.
Objective of this work is to efficiently calculate the 3D force acting between these two magnets using
AMC integration technique. Pole faces of the magnets are discretized into small elementary surfaces,
and interaction between these elementary surfaces gives elementary magnetic force. Integration of this
elementary force over the magnet dimensions gives the resultant force between the magnets.

Figure 1. Configuration of the passive magnets with dimensions and discretised pole faces.

2.2. Calculation of the Magnetic Force

To derive the analytical expression of force between two passive magnets, different methods are available.
There are mainly three existing methods, Dipole method, Amperian current model and Columbian
surface charge density method. In our work, the relative magnet dimensions are more than the air gap
dimension, so dipole method does not give accurate result. We apply simple Columbian surface charge
density method. According to this method, it is assumed that magnetic charges are distributed on the
faces of magnetic poles Q, R, S and T as shown in Figure 2(a). Magnetic forces are generated due
to the interaction between the charges of these magnet faces. Let the inner magnet be displaced from
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(a) (b)

Figure 2. (a) Forces acting on inner magnet after a translation e in Y -Z plane. (b) Elementary force
between two tiny magnetic surfaces on outer and inner magnets in Z-X plane.

the nominal position O(0, 0, 0) to O′(x, y, z) due to a translation �e = xî + yĵ + zk̂ in 3D plane XY Z,
where î, ĵ and k̂ are the unit vectors along X, Y and Z axes, respectively. The pole faces Q, R, S
and T are discretized into a number of small elementary surfaces. Let Q1, R1, S1, and T1 be one of
such elements. J is the polarization of magnets. So there are magnetic forces of attraction (�FT1Q1 and
�FR1S1) between T1-Q1 and R1-S1, respectively. There are repulsive forces (�FQ1R1 and �FS1T1) acting
between Q1-R1 and S1-T1, respectively. Figure 2(b) shows the distance vector between elements Q1
and R1 in X-Z plane. The elementary magnetic force between the elementary surfaces Q1 and R1 is
given by Coulomb law in Eq. (1).

d�FQ1R1 =
μ0qQ1qR1

4πR3
Q1R1

�rQ1R1 (1)

where, qQ1 and qR1 are the fictitious charge of elementary magnetic surfaces Q1 on outer magnet and
R1 on inner magnet, respectively. �rQ1R1 is the distance vector between elements Q1 and R1. Now qQ1

and qR1 are expressed in terms of surface charge density σ and elementary surface areas dSQ1 and dSR1

as shown in Eq. (2)
qQ1 = σQ1dSQ1, qR1 = σR1dSR1 (2)

Surface areas of two elements Q1 and R1 are expressed in terms of radius vectors rOQ1, rO′R1 and
incremental angle variables dα, dβ about outer magnet centre O and inner magnet centre O′ respectively
as shown in Figure 2(b).

dSQ1 = rOQ1dαdrOQ1, dSR1 = rO′R1dβdrO′R1 (3)

Now for a linear isotopic homogeneous magnetic material, magnetic induction B is given in terms of
magnetization M and magnetic field H by Eq. (4)

B = μ0 (H + M) (4)
M = (μr − 1) (H + Mr) (5)

For a rare earth material μr ≈ 1, so from Eq. (5)

M = Mr (6)

When H = 0, using Eqs. (4) and (6)
Br = μ0Mr (7)

If it is assumed that the material is uniformly magnetized, then

Mr = σ (8)
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So the surface charge density σ can be expressed in terms of magnetic induction Br as shown in Eq. (4).

σ =
Br

μ0
(9)

To get accurate Br value, self demagnetizing effect of the magnet is to be considered. Metal alloy
is not going to be magnetized. Permanent magnet always has a tendency to reduce the energetic
state from high energy state by demagnetization. The geometry of the magnet greatly influences the
demagnetizing process. First the permeance coefficient Pc is calculated for the ring magnets. Using
method stated in [16], Pc at open circuit condition is given for different geometries in Figure 3(a). For
the given geometry of ring magnet given in Table 1, calculated Pc of one magnet is 1.7. Corresponding
reduction in magnetic induction Br is observed in Figure 3(b). It is observed that almost 5% reduction
occurs. Let the corrected value of magnetic induction be Brc.

Table 1. Parameters of the magnetic system.

Material of magnets NdFeB
Coercivity (Hci) 1.3 ∗ 106 A/m
Flux density (B) 1.27 T

Outer radius of outer magnet (R4) 0.030 m
Inner radius of outer magnet (R3) 0.020 m
Outer radius of inner magnet (R2) 0.018 m
Inner radius of inner magnet (R1) 0.010 m

Thickness of magnets (L) 0.010 m

(a) (b)

Figure 3. (a) Permeance coefficient of ring magnet for different geometries with axial polarization. (b)
Calculation of corrected magnetic induction considering self demagnetizing.

Using Eqs. (1), (2), (3) and (9), we get the elementary force expression (10)

d�FQ1R1 =
B2

rcrOQ1rO′R1drOQ1drO′R1dαdβ

4πμ0r
3
Q1R1

�rQ1R1 (10)

Distances of elements Q1 and R1 about rotor magnet centre O′ are given by Eqs. (11) and (12),
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respectively, as shown in Figure 2(b).

�rO′Q1 = XQ1 î + YQ1ĵ + ZQ1k̂ = (rOQ1 cos α − x) î + (rOQ1 sin α − y) ĵ +
(
−z − H

2

)
k̂ (11)

�rO′R1 = XR1 î + YR1ĵ + ZR1k̂ = (rO′R1 cos β) î + (rO′R1 sin β) ĵ +
(
−H

2

)
k̂ (12)

Using Eqs. (11) and (12), we obtain the distance vector between elements Q1 and R1 as per Eq. (13).

�rQ1R1 = �rO′Q1 − �rO′R1 = (XQ1 − XR1) î + (YQ1 − YR1) ĵ + (ZQ1 − ZR1) k̂

= (rOQ1 cos α − x − rO′R1 cos β) î + (rOQ1 sinα − y − rO′R1 sin β) ĵ + (−z)k̂ (13)
Using Eq. (13) in Eq. (10), elementary force between charged magnetic elements Q1 and R1 is given by
Eq. (14)

d�FQ1R1 =
B2

rcrOQ1rO′R1

4πμ0(RQ1R1)3

⎡
⎣ (rOQ1 cos α − x − rO′R1 cos β) î

+ (rOQ1 sin α − y − rO′R1 sin β) ĵ

+(−z)k̂

⎤
⎦ drOQ1drO′R1dαdβ (14)

where RQ1R1 =
√

(rOQ1 cos α − x − rO′R1 cos β)2 + (rOQ1 sin α − y − rO′R1 sinβ)2 + (−z)2.
To calculate total magnetic force between outer magnet pole face Q and inner magnet pole face R,

all the tiny discretized elementary magnetic surfaces on Q and R should be considered. So the resultant
force between Q and R is the integration of the elementary force given in Eq. (14) over the dimensions
of the magnets, and this is given by Eq. (15).

�FQR =
B2

rc

4πμ0

R2∫
rOQ1=R1

R4∫
rO′R1=R3

2π∫
α=0

2π∫
β=0

f (rOQ1, rO′R1, α, β) drOQ1drO′R1dαdβ (15)

where

f (rOQ1, rO′R1, α, β) =
rOQ1rO′R1

(RQ1R1)3

[
(rOQ1 cos α − x − rO′R1 cos β) î

+ (rOQ1 sin α − y − rO′R1 sin β) ĵ + (−z)k̂
]

Solution of Eq. (15) gives the force between magnet surfaces Q and R as given by Eq. (16).
�FQR = FQRx î + FQRy ĵ + FQRz k̂ (16)

In a similar manner, described in Eqs. (1)–(16), magnetic forces between other surfaces T -Q, R-S and
S-T are calculated, and resultant force between outer and inner magnets is represented in Eq. (17).

�Ftotal = (FQRX + FTQX + FRSX + FSTX) î + (FQRY + FTQY + FRSY + FSTY ) ĵ

+ (FQRZ + FTQZ + FRSZ + FSTZ) k̂ = FX î + FY ĵ + FZ k̂ (17)
Analytical expression (15) is a function of four variables rOQ1, rO′R1, α, β, which is very complicated
to visualize. The dimensions of the integrand are reduced to two by a simple transformation
∇r = rOQ1 − rO′R1 and ∇θ = α − β.

Total axial force for a displacement x = 0 m, y = 0m, z = 5 × 10−3 m is computed using Eq. (17)
and shown in Figure 4(a). There are three peaks as ∇r → 0, ∇θ → 0 or ∇θ → 2π. This is expected
as the repulsive force between any two elementary magnet surfaces on inner and outer magnets is high
when distance between them is less. Other portions of the Figure 4(a) is flat and of less important for
integration. A surface fitting is carried out by Gaussian function using Levenberg Marquardt iteration
algorithm, and the expression of fitted function is given by Eq. (18). The parameters of the fitted
function are shown in Table 2, and a contour plot of the corresponding function is shown in Figure 4(b).

t = t0 + A ∗ exp

(
−0.5 ∗

(
r − rc

w1

)2

− 0.5 ∗
(

s − sc

w2

)2
)

(18)
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(a) (b)

Figure 4. (a) Plot of integral function in two dimensional integration domain. (b) Contour plot of
integral using Gaussian function by Levenberg Marquardt iteration algorithm.

Table 2. Parameters of fitted function.

Parameters Peak1 Peak2 Peak3
t0 7812.71 7812.71 7812.71
A 2.275E6 1.2439E6 1.079E6
rc 0.00205 0.0025 0.0026
w1 0.00324 0.00431 0.00386
sc 0.02692 6.1 −5.9
w2 0.19955 0.12763 0.29295

3. SOLUTION OF THE MULTIDIMENSIONAL FORCE INTEGRAL

The main objective of this work is to solve the four-dimensional complicated integral, given by Eq. (15).
In most of the literatures, analytical or quasi-analytical solution of the elliptic integral is represented.
In this paper, a numerical solution based on AMC integration technique is used to solve Eq. (15). At
first, we search for the singularity and smoothness of the integrand. Then the adaptive sampling is done
in the integration domain.

3.1. Adaptive Monte Carlo Integration

Standard available numerical integration techniques do not perform satisfactorily in multidimensional
boundaries, particularly when the integrand is complicated and not smooth. Monte Carlo integration
technique is very powerful in these circumstances, mostly for the problem involving integration which
is too difficult to solve analytically and by other available numerical methods. Efficiency of Monte
Carlo integration method increases relative to other methods when dimension of the integral increases.
Other available methods, such as quadrature method become very complex and monotonous to solve
in high dimension with complicated functions. Convergence of Monte Carlo method is guaranteed
irrespective of problem dimension and smoothness of the function. Monte Carlo method is very simple
and involves only two steps, random sampling integrand and point evaluation. Consider the problem of
approximating the integral as shown in Eq. (19).

I =
∫
Cd

f(x)dx (19)

where x ∈ �d, f(x) is the function of vector x, and Cd is the d-dimensional hyper rectangle
(a1, b1)× (a2, b2) . . . . . . (ad, bd). In crude Monte Carlo (CMC), the integration is done by independently
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sampling N points {xi}N
i=1 as per some suitable density function p and then the approximation of

integral (Expectation E with respect to uniform distribution U in Cd) computing the estimate as
shown in Eq. (20).

EUf =
C

N

N∑
i=1

f(xi)
p(xi)

(20)

where, p(xi) is the probability density function pdf . This estimated result is approximated and depends
on where and how many samples are taken in the domain. If p(xi) is uniform probability density
function and N is very large, then by the laws of large number the integration is given by Eq. (21).

I ∼= EUf =
1
N

N∑
i=1

f(xi) (21)

In most of the practical problems, the integrand f(x) varies significantly only in a small portion of
overall integration domain Cd. The basic MC samples from a uniform distribution U waste calculation
in the unimportant region. So a systematic procedure is required to allocate resources to the important
region of the integration domain. In our proposed method, we use adaptive importance sampling,
which discriminates important and non-important regions of the integration domain, as they progress.
Variance of the sample average is given by Eq. (22)

V (f, p) = EU f(x)2

p(x)
− (EUf

)2
(22)

When p ≡ 1, V (f, p) ≡ V (f) with respect to uniform distribution U . The simple idea of importance
sampling is to choose p such that V (f, p) < V (f), and p(x) is easy to sample and evaluate. In this work,
an adaptive importance sampling (AIS) is considered where the sample density p is piecewise constant
function and given by Eq. (23).

p =
K∑

k=1

pkχΩk(x) (23)

where Ωk forms a partitioning of integration domain Cd into rectangular regions. χΩk(x) is the
characteristic function of Ωk (1 if x ∈ Ωk and 0 otherwise). The variance of the sample average
can be written as Eq. (24).

V (f, p) = EU f(x)2

p(x)
− (EUf)2 =

K∑
k=1

∫
Ωk

f(x)2dx

pk
− (EUf)2 (24)

In AIS variance, V (f, p) is minimized following the minimization problem in Eq. (25).

minimize
Ωk, pk

V (f, p) =
K∑

k=1

∫
Ωk

f(x)2dx

pk
− (EUf

)2
Subjected to

{
Ωk
}K

k=1
is a partition of Cd

K∑
k=1

pkU(Ωk) = 1

pk ≥ 0 ∀ k = 1 . . . K

(25)

If the partition {Ωk}K
k=1 is fixed, then Eq. (25) becomes a convex optimization over weight pk which

can be solved by Lagrangian method. Lagrangian L is given by Eq. (26), and conditions for optimality
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are given by Eqs. (27) and (28), respectively.

L(p, λ) =
K∑

k=1

∫
Ωk

f(x)2dx

pk
− (EUf

)2
+ λ

(
K∑

k=1

pkU(Ωk) − 1

)
(26)

∂pL(p, λ) = 0 (27)
∂λL(p, λ) = 0 (28)

Solving Eqs. (26)–(28), the optimal weight is given by Eq. (29)

pk
0 =

⎛
⎝ 1

UΩk

∫
Ωk

f(x)2dx

⎞
⎠

1/2

K∑
k=1

⎛
⎝UΩk

∫
Ωk

f(x)2dx

⎞
⎠

1/2
(29)

Optimal sampling density is given by Eq. (30).

p0 =
K∑

k=1

pk
0χΩk (30)

Corresponding variance is given by Eq. (31).⎛
⎜⎝ K∑

k=1

⎛
⎝U

(
Ωk
)∫

Ωk

f(x)2dx

⎞
⎠

1/2
⎞
⎟⎠

2

− (EUf
)2

(31)

AIS works recursively by partitioning Cd into rectangular subregions [ak, bk] and splitting its elements
in half along one of the co-ordinate axes. Let region Ωk be partitioned into Ωl, and it contributes to
the variance through the term in Eq. (32).

∑
l

⎛
⎝U

(
Ωl
)∫

Ωl

f(x)2dx

⎞
⎠

1/2

(32)

If we make partition {Ωl} fine enough, it is possible to reduce the term in Eq. (27), and the optimal
reduction of variance in Eq. (25) takes place. After a region is selected for partitioning, we have to
decide along which of the d axis is to split. Let region {Ωk} be divided into two subregions {Ωl} and
{Ωr} due to a split along jth axis. The idea is that jth axis will be selected if the contribution towards
the variance in Eq. (33) is minimum.⎛

⎝U
(
Ωl
)∫

Ωl

f(x)2dx

⎞
⎠

1/2

+

⎛
⎝U (Ωr)

∫
Ωr

f(x)2dx

⎞
⎠

1/2

(33)

If f is similar about jth axis, there is no reduction in variance, and for that case, we have to split the
region {Ωk} into more than two subregions.
Algorithm

Step 1 Sample N points from the current density pit in the iteration it.

Step 2 Compute the sample average AN (f, pit) = 1
N

N∑
i=1

f(xi)
pit(xi)

and estimate the variance VN (f, pit) =

1
N−1( 1

N

N∑
=1

f(xi)
2

pit(xi)2
− AN (f, pit)2).
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Step 3 Compute the approximation m̃k
2 = 1

UΩk

∫
Ωk

f(x)2dx and m̃k
1 = 1

UΩk

∫
Ωk

f(x)dx, refine the

partitioning. Split the region, for which UΩk((m̃k
2)

1/2 − m̃k
1) is greater than a certain constant εit.

Step 4 Set pit+1 = (1 − ς)
K∑

k=1

p̃k
0χΩk

+ ς where p̃k
0 = (m̃k

2 )1/2

K∑
k=1

(UΩk)(m̃k
2 )1/2

.

Where p̃k
0 is the approximation of po for the current partition and ς ∈ (0, 1). At the first iteration,

only one hyper rectangle consists of the integration domain Cd. From the second iteration onwards, a
rectangle is divided into two or more hyper rectangles unless stopping criteria are achieved.

Step 5 Compute the final sample average AN (f, p) which will give the integral approximation.

3.2. Smoothness of the Integrand

To have singularity, RQ1R1 must equal zero as per Eq. (14). So, the condition for singularity is given
by Eq. (34).

(rOQ1 cos α − x − rO′R1 cos β)2 + (rOQ1 sin α − y − rO′R1 sin β)2 + (−z)2 = 0 (34)
Singularity exists if the distance between two elementary discretized magnetic surfaces Q1 and R1
becomes zero at plane z = 0. As shown in Figure 5, this distance never becomes zero as the inner
magnet does not intersect the outer magnet at z = 0. Moreover, if we observe the surface plot of force
f(∇r,∇θ) in Figure 3, it is evident that mainly three peaks constitute the surface, and all other portions
in the domain is flat in nature and do not contribute too much towards the integration value. So the
integrand force function does not have any kind of singularity.

Figure 5. Maximum and minimum distances between discretized magnetic surfaces on inner and outer
ring magnets respectively.

3.3. Importance Sampling

From Figure 4, it is observed that main contribution comes from the three peaks of the integrand function
f(∇r,∇θ) in the integration domain, and all other portions are flat and have minor contribution towards



190 Santra, Roy, and Yamada

-6

-4

-2

0

2

4

6

(a) (b)

0.003 0.006 0.009 0.012 0.015 0.018 0.021
r

θ

Figure 6. (a) Adaptive partining of integration domain by AMC. (b) Samples generated by Adaptive
Importance Sampling (AIS).

the integration. So the flat distribution of sample points incurs error in the calculation unless numbers
of random samples are very large. On the contrary, if number of sample is very large, computational
cost will be high. Due to this irregular distribution of integrand, we consider adaptive distribution
of sample points such that more samples are selected near peak and few samples in the flat region of
integrand function in Figure 4. This is called importance sampling. As per the AMC algorithm, using
the method discussed in Section 3.1, the adaptive partitioning of the integration domain is shown in
Figure 6(a), and corresponding importance sampling is given by Figure 6(b). It is observed that more
samples concentrate near the peaks, and few samples are in flat portion in the domain.

4. RESULT AND DISCUSSIONS

The practical magnetic configuration consists of two ring magnets, shown in Figure 7(a). Parameters
of this magnetic system are given in Table 1. Our objective is to estimate the axial force between
these two ring magnets for different positions of inner magnet. A laboratory test setup is fabricated to
measure the axial force between two ring magnets, as shown in Figure 7(b). There is arrangement to

(a) (b)

Figure 7. (a) Configuration of two ring magnets for laboratory testing. (b) Test set-up to measure
force between two ring magnets.
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Table 3. Output of algorithm upto third iterations for inner magnet displacement (x = 0, y = 0,
z = 2 mm).

Iteration no. Partitions Ωk
i Estimated Integral Estimated Error

0
Ω1

0

Ω
173.153
173.153

0.251
0.251

1
Ω1

1

Ω2
1

Ω

58.151
114.213
172.364

0.063
0.142
0.155

2

Ω1
2

Ω2
2

Ω3
2

Ω

58.151
72.432
40.668

171.251

0.063
0.081
0.051
0.115

(a) (b)

Figure 8. (a) Mesh formation for FEM. (b) Flux density distribution for two ring magnets.

hold the two ring magnets. By a screw and nut arrangement, inner magnet can be placed at different
axial positions, whereas the outer magnet is fixed. A sensor unit (load cell type) is used to measure the
axial repulsive force between the two ring magnets, and a display is used to show the calibrated results.
Once importance sampling is over, we estimate the sample average or the force integral between two
ring magnets using method, discussed in Chapter 3.1. Table 3 shows the output of the AMC algorithm
up to third iterations for inner magnet displacement x = 0, y = 0 and z = 2mm. We consider
parameters ς = 0.01 and ε = 0.002. It is observed that partitions are generated by dividing the region
with maximum error. Figure 8(a) shows the mesh generated for FEM, and Figure 8(b) represents the
magnetic flux density distribution in the air. Figure 9(a) shows the comparison of magnetic force,
derived from three methods, AMC, FEM & [8]. We observe that results from these three methods are
in close agreement with each other. Thus we validate the proposed AMC method by FEM and another
established method by Ravaud [8]. Figure 9(b) represents the validation of AMC by experimental data.
It is observed that if the self demagnetization is considered, AMC gives excellent results with respect
to practical test results. In the course of execution, it is observed that computation time for AMC is
17 sec whereas FEM takes 34 sec. It is because AMC does not calculate for all the discrete magnetic
surfaces, and it takes only importance sampling for prominent discrete surfaces which are very close to
each others. Other methods such as FEM consider all the discrete magnetic surfaces on inner and outer
magnet pole faces. Thus AMC also reduces the computation time.
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Figure 9. (a) Comparison of axial force computed by FEM, AMC and [8]. (b) Closeness of AMC
results considering demagnetization with experimental results.

5. CONCLUSIONS

In this paper, a new technique is proposed to calculate magnetic force between two ring magnets using
Adaptive Monte Carlo (AMC) integration. For higher dimension, this method is better fitted than
conventional quadrature methods of integration. Equation of the force between two axially polarized ring
magnets is developed using surface charge density method, and it incurs a four-dimensional integration.
We investigate the singularity of the integrand function over the integration domain. It is observed that
no singularity is possible as two ring magnets never intersect each other at horizontal plane. There are
some peaks of integrand function in the domain which gives the main contribution to the integral. Due
to these peaks, there is some error in the estimation. AMC also manages this problem very well just by
choosing more random samples around the peak region than the flat portion of the integration domain.
Finally, sample average is estimated which gives the integration value. Axial force between two ring
magnets is evaluated using the proposed AMC method, FEM and Laboratory testing by shifting the
inner magnet at different axial positions. These results are plotted, and a comparative study of the
magnetic force is carried out. The results thus obtained are observed in good agreement with each other.
This method is advantageous over existing analytical or quasi-analytical methods regarding singularity
treatment and computational burden. It is more flexible, especially for using in digital computer. So
taking into account of simplicity, less computational burden and usefulness, the proposed method may
be an attractive alternative choice for magnetic force calculation.
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