
Progress In Electromagnetics Research M, Vol. 49, 195–202, 2016

A Set of Simple Numerical Pattern Synthesis Algorithms
for Anti-Jamming with Superdirective Receiving Array

Huajun Zhang, Huotao Gao*, Huaqiao Zhao, Ting Cao, and Boya Li

Abstract—Although a superdirective array can acquire maximum directive gain with electrically small
array, in some practical applications, low sidelobe and deep nulls are also important, which can effectively
inhibit directional interference. In this work, a set of simple superdirective pattern synthesis methods
are proposed. By introducing diagonal loading factor and adding virtual jamming constraints, they can
keep suitable tradeoff among directive gain, efficiency and anti-jamming performance. Besides, easy
realization is another good feature of the proposed methods.

1. INTRODUCTION

Aiming to maximize directive gain and overcome external interference with electrically small arrays, the
concept of superdirective pattern synthesis has been proposed [1–4]. It claims the theoretical possibility
of arbitrarily high directivity from an array of given aperture or overall length, even if element spacing
is sufficiently compact. Relative algorithms are termed super-gain arrays techniques [5]. Based on
the theoretical assumption, sensor array with ultra-small aperture can also acquire the same directive
gain or signal-to-noise ratio (SNR) as conventional array with half-wavelength aperture. This is quite
attractive in engineering application. Especially in HF band, to achieve high angular resolution and
suppress external noise, electrical size of conventional receiving array is tremendous as its working
wavelength is 10–100 m. Huge array brings a lot of inconvenience, such as high cost, poor mobility,
being vulnerable to attack, etc. Consequently, miniaturization of huge arrays generates considerable
interest.

However, classical superdirective arrays have some inherent shortcomings, such as low radiation
efficiency and poor robustness. For example, consider a 9-element linear broadside array of copper
half-wave dipoles with a overall length of 1/4λ. If the specified directive gain reaches 8.5 times
greater than a single dipole, corresponding array efficiency is only 10−14, and corresponding jitter
amplitude of excitation currents must be controlled within 10−11 [5], which is technically unrealistic
at present. Therefore, certain constraint conditions must be imposed to make super-gain array
more feasible in practical situations. Newman et al., Zhou et al., etc. have introduced sensitivity
constraint in optimization of maximum directive gain. Zhang et al. apply steering vector mismatch to
model the uncertainty of a super-gain array. Most of these approaches can be classified as diagonal-
loading method [6–10]. Based on these theoretical contributions, superdirective arrays gradually enter
engineering application stage. Meanwhile, people find that constrained optimal directivity (CODG)
methods still need to be improved. Under given array distribution, such as uniform circular array, their
first sidelobe levels remain almost unchanged, which is irrelevant with elements number. This provides
array with rather limited anti-jamming effect. After all, ultimate design objective is to reserve signal
of interest (SOI) while suppressing or even eliminating external noise and disturbance. Therefore,
it will be meaningful to study some optimal algorithms which can realize sidelobe or null control.
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Refs. [11, 12] adopt the second-order cone programming (SOCP) in reduction of sidelobe levels. But
its parameter selection criteria are rather complex, and the method requires array to be accurately
calibrated, which is not practical in engineering. Traditional linear constrained optimal directive gain
(L-CODG) method can easily form deep nulls at prescribed direction [13–16], but it can hardly satisfy
requirements of robustness and efficiency indicators. Here, a set of new pattern synthesis techniques
are proposed. The first method forms deep and broaden nulls to suppress high-power interference from
centralized direction. The second method uses low sidelobe level to inhibit dispersed interference. By
introducing diagonal loading factor, superdirective arrays obtain effective compromise among efficiency,
robustness and anti-jamming performance. Besides, the proposed methods are simpler in engineering
implementation.

The rest of this paper is arranged as follows. In Section 2, problems and existing solutions are
reviewed. Section 3.1 introduces the nulling based method. Section 3.2 analyzes performance of the
proposed method by numerical examples. Similarly, Section 4.1 gives the low-sidelobe based method.
Relative numerical analysis is shown in Section 4.2. Section 5 draws a final conclusion.

2. PROBLEM FORMULATION

In order to facilitate analysis, we assume that an antenna array consists of M isotropic elements which
uniformly distribute at known locations. Applying a set of complex excitation weights w, radiation
pattern of the array can be steered towards a predetermined direction (θ0, φ0). For HF superdirective
array, directivity G(θ0, φ0) and efficiency η are key indexes, and they should meet following relationship:

G(θ0, φ0) =
wHNw
wHRw

, η =
wHNw
MwHw

(1)

where N = a(θ0, φ0)aH(θ0, φ0) and R = 1
4π

∫ 2π
0

∫ π
0 sin θa(θ, φ)aH(θ, φ)dθdφ. a(θ, φ) is steering vector of

the array, and (·)H denotes Hermitian transpose. Using distortionless constraint wHa(θ0, φ0) = 1 over
signal of interest (SOI) direction, the above formula can be simplified as:

G(θ0, φ0) =
1

wHRw
, η =

1
MwHw

=
1

MK
(2)

where K represents sensitivity indicator. The smaller K is, the more robust the array will be.
For a certain superdirective array, classical optimal directive gain (ODG) method only seeks the

maximization of G(θ0, φ0). It brings about low efficiency and high sensitivity to array uncertainty, both
of which are unacceptable. Omitting derivation, its final computation formula is:

wopt = R−1a(θ0, φ0), Gopt(θ0, φ0) = aH(θ0, φ0)R−1a(θ0, φ0) (3)
In order to improve its engineering practicality, sensitivity-constrained optimal directive gain (S-CODG)
method is proposed, which is written as:

min
w

wHRw, subject to wHa(θ0, φ0) = 1, ‖w‖2 = K. (4)

The corresponding excitation weight is:

ŵopt =
(R + λI)−1a(θ0, φ0)

aH(θ0, φ0)(R + λI)−1a(θ0, φ0)
(5)

where λ is a scalar multiplier associated with K. Although smaller K value can bring better robustness
and higher efficiency, it will also make directive gain worse. A practical super-gain array just needs
to guarantee the dominance of system background noise, i.e., array efficiency η always has prescribed
minimum (maximum for K) in different frequency bands. For example, at 10 MHz, external receiver
noise is typically −55 dB larger than internal receiver noise. Assume that each dipole element is
connected to a high-impedance preamplifier with a noise figure of 10 dB, and a 10 dB essential “cushion”
is needed to ensure that external noise dominates. Then, the specified array efficiency η0 should be no
less than −35 dB. Further, according to [8], if minimum array efficiency η0 is given, selection interval of
sensitivity K is subjected to:

1
M

≤ K ≤ min
(

1
Mη0

,
aH(θ0, φ0)R−2a(θ0, φ0)

[aH(θ0, φ0)R−1a(θ0, φ0)]2

)
(6)
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Still revolving around robustness problem, Ref. [10] proposes a uncertainty-constrained optimal
directive gain (U-CODG) method. Considering steering vector mismatch always exists in real array
system, we can only get its estimate. Assume a(θ0, φ0) as desired steering vector, and â represents
mismatched steering vector. The relationship between a and â will meet following uncertainty
constraint:

[â − a(θ0, φ0)]HC−1[â − a(θ0, φ0)] ≤ 1 (7)

where C represents constraint matrix. Apparently, it is a Euclid ellipsoidal constraint problem. Without
losing generality, we make C = μI, where I is identity matrix, and μ takes the maximum axle length of
ellipsoidal. Thus, the above inequality can degenerate into sphere constraint problem:

‖â − a(θ0, φ0)‖2 ≤ μ (8)

On the other hand, in Formula (3), replacing a(θ0, φ0) with â will yield estimation value of directive
gain Ĝopt. Considering these two aspects, the U-CODG method can be represented as:

max
â

Ĝopt subject to ‖â − a(θ0, φ0)‖2 ≤ μ (9)

Omitting derivation, the corresponding excitation weight is represented as:

ŵ =
(R + 1

λI)−1a(θ0, φ0)
aH(θ0, φ0)(R + 1

λI)−1R(R + 1
λI)−1a(θ0, φ0)

(10)

where λ denotes scalar multiplier associated with μ. As seen, the solution is very similar to S-
CODG method. In Formula (10), matrix R can further be decomposed as R = UΛUH, in which
U represents the eigenvector matrix, and Λ is a diagonal matrix composed by the eigenvalues of R.
Make z = UHa(θ0, φ0). Based on the analysis of [10], by choosing a proper mismatch value of μ/‖z‖2,
the same robustness and efficiency can be acquired as S-CODG method.

Although the above methods effectively improve the engineering value of a super-gain array, they
still have some deficiency. On one hand, S/U-CODG can make super-gain array have sufficiently
high radiation efficiency and robustness against random variations of array. On the other hand, their
constant sidelobe level depth provides limited anti-jamming effect under strong interference environment.
Therefore, the ability of forming deep nulls and low sidelobe levels at prescribed direction will be more
beneficial in some situations.

3. NUMERICAL METHOD 1

3.1. Theory and Implementation

Assuming that there are P external signals not of interest (SNOI) which are from (θi, φi), i = 1, 2, · · · , P ,
the constraints providing level control over sidelobe and null directions can be written as:

wHa(θ0, φ0) = 1, wHa(θi, φi) = εi, i = 1, 2, · · · , P (11)

Making A = [a(θ0, φ0),a(θ1, φ1), · · · ,a(θP , φP )] and g = [1, ε1, · · · , εP ]H, the above equation can be
further simplified as AHw = g.

In order to maximize directive gain, we must minimize denominator of G(θ0, φ0). Consequently,
we get:

min
w

wHRw, subject to AHw = g (12)

Lagrange method can be applied to solve it for w. Ignoring derivation, the result can be denoted as:

w = R−1A(AHR−1A)−1g (13)

Further, array efficiency η can be rewritten as:

η =
1

MgH [AHR−1A]−1 [AHR−2A] [AHR−1A]−1 g
(14)
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Aiming to improve array efficiency and robustness, diagonal loading factor Δd is introduced.
Therefore, Equation (14) can be corrected as:

η′ =
1

MgH[AH(R + ΔdI)−1A]−1[AH(R + ΔdI)−2A][AH(R + ΔdI)−1A]−1g
=

1
Mf (Δd)

(15)

The function η′ = 1/[Mf(Δd)] is monotone increasing as Δd in interval [0,+∞], which can be verified
by numerical method. Therefore, for a given array efficiency η0, the following inequality should be
satisfied:

lim
Δd→0

1
Mf(Δd)

≤ η0 ≤ lim
Δd→+∞

1
Mf(Δd)

(16)

By numerical simulation tests, when Δd ≥ 1, η0 will approach the maximum value.
As a conclusion, we implement the proposed method in the following steps:

Step 1) According to practical SNOI direction, set nulling constraints by formula AHw = g.
Step 2) Based on the inequality in Eq. (16), set suitable efficiency η0, initial diagonal loading value
Δd and incremental step δ.
Step 3) Make Δd = Δd + δ; use function in Eq. (15) to compute practical η′.
Step 4) If η′ ≤ η0, return to Step 3); otherwise, iteration ends and go to Step 5).
Step 5) Use Δd to compute final weight vector w:

w = (R + ΔdI)−1A(AH(R + ΔdI)−1A)−1g (17)

3.2. Numerical Examples and Analysis

In order to analyze practical performance of the proposed method, assume a compact circular array
model which consists of 11 idealized short vertical dipole elements. The array radius is 4 m, and working
frequency is 12 MHz. SOI is from 180◦, and SNOI is from 300◦. Three virtual interference constraints are
added to form a broaden null with −30 dB depth. Disturbance spacing is 10◦. Desired array efficiency
should be above 24%. Make initial loading value Δd = 5 × 10−3 and incremental step δ = 10−3. By
computation, when the total iteration number is 95 and final Δd = 0.1, specified efficiency is satisfied.
With reference to Formula (2), the corresponding array sensitivity factor is 0.378, and directive gain
is 17.7 dB. Fig. 1(a) shows corresponding beampatterns. Other patterns by S-CODG and U-CODG
methods are drawn together to form contrast.

In order to present the comparative results better, Table 1 lists specific performance indicators.
As can be seen, S/U-CODG methods satisfy the same array efficiency as the proposed method does.
However, their sidelobe levels located at SNOI direction are much higher (−14.61 dB, −14.09 dB
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Figure 1. Numerical examples. (a) Pattern Contrast. (b) Robustness Contrast.
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Table 1. Performance indicators (Δd = 0.1).

Method Directive Gain(dB) Sensitivity HPBW(deg) Efficiency(%) Null Depth(dB)
S-CODG 18.6 0.375 69 24.25 −14.61
U-CODG 19.0 0.698 66 24.20 −14.09
L-CODG 27.5 2.1 × 104 29 4.3×10−4 −30.0

DL-CODG 17.7 0.378 72 24.03 −30.07
(HPBW: half-power beamwidth.)
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Figure 2. Performance analysis. (a) Directivity corresponding to a given Δd. (d) η′ corresponding to
a given Δd. (c) Sensitivity corresponding to a given Δd. (d) Q factor corresponding to a given Δd. (e)
Directivity corresponding to a negative Δd. (f) Patterns under negative Δd

respectively), which verifies their limited anti-jamming performance. Although the pattern by L-
CODG method has deep enough null level (−30.0 dB) at interference direction, its array efficiency (only
4.3×10−4) is far below specified value. Besides, its considerably high sensitivity indicator (2.1 × 104)
also reflects that the pattern will be very unstable when confronting array uncertainty. For example, we
add −35 dB (Standard Deviation 0.0178) random amplitude errors and 3◦ (Standard Deviation 0.0524)
random phase errors into array model. Both meet independent Gaussian distribution. Fig. 1(b) shows
corresponding patterns under 20 times Monte-Carlo tests. Obviously, the pattern by L-CODG has
serious distortion while that of DL-CODG still keeps robust. Therefore, the proposed method makes a
better tradeoff among efficiency, robustness and anti-jamming ability.

Further, to evaluate the performance of the proposed method more comprehensively, some relevant
indicator curves such as directive gain, array efficiency, sensitivity, Q factor are plotted in Fig. 2. As
seen, when Δd = 1.2, efficiency index is 38.18%, and sensitivity is 0.2381. When Δd = 0, the proposed
method will convert into L-CODG method. On this condition, although directivity is up to 27.46 dB,
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radiation efficiency is only 4.45 × 10−4%, which cannot be realized in practical engineering. When
Δd < 0, as shown in Fig. 2(e), array directivity is generally smaller than that of positive loading. In
interval Δd ∈ [−1.1,−0.5], directive gain is negative, which means that mainlobe distortion occurs.
Especially when Δd = −0.735, directive gain has minimum −122.2 dB, which even forms a deep null
at desired SOI position. Corresponding beampattern is plotted in Fig. 2(f). Consequently, in order to
keep high directive gain and avoid pattern distortion, positive loading value should be selected.

4. NUMERICAL METHOD 2

4.1. Theory and Implementation

As can be seen from above, virtual nulling techniques are suitable for high power interference, especially
when SNOI comes from a concentrated direction. If interferences are more, and they present dispersion
distribution, low sidelobe will produce more significant suppression effect. Corresponding mathematical
expression can be written as:

min
w

wH(R + ΔdI)w, subject to wHa(θ0, φ0) = 1, |wHa(θi, φi)| ≤ SLL (18)

where (θ0, φ0) denotes desired mainlobe position, and (θi, φi) belongs to specified sidelobe region. SLL
is specified maximum sidelobe level.

In order to solve the above problem, the following numerical iteration steps are adopted:

Step 1) Assume that P virtual interferences (P ≥ 6) are located in specified sidelobe region. Set
initial nulling constraints:

min
w0

w0
H(R + ΔdI)w0, subject to w0

Ha(θ0, φ0) = 1, |w0
Ha(θi, φi)| = l0 < SLL (19)

where l0 denotes initial null depth which should be smaller than SLL. According to Formula (17),
get initial weight vector w0.
Step 2) Use weight vector w0 to compute amplitude response and find local maximum lj located at
(θj, φj) in each sidelobe (Boundary points cannot be ignored). Compute corresponding difference
level between lj and SLL:

Δlj =
lj
|lj |(SLL − |lj |) (20)

Step 3) Use the following constraints to compute step weight vector Δw:

min
Δw

ΔwH(R + ΔdI)Δw, subject to ΔwHa(θ0, φ0) = 0, |ΔwHa(θj, φj)| = Δlj (21)

Step 4) Update weight vector: w = w0 + Δw. Compute amplitude response in sidelobe region. If
response level is less than specified SLL, iteration ends. Otherwise, return to Step 2).

4.2. Numerical Examples and Analysis

Still use the array model in Section 3: 11-element circular array, 4m array radius, 12 MHz working
frequency. Assume mainlobe direction as 180◦. Specified sidelobe region is located in interval
[0◦, 100◦]

⋃
[260◦, 360◦], and desired maximum sidelobe level is SLL ≤-30 dB. In order to satisfy the

constraints, we set 6 virtual interferences (20◦, 60◦, 100◦, 260◦, 300◦, 340◦) which are evenly distributed
in sidelobe region. Diagonal loading value Δd = 0.1 and initial null depth is −55 dB. After several
iterations, array pattern will become stable, which is shown in Fig. 3(a). As can be seen, L-CODG and
the proposed method are both favorable on sidelobe level index. However, on array efficiency, L-CODG
is only 0.287%, and the proposed method is 4.8%. On sensitivity, L-CODG is 31.66, and the proposed
method is 1.89. Apparently, the proposed method has higher array efficiency and better robustness.

In order to further verify the above conclusion, Table 2 lists specific indicators of both methods
under different SLL levels. We can find that as SLL decreases, array efficiency and robustness by the
proposed method correspondingly increase (η′ increases by 10.3%, and K falls by 8.89). Meanwhile,
the array still keeps a relatively high directive gain (only falls 3.55 dB). On the other hand, L-CODG
method has no obvious performance improvement. When SLL = −30 dB, it reaches the maximum
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Table 2. Performance indicators (Δd = 0.1).

Specified SLL (dB) Method Directive Gain (dB) Sensitivity HPBW (deg) Efficiency(%)

−15
L-CODG 20.37 2499 54 0.004

DL-CODG 22.17 9.7 48 0.935

−25
L-CODG 21.47 104.3 50 0.087

DL-CODG 19.82 1.53 60 5.95

−35
L-CODG 21.7 40.54 50 0.22

DL-CODG 19.37 1.32 62 6.862

−40
L-CODG 21.74 78.68 49 0.12

DL-CODG 18.95 1 64 9.06

−45
L-CODG 21.76 104 48 0.087

DL-CODG 18.62 0.81 66 11.24

(HPBW: half-power beamwidth.)

efficiency 0.287% and minimum sensitivity 31.66, which is still worse than the proposed method on
condition of SLL = −15 dB.

In addition to reducing SLL level, choosing suitable loading value Δd is also helpful in improving
array efficiency and robustness, which can be verified in Figs. 3(b)–3(e). As can be seen, when
Δd ∈ [0, 0.005], increasing loading value will have significant effect on array performance. Efficiency
increases from 1.77% to 4.8%, and sensitivity decreases from 5.13 to 1.89. When Δd ≥ 0.05, the change
trend of each indicator will be flat. When Δd ≥ 0.5, array performance will be no longer improved as
Δd increases.

Therefore, aiming to overcome low efficiency and poor robustness of a superdirective array, setting
lower sidelobe and larger diagonal loading value is recommended.
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5. CONCLUSION

In this work, a set of simple superdirective pattern synthesis methods are proposed. By adding virtual
interferences and diagonal loading value as constraints, an array can make a better tradeoff among
directive gain, efficiency and anti-jamming performance. The proposed methods adopt numerical
iteration solution and have simple parameter selection criteria, which is convenient for engineering
realization.
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