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Modified GO Solutions for the High Frequency Reflected Wave
in the Focal Region of a 3D Elliptical Reflector Placed

in Isotropic Chiral Medium

Tariq Rahim1, *, Muhammad Ibrahim2, Murad Ali Shah3, and Jiadong Xu1

Abstract—High frequency electromagnetic (EM) fields in the focal region of a 3D elliptical reflector
placed in a homogeneous and reciprocal chiral background have been analyzed using geometrical optics
(GO) approximation and Maslov’s method. The GO solutions becomes invalid at the focal region of a
3D elliptical reflector due to unreal singularities. Therefore, an asymptotic method based on Maslov’s
theory has been applied to derive high frequency EM fields, which is also valid at the focal points.
Moreover, the effect of chirality parameter of the background medium on the position of focal points
for both Left circularly polarized wave (LCP) and right circularly polarized (RCP) wave are described
by plotting the derived expressions numerically using MATLAB.

1. INTRODUCTION

Chiral medium has been studied extensively since early nineteenth century due to its potential
applications in field optics, material sciences, photonics, chemistry, particle physics, life sciences acoustic,
and seismic systems [1–3]. Due to extraordinary characteristics, easy fabrication, availability and
potential diverse applications in electromagnetic waves propagation, radiation, scattering, such media
have drawn the attention of many researchers over the last decade. Chiral medium can be realized
practically by using miniature spiral wires, conducing springs and other planner or non-planner chiral
objects. These chiral objects provide cross coupling between electric and magnetics fields inside the
medium, and thus the medium exhibits artificially tunable electromagnetic properties which cannot be
found in conventional medium. Apart from these general applications, focusing systems, associated
with chiral medium and having different potential applications, are illustrated in [4–6]. These focusing
systems (lenses and reflectors) with different shapes are suitable to be used in feed arrays in imaging,
satellite communication, optical-fiber communications, and design of multiple beam antenna systems
ranging from microwave to optical frequency range. The interaction of EM wave with these media
has been analyzed using different analytical and computational methods such as Method of Moment
(MOM), Finite Difference Time Domain (FDTD), Physical Optics (PO), Genetic Algorithm (GA),
Geometric Optics (GO), Kirchhoff-Huygens integral method, Debye Wolf focusing integral method and
various other methods and tools which are a combination of [7–11]. In this work, we use Geometrical
Optics (GO) which is a ray-based technique to model EM fields for high-frequency field expressions for
3D elliptical reflector with chiral background. A general GO field expression can be calculated using
Gauss’ theorem [5], and the relationship is given by

u(r) = E(r0)J−1/2 exp(−jk(s0 + n2t)) (1)
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In the above equation, E(r0) is the initial absolute value of field intensity of the wave. The Jacobian
is used as a transformation from the ray coordinates (ξ, η, ζ) to Cartesian coordinate (x, y, z), which
can be calculated by J = D(t)/D(0), where D(t) = ∂(x, y, z)/∂(ξ, η, t). The transport equation is used
to find the amplitude of the GO expression, and the Eikonal equation is used to find the phase of the
wave. The calculated GO approximation fails at the focal points due to shrinking of the ray tube to
zero, which is unreal. These points are derived by putting the term J = 0. Moreover, these points are
often of great practical importance in all practical applications. The GO approximation is amended by
an asymptotic method based on Maslov’s theory which combine the ray theory and Fourier transform.
Maslov’s method is applied to find the field around the focal points of different reflectors over the years
as given in [12–21]. Fourier integral is used to find the stationary phase points from phase function. The
general form of the field expression which is also valid around the focal points using Maslov’s method
is given in [12]

u(r) =
k

2π

∫ ∞

−∞

∫ ∞

−∞
ET (ξ, η)

(
D(t)
D(0)

∂(px, py)
∂(x, y)

)− 1
2

exp[−jk{s0 + n2t − x(px, py, z)px − y(px, py, z)py + xpx + ypy}]dpxdpy (2)

The term used D(t)
D(0)

∂(px,py)
∂(x,y) in the above equation be derived using the expression given by

D(t)
D(0)

∂(px, py)
∂(x, y)

=
1

D(0)
∂(px, py, z)
∂(ξ, η, ζ)

. (3)

In this work, the focusing system is a 3D elliptical reflector with a homogeneous and reciprocal chiral
medium as a background medium. Chirality is a structural phenomenon which creates optical activity
in chiral medium. Optical activity is the ability of a medium to rotate the polarization plane of lineally
polarized light or wave passes through the medium [26]. Due to the birefringence nature of the chiral
medium, there exist two different types of waves in a chiral medium, i.e., right circularly polarized
(RCP) and left circularly polarized (LCP) EM waves with different refraction indices due to different
phase velocities [28]. The optical activity increases with the increase in the concentration of chiral
objects into the host medium. Furthermore, optical activity also depends upon the depth of the chiral
medium [24]. The interaction of electromagnetic waves with chiral medium has been studied over the
years by many authors [18–28]. The constitutive relation used to describe the waves inside the chiral
medium is represented by [28]

D = ε(E + β∇× E), B = μ(H + β∇× H) (4)

ε, μ, and β are permittivity, permeability and chirality parameter, respectively. ε and μ have their
usual dimensions, and β has the dimension of length. By using the equations given in Eq. (4), the
solution of Maxwell’s equations results in coupled differential equations. The equations which make
these differential equations for E and H uncoupled are given by [28]

E = QL − j

√
μ

ε
QR, H = QR − j

√
ε

μ
QL (5)

and QL, QR are RCP and LCP waves respectively and satisfy the following general wave equations

(∇2 + n2
1k

2)QL = 0, (∇2 + n2
2k

2)QR = 0 (6)

where, n1 = 1/(1 − kβ) and n2 = 1/(1 + kβ) are equivalent refractive indices for LCP and RCP waves,
respectively, and k = ω

√
εμ. Eq. (6) shows that fields in the chiral medium can be derived similarly

as calculated in conventional medium if we use the transformation from coupled differential equations
to uncoupled differential equation given in Eq. (5). Therefore, GO approximation for chiral medium
for both LCP and RCP waves are solved independently, and the total field can be obtained using the
superposition theorem. The expressions for high frequency EM field using GO method and Maslov’s
method are derived and analyzed in the coming sections.
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2. FIELDS AROUND THE CAUSTIC REGION OF THE ELLIPTICAL REFLECTOR
USING GO AND MASLOV’S METHOD

In this paper, we want to derive the reflected field around the focal points of a 3D elliptical reflector
with chiral background. Two incident waves (RCP and LCP) are assumed because chiral medium
exhibits the property of converting a linearly polarized wave to LCP and RCP waves. The amplitudes
for both RCP and LCP waves are taken as unity for simplicity, and their phase velocities are ω/kn2 and
ω/kn1, respectively. Four waves are reflected when both LCP and RCP waves hit the perfect electric
conductor (PEC) 3D elliptical reflector. These waves are represented by RR, RL, LL and LR. RR
and RL are RCP and LCP reflected wave components respectively, when RCP is incident on the PEC
3D elliptical surface, and LL and LR are LCP and RCP reflected waves respectively, when LCP wave
excites the elliptical reflector antenna. Both RR and LL waves make an angle α along the z-axis, and
their amplitudes are given by [12]

ELL(r0) =
cos α − cos α2

cos α + cos α2
, ERR(r0) =

cos α − cos α1

cos α + cos α1
(7)

Furthermore, the phase velocities for LL and RR waves are ω/kn1 and ω/kn2, respectively. RL and
LR waves have phase function ω/kn1 and ω/kn2, respectively. The initial amplitudes of these reflected
rays are given by

ERL(r0) =
2 cos α

cos α + cos α1
, ELR(r0) =

2 cos α

cos α + cos α2
(8)

RL and LR make angles α1 and α2 along z-axis, respectively. The values of these angles are derived
from Snell’s law and describe by

α1 = sin−1

{
n1

n2
sin α

}
, α2 = sin−1

{
n2

n1
sin α

}
(9)

The RL waves bend away from the 3D elliptical reflector if we consider the value of β > 0 which means
that n1 > n2 and α2 > α. On the other hand, LR wave bends towards the 3D elliptical reflector for
β > 0. If β = 0, then only normal reflection takes place, and if the chirality parameter β increases the
difference between the angles α and α1, α2 increases. If we take the value of β < 0, the roles of LCP
and RCP waves are interchanged. The 3D elliptical reflector with isotropic and homogeneous chiral
background is shown in Figure 1 and can be describe by the equation given below

ζ = g(ξ, η) =
a

b

√
b2 − ξ2 − η2 =

a

b

√
b2 − ρ2 (10)

In the above relationship, a and b are the radii of the 3D dielectric elliptical reflector along the major
and minor axes, respectively, where (ξ, η, ζ) are the initial values of (x, y, z), ρ2 = ξ2 + η2. In this case,
the 3D reflector system has been placed in homogeneous and reciprocal chiral medium. Therefore, due
to birefringence nature of the chiral medium, two waves (LCP and RCP) propagating along the z-axis
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Figure 1. 3D elliptical PEC reflector embedded in chiral medium.
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are considered as incident waves on the 3D elliptical shape. The relationship which validates the general
wave equation is given by

QL = (ax + jay) exp(−jkn1z), QR = (ax − jay) exp(−jkn2z) (11)

where ax and ay are the unit vector along x-axis and y-axis, respectively. The polarization of the wave
is ignored for the sake of simplicity, and the amplitude of the incident wave is taken as unity and given
by

QL = exp(−jkn1z), QR = exp(−jkn2z) (12)

These waves make an angle α with the normal to the surface of a 3D elliptical reflector. The unit normal
vector to the surface can be describe by

an = sin α cos γax + sinα sin γay + cos αaz (13)

where, α is the angle between normal vector and z-axis

sin α =
−ǵ(ρ)√

1 + (ǵ(ρ))2
=

aρ√
b2(b2 − ρ2) + a2ρ2

(14)

cos α =
1√

1 + (ǵ(ρ))2
=

b
√

b2 − ρ2√
b2(b2 − ρ2) + a2ρ2

(15)

tan γ =
η

ξ
(16)

The prime sign in the above equation is for the derivative. The surface coordinates in term of polar
coordinates (α, γ) for the 3D elliptical shape are expressed in the relationship given by

ξ =
b2 sin α cos γ√

b2 sin2 α + a2 cos2 α
(17)

η =
b2 sin α sin γ√

b2 sin2 α + a2 cos2 α
(18)

ζ =
a2

√
b2 tan2 α + a2

(19)

The reflected wave vectors from the 3D elliptical reflector placed in homogeneous and reciprocal chiral
medium are shown in Figure 1. The wave vector for the reflected wave from the elliptical reflector can
be found by Snell’s law given by

pr = pi − 2(pi. an) an (20)

where pi and pr are the wave vector for the incident wave and reflected wave, respectively. The reflected
wave vector for LL, RR, RL and LR rays are calculated and given by the following expressions

pLL = −n1 sin 2α cos γax − n1 sin 2α sin γay − n1 cos 2αaz (21)

pRR = −n2 sin 2α cos γax − n2 sin 2α sin γay − n2 cos 2αaz (22)

pRL = −n1 sin(α + α1) cos γax − n1 sin(α + α1) sin γay − n1 cos(α + α1)az (23)

pLR = −n2 sin(α + α2) cos γax − n2 sin(α + α2) sin γay − n2 cos(α + α2)az (24)

The initial phases for LL, RR, RL, LR waves are sLL(ro) = n1ζ, sRR(r0) = n2ζ, sRL(r0) = n2ζ and
sLR(r0) = n1ζ. It is worth to note here that the apparent wave numbers of all rays, LL, LR, RL, and
RR, make the difference in the reflected wave vector. All these rays have different effects on the focal
points due to the difference in their phase velocities. Phase velocity changes with wave number which
in turn varies with chirality parameter β of the chiral medium. The Jacobian term in Eq. (1) is used
to transform ray coordinates to the Cartesian coordinates. The transformation for LL, LR, RL, and
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RR rays reflected from 3D elliptical reflector placed in isotropic and homogeneous chiral medium are
calculated as

DLL(t) =

∣∣∣∣∣∣∣∣∣∣

1 +
∂pLLx

∂ξ
t

∂pLLy

∂ξ
t

∂ζ

∂ξ
+

∂pLLz

∂ξ
t

∂pLLx

∂η
t 1 +

∂pLLy

∂η
t

∂ζ

∂η
+

∂pLLz

∂η
t

pLLx pLLy pLLz

∣∣∣∣∣∣∣∣∣∣
JLL =

DLL(t)
DLL(0)

=
(

2n1Xt

ab2 cos γ sin γ

)2

− 4n1t

b2 cos α

(
sin2 α cos2 αX

1
2

cos2 γ sin2 γ
+

4X
3
2

a2
+ X

1
2 cos2 α cos 2α

)
+ 1 (25)

DRR(t) =

∣∣∣∣∣∣∣∣∣∣

1 +
∂pRRx

∂ξ
t

∂pRRy

∂ξ
t

∂ζ

∂ξ
+

∂pRRz

∂ξ
t

∂pRRx

∂η
t 1 +

∂pRRy

∂η
t

∂ζ

∂η
+

∂pRRz

∂η
t

pRRx pRRy pRRz

∣∣∣∣∣∣∣∣∣∣
JRR =

DRR(t)
DRR(0)

=
(

2n2Xt

ab2 cos γ sin γ

)2

− 4n2t

b2 cos α

(
sin2 α cos2 αX

1
2

cos2 γ sin2 γ
+

4X
3
2

a2
+ X

1
2 cos2 α cos 2α

)
+ 1 (26)

DRL(t) =

∣∣∣∣∣∣∣∣∣∣

1 +
∂pRLx

∂ξ
t

∂pRLy

∂ξ
t

∂ζ

∂ξ
+

∂pRLz

∂ξ
t

∂pRLx

∂η
t 1 +

∂pRLy

∂η
t

∂ζ

∂η
+

∂pRLz

∂η
t

pRLx pRLy pRLz

∣∣∣∣∣∣∣∣∣∣
JRL =

DRL(t)
DRL(0)

= 1 +
2X1 sin(α + α1)

sin 2α
(
tan α sin(α + α1) + cos(α + α1)

) ( n1Xt

ab2 cos γ sin γ

)2

− 4n1X
1
2 sec αt

tan α sin(α+α1)+cos(α+α1)

(
sin2(α+α1)

(b cos γ sin γ)2
+

2XX1

b2a2
+

cos(α+α1) sin(α+α1)
b2 sin α secα

)
(27)

DLR(t) =

∣∣∣∣∣∣∣∣∣∣

1 +
∂pLRx

∂ξ
t

∂pLRy

∂ξ
t

∂ζ

∂ξ
+

∂pLRz

∂ξ
t

∂pLRx

∂η
t 1 +

∂pLRy

∂η
t

∂ζ

∂η
+

∂pLRz

∂η
t

pLRx pLRy pLRz

∣∣∣∣∣∣∣∣∣∣
JLR =

DLR(t)
DLR(0)

= 1 +
2X2 sin(α + α2)

sin 2α
(
tan α sin(α + α2) + cos(α + α2)

) ( n2Xt

ab2 cos γ sin γ

)2

− 4n2X
1
2 sec αt

tan α sin(α+α2)+cos(α+α2)

(
sin2(α+α2)

(b cos γ sin γ)2
+

2XX2

b2a2
+

cos(α+α2) sin(α+α2)
b2 sin α secα

)
(28)
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In the above expressions
X = a2 cos2 α + b2 sin2 α (29)

X1 =

√
n2

1 − n2
2 sin2 α + n2 cos α√

n2
1 − n2

2 sin2 α
(30)

X2 =

√
n2

2 − n2
1 sin2 α + n1 cos α√

n2
2 − n2

1 sin2 α
(31)

The geometrical optics fields for each ray are obtained by putting Eqs. (30)–(36) in Eq. (1) and given
by

uLL(r) =
cos α − cos α2

cos α + cos α2
(JLL)−1/2 exp−jk{n2

1t + n1ζ} (32)

uRR(r) =
cos α − cos α1

cos α + cos α1
(JRR)−1/2 exp−jk{n2

2t + n2ζ} (33)

uRL(r) =
2 cos α

cos α + cos α1
(JRL)−1/2 exp−jk{n2

1t + n2ζ} (34)

uLR(r) =
2 cos α

cos α + cos α2
(JLR)−1/2 exp−jk{n2

2t + n1ζ} (35)

The focal points equations where Jacobian is zero for LL, RR, RL, and LR rays are given as(
2n1Xt

ab2 cos γ sin γ

)2

− 4n1t

b2 cos α

(
sin2 α cos2 αX

1
2

cos2 γ sin2 γ
+

4X
3
2

a2
+ X

1
2 cos2 α cos 2α

)
+ 1 = 0 (36)

(
2n2Xt

ab2 cos γ sin γ

)2

− 4n2t

b2 cos α

(
sin2 α cos2 αX

1
2

cos2 γ sin2 γ
+

4X
3
2

a2
+ X

1
2 cos2 α cos 2α

)
+ 1 = 0 (37)

2X1 sin(α + α1)
sin 2α

(
tan α sin(α + α1) + cos(α + α1)

) ( n1Xt

ab2 cos γ sin γ

)2

− 4n1X
1
2 sec αt

tan α sin(α+α1)+cos(α+α1)

(
sin2(α+α1)

(b cos γ sin γ)2
+

2XX1

b2a2
+

cos(α+α1) sin(α+α1)
b2 sin α sec α

)
+1=0 (38)

2X2 sin(α + α2)
sin 2α

(
tan α sin(α + α2) + cos(α + α2)

) ( n2Xt

ab2 cos γ sin γ

)2

− 4n2X
1
2 sec αt

tan α sin(α+α2)+cos(α+α2)

(
sin2(α+α2)

(b cos γ sin γ)2
+

2XX2

b2a2
+

cos(α+α2) sin(α+α2)
b2 sin α sec α

)
+1=0 (39)

The volume of the ray tube for these rays vanishes near the caustic region. Therefore, GO solution
cannot be applied to find the solution around the caustic region. So we derive the field around the
caustic region using Maslov’s method. To calculate the expressions for the fields around the caustic
region by Eq. (2) we need Eq. (3) for the amplitude of different reflected rays

JLL
∂(pLLx, pLLy)

∂(x, y)
=
(

2n1X cos 2α
ab2 cos γ sin γ

)2

(40)

JRR
∂(pRRx, pRRy)

∂(x, y)
=
(

2n2X cos 2α
ab2 cos γ sin γ

)2

(41)

JRL
∂(pRLx, pRLy)

∂(x, y)
=

2n2
1X

2X1 cos2(α + α1) sin(α + α1)
a2b4 sin 2α cos2 γ sin2 γ [cos(α + α1) + tan α sin(α + α1)]

(42)

JLR
∂(pLRx, pLRy)

∂(x, y)
=

2n2
2X

2X2 cos2(α + α2) sin(α + α2)
a2b4 sin 2α cos2 γ sin2 γ [cos(α + α2) + tan α sin(α + α2)]

(43)
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The transformation components for each ray are calculated. Now to calculate the phase function in
Eq. (2), x and y are expressed in terms of mixed coordinates (px, qy, z). Similarly, t is represented in
terms of hybrid coordinates as t = (z−ζ)/pz. The general expression for the phase function is calculated
by using hybrid coordinates as

S = S0 + n2t − (ξ + qxt)px − (η + pyt)qy + xpx + pqy (44)
Putting Eqs. (22)–(24) and the coefficients in relations (26)–(29) in Eq. (49), we get the phase function
for all four rays as given by

sLL = n1

[
2X

1
2 cos α − x sin 2α cos γ − y sin 2α sin γ − z cos 2α

]
(45)

sRR = n2

[
2X

1
2 cos α − x sin 2α cos γ − y sin 2α sin γ − z cos 2α

]
(46)

sRL = n1

[
n2

n1
a2X

−1
2 cos α + a2X

−1
2 cos α cos(α + α1) + b2X

−1
2 sin α sin(α + α1) − x cos γ sin(α + α1)

−y sin γ sin(α + α1) − z cos(α + α1)
]

(47)

sLR = n2

[
n1

n2
a2X

−1
2 cos α + a2X

−1
2 cos α cos(α + α2) + b2X

−1
2 sin α sin(α + α2) − x cos γ sin(α + α2)

−y sin γ sin(α + α2) − z cos(α + α2)
]

(48)

The integration variables (dpx, dqy) for all four rays are transformed to (ξ, η), and the following relation
is obtained

dpLLxdpLLy =

∣∣∣∣∣∣∣∣
∂pLLx

∂ξ

∂pLLy

∂ξ
∂pLLx

∂η

∂pLLy

∂η

∣∣∣∣∣∣∣∣
=

4n2
1X

2 cos 2α
a2b4 sin2 γ cos2 γ

dξdη (49)

dpRRxdpRRy =

∣∣∣∣∣∣∣∣
∂pRRx

∂ξ

∂pRRy

∂ξ
∂pRRx

∂η

∂pRRy

∂η

∣∣∣∣∣∣∣∣
=

4n2
2X

2 cos 2α
a2b4 sin2 γ cos2 γ

dξdη (50)

dpRLxdpRLy =

∣∣∣∣∣∣∣∣
∂pRLx

∂ξ

∂pRLy

∂ξ
∂pRLx

∂η

∂pRLy

∂η

∣∣∣∣∣∣∣∣
=

2n2
1X

2X1 cos(α + α1) sin(α + α1)
a2b4 sin 2α sin2 γ cos2 γ

dξdη (51)

dpLRxdpLRy =

∣∣∣∣∣∣∣∣
∂pLRx

∂ξ

∂pLRy

∂ξ
∂pLRx

∂η

∂pLRy

∂η

∣∣∣∣∣∣∣∣
=

2n2
2X

2X2 cos(α + α2) sin(α + α2)
a2b4 sin 2α sin2 γ cos2 γ

dξdη (52)

Now the conversion factor from the surface coordinates (ξ, η) to angular coordinates (α, γ) is

dξdη =

∣∣∣∣∣∣∣
∂ξ

∂α

∂η

∂α
∂ξ

∂γ

∂η

∂γ

∣∣∣∣∣∣∣ =
a2b4 cos α sin α

X2
dαdγ (53)

Now putting all the phase terms, transformation terms and amplitude terms in Eq. (2), the finite fields
which are valid around the focal points for LL, RR, RL, and LR waves are given by

uLL(r) =
n1ak

2π

∫ H

0

∫ 2π

0

(
cos α − cos α2

cos α + cos α2

)
b2 sin 2α

X sin γ cos γ

× exp
[
−jkn1

{
2X

1
2 cos α − x sin 2α cos γ − y sin 2α sin γ − z cos 2α

}]
dαdγ (54)
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uRR(r) =
n2ak

2π

∫ H

0

∫ 2π

0

(
cos α − cos α1

cos α + cos α1

)
b2 sin 2α

X sin γ cos γ

× exp
[
−jkn2

{
2X

1
2 cos α − x sin 2α cos γ − y sin 2α sin γ − z cos 2α

}]
dαdγ (55)

uLR(r) =
n1k√
2π

∫ H

0

∫ 2π

0

(
ab2 cos α

cos α + cos α1

)(
X1 sin 2α (cos(α + α1) + tan α sin(α + α1))

csc(α + α1)X2 sin2 γ cos2 γ

) 1
2

× exp

[
−jkn1

{
n2

n1
a2X

−1
2 cos α + a2X

−1
2 cos α cos(α + α1) + b2X

−1
2 sinα sin(α + α1)

−x cos γ sin(α + α1) − y sin γ sin(α + α1) − z cos(α + α1)

}]
dαdγ (56)

uLR(r) =
n2k√
2π

∫ H

0

∫ 2π

0

(
ab2 cos α

cos α + cos α2

)(
X2 sin 2α (cos(α + α2) + tan α sin(α + α2))

csc(α + α2)X2 sin2 γ cos2 γ

) 1
2

× exp

[
−jkn2

{
n1

n2
a2X

−1
2 cos α + a2X

−1
2 cos α cos(α + α2) + b2X

−1
2 sinα sin(α + α2)

−x cos γ sin(α + α2) − y sin γ sin(α + α2) − z cos(α + α2)

}]
dαdγ (57)

where H is the angle subtended by the 3D elliptical PEC reflector with the aperture.

3. RESULTS AND DISCUSSION

The equations which describe the high frequency fields around the focal points of a 3D elliptical
reflector with chiral background are derived in the previous sections using GO and Maslov’s method.
Equations (54)–(57) are solved numerically, and the results are obtained accordingly. The values of
some of the parameters are taken to be ka = 250, kb = 200 and H = π/4. The field patterns are plotted
along z-axis by keeping kx = 0. Figure 2 and Figure 3 show the high frequency field intensity for LL
and RR waves represented by uLL and uRR. The focal point positions of the 3D elliptical reflector are
similar to the case when the background material is achiral. Therefore, focal points LL and RR rays
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Figure 2. Plot for |uLL| around the focal points
with ka = 250, kb = 200 and different values of
chirality parameter kβ = 0, kβ = 0.2, kβ = 0.5
and kβ = 0.8.
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Figure 5. Plot for |uLR| around the focal points
with ka = 250, kb = 200 and different values of
chirality parameter kβ = 0, kβ = 0.2, kβ = 0.5
and kβ = 0.8.

overlap for all values of kβ. If we want to discuss the special case of conventional medium by putting
the value of chirality parameter kβ = 0, then n1 = n2 = 1 and the field vanishes as given by

uLL = uRR = 0 (58)

The magnitude values of uLL and uRR around the focal point increase with the increase in the chirality
parameter kβ as depicted in Figure 2 and Figure 3, respectively. Figure 4 and Figure 5 illustrate that
as the value of chirality parameter kβ increases, the focal point for RL is shifted towards left and focal
point for LR wave shifted towards right. With the increase in value of chirality parameter kβ, the
gap between the focal points of RL and LR rays increases. The variation in field pattern for different
values of the chirality parameter kβ is indicated. If kβ = 0, then n1 = n2 = 1 and the field pattern
decreases to ordinary medium. The results derived in this paper represent a case for spherical reflector
placed in chiral medium [18]. Furthermore, the results obtained can be converted to that obtained for
spherical reflector in conventional medium as discussed in [10] by putting the major axis length to the
minor axis, i.e., ka = kb and the chirality parameter value kβ = 0. All the expressions derived can
be converted to the expressions derived in the previous results which also indicate the validity of the
derived equations in this article. The 3D elliptical reflector gives us an extra degree of freedom in the
design of reflector antenna for high frequency applications compared to spherical reflector antenna. The
tunability due to chirality and also more tunable variables in the reflector design make it suitable for
advanced applications.

4. CONCLUSIONS

The high frequency fields of the 3D elliptical reflector with chiral background is derived using GO
approximation. The chiral background having birefringence nature supports both LCP and RCP waves
when a linearly polarized wave propagates through. Thus, four waves are reflected by the 3D elliptical
reflector which are represented by LL, RR, RL and LR in this paper. Focal points for LL and RR rays
are located at the same position, and focal points for RL and LR are located on the opposite side of
the focal point for RR and LL rays. Chirality parameter kβ > 0 LCP wave moves slower than RCP
and is focused near the reflector, and RCP wave is focused away from the elliptical reflector. The roles
of LCP and RCP waves get reversed by considering the chirality factor kβ < 0. If the value of chirality
parameter increases, the gap between the focal points increases, and if the chirality parameter kβ = 0
is zero, the high frequency field for LL and RR becomes zero, and that for RL and LR is reduced to the
case of conventional medium.
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