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Extracting Surface Macro Basis Functions from Low-Rank Scattering
Operators with the ACA Algorithm

Vito Lancellotti*

Abstract—The Adaptive Cross Approximation (ACA) algorithm has been used to compress the rank-
deficient sub-blocks of the matrices that arise in the numerical solution of integral equations (IEs)
with the Method of Moments. In the context of the linear embedding via Green’s operator (LEGO)
method — a domain decomposition technique based on IEs — an electromagnetic problem is modelled
by combining “bricks” in turn described by scattering operators which, in many situations, are singular.
As a result, macro basis functions defined on the boundary of a brick can be generated by applying the
ACA to a scattering operator. Said functions allow compressing the weak form of the LEGO functional
equations which then use up less computer memory and are faster to invert.

1. INTRODUCTION

Scattering and radiation problems in electromagnetics have been formulated in terms of integral
equations (IEs) for decades now [1, 2]. Among the reasons that tip the scale in favor of IEs, as opposed
to the direct solution of Maxwell’s differential equations, we recall the following two: 1) Sommerfeld’s
radiation conditions come naturally incorporated in the operators, and 2) the unknowns of the problem
(oft-times equivalent surface or volume current densities) are confined to comparatively small regions
of space. Then again, when IEs are solved through the Method of Moments (MoM) [2], they give rise
to fully populated matrices, whereas the matrices arising from differential (local) operators are sparse
and as such require less time for filling and less computer memory for storage [3]. As a consequence, in
order to solve ever larger and more complex problems with IEs, special techniques have been devised
to handle large and full matrices. Broadly speaking, researchers have pursued three strategies:

a) Improving the conditioning of the matrix so that it can then be inverted by means of iterative
solvers which converge to the solution in an acceptable number of steps.

b) Compressing or sparsifying the matrix so as to reduce the memory occupation and speed up the
matrix-vector multiplications for subsequent iterative solution.

c) Dividing the original problem into “smaller” parts amenable to being characterized separately at
first, in an attempt to reduce the size of the matrix and to make the inversion thereof feasible with
direct solvers.

The first strategy has stimulated research into matrix preconditioning and regularization of the
operators (e.g., [4–6]). Clustering techniques, such as the Fast Multiple Method [7] and the H-
matrices [8], fall into the second category. The third approach (actually dating as far back as the fifties
with the seminal work on diakoptics by Kron [9]) has produced the so-called domain decomposition
methods (DDMs) (e.g., [10–15]) which, like as not, are applied in tandem with ad hoc entire-domain
basis functions [16–20].
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Accordingly, in this paper we discuss the generation and the properties of specialized surface macro
basis functions for the linear embedding via Green’s operator (LEGO) method, which holds a place
in the third group of techniques recalled above. LEGO was developed for 2-D electromagnetic (EM)
scattering [21], but the method has been gradually extended to formulate and solve diverse 3-D scattering
and radiation problems from aggregate of objects and antennas [20, 22–24].

In line with the philosophy of DDMs, an EM problem is formulated in LEGO by separating the
structure into parts which are enclosed within EM “bricks”. The EM behavior of a brick is described
by means of a scattering operator, and the EM interactions between two or more bricks and, if present,
an antenna are accounted for through suitable transfer operators. Under certain conditions (discussed
further on in Section 2.3) the scattering operators may be singular, and this occurrence — far from
being an issue — can in fact be exploited to facilitate the solution with the MoM [20, 24, 25]. This
goal was achieved in [20] by using the eigenvectors of the scattering operator as a set of macro basis
functions (dubbed eigencurrents) over the surface of a brick, and the approach was called eigencurrents
expansion method (EEM). It was shown that the response of a brick consists of the eigencurrents
weighted with the corresponding eigenvalues. Since the latter decay very fast and, owing to the singular
nature of the scattering operator, are mostly null, only the eigencurrents associated with the first few
(larger) eigenvalues must be retained in representing the behavior of a brick. Moreover, an approximated
criterion was discovered [25] that allows predicting and controlling the accuracy of the EEM in practical
cases of interest — which renders the eigencurrents all the more attractive. On the downside, the
spectral decomposition of the scattering operator can be time consuming.

Recently, it was realized that the Adaptive Cross Approximation (ACA) [26] can be employed to
construct excitation-free macro basis functions over the surface of a brick that afford the same level of
accuracy as the eigencurrents [27, 28]. Moreover, carrying out the ACA of the scattering operator is far
faster than determining the eigencurrents.

In computational electromagnetics the ACA has been proposed for the fast calculation and
compression of the rank-deficient off-diagonal blocks of the matrix that arises from the discretization of
the electric field integral equation (EFIE) [29, 30], and for the fast derivation of fields in the far region
of a source [31]. Thus, the application of the ACA for the extraction of macro basis functions from
low-rank operators in LEGO is new, and constitutes the main contribution of this work. What’s more,
this approach is fairly general and capable of extension to other DDMs similarly based on equivalence
separation surfaces, such as the Equivalence Principle Algorithm [10, 14] and the Generalized Surface
Integral Equation method [13], because the scattering operators therein can be rank-deficient as well.

The remainder of the paper is organized as follows. First, the formulation of scattering and radiation
problems with LEGO is recalled in Section 2.1, whereas the weak form of the equations is outlined in
Section 2.2. The conditions for the scattering operators to be low-rank are discussed in Section 2.3.
Next, the generation of the new macro basis functions with the ACA is outlined in Section 3.1, the
compression of the equations is elucidated in Section 3.2, and the efficient calculation of the relevant
operators is described in Section 3.3. Finally, in Section 4 we elaborate on the properties of the proposed
macro basis functions by considering a radiation problem. A time dependence for sources and fields in
the form of exp(jωt) is assumed and suppressed throughout.

2. LINEAR EMBEDDING VIA GREEN’S OPERATORS

To put the macro basis functions (Section 3) in context, hereinbelow we list the functional equations
of LEGO applied to a set of ND bodies [20] and, optionally, an antenna made of perfect electric
conductor (PEC) [24]. The bodies — each one included in a LEGO brick — and the antenna exist in a
homogeneous background medium (labelled with ➀). We denote the kth brick with Dk, k = 1, . . . , ND,
and the boundary thereof with ∂Dk.

2.1. LEGO Functional Equations for Scattering and Radiation Problems

The scattering from ND bodies, which are illuminated by an impinging EM wave produced by external
sources, is governed by the set of ND coupled functional equations [20]

(I − diag {Skk}T) qs = diag {Skk} qi, (1)
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where
• I denotes a suitable identity operator on the composite surface ∪ND

k=1∂Dk;
• Skk is the scattering operator [20, Eq. (11)] of the EM brick Dk;
• T is the total transfer operator [24, Eq. (12)], i.e., an abstract ND × ND matrix containing the

transfer operators Tkn [20, Eq. (15)] between any two bricks Dn and Dk, n �= k;
• qs,i are abstract column vectors containing qs,i

k , the equivalent scattered and incident current
densities on the boundary ∂Dk, namely,

qs,i
k :=

[
Js,i

k

√
η1

−Ms,i
k /

√
η1

]
, η1 := (μ1/ε1)1/2, (2)

with Js,i
k and Ms,i

k electric and magnetic surface currents.
The radiation from a PEC antenna in the presence of ND objects is governed by the functional

equations [24]
η1(LANT + PAOSTOA)JA = − [

Eg
A

]
tan

, qs =
√

η1STOAJA, (3)
with

S := (I − diag {Skk}T)−1diag {Skk} , (4)
where

• LANT denotes the standard EFIE operator within a normalization factor [24, Eq. (16)];
• PAO and TOA are abstract 1 × ND and ND × 1 matrices of operators (PAO)k and (TOA)k [24,

Appendix C].
• JA is the equivalent electric current density flowing on the antenna surface SA;
• Eg

A is the impressed field provided by the generator in the delta-gap model of the antenna port [24];
• qs is the same abstract vector as in (1) and defined with the aid of Eq. (2).

2.2. Baseline Method of Moments

A weak form of Eqs. (1)–(4) follows by applying the MoM in the form of Galerkin [1] with surface and
volume sub-sectional divergence-conforming basis functions, as prescribed by the nature of the objects
embedded in the bricks. In particular, to expand the currents qs,i

k we model ∂Dk with a triangular
tessellation on which we define a set of 2NF Rao-Wilton-Glisson (RWG) basis functions [20]. If an
antenna is also present, then we model SA by means of a 3-D triangular-faceted mesh on which we
introduce NA RWG basis functions to express JA [24].

The calculation of the operators Tkn, (TOA)k and (PAO)k entails the numerical solution of surface
IEs on appropriate pairs of surfaces [20, 24], whereas the procedure followed to derive the algebraic
counterpart of Skk depends on the EM properties of the object enclosed in Dk. For instance, if the body
is a PEC or is comprised of a penetrable isotropic homogeneous medium, we formulate the internal
scattering problem by means of suitable surface IEs [20] involving the equivalent surface current densities
on the object. For the numerical solution with the MoM we use NO RWG functions associated with the
triangular mesh that models the surface of the body. Alternatively, if the object is penetrable and either
inhomogeneous or anisotropic or both, then we resort to a volume IE for the calculation of the electric
or magnetic flux density in the region occupied by the body [23]. To this purpose, we model the object
by means of a tetrahedral mesh, and we introduce NO Schaubert-Wilton-Glisson (SWG) functions.

In the end, applying the MoM provides us with the algebraic counterparts of the operators involved
in Eqs. (1), (3)–(4), namely, [Skk], [Tkn], [TOAk], [PAOk] and [LANT]. Specifically, [Skk], [Tkn] are square
matrices with size 2NF × 2NF , [TOAk], [PAOk] have size 2NF ×NA and NA × 2NF , and [LANT] has rank
NA. With these intermediate results it is straightforward to write the weak form of Eqs. (1), (3)–(4),
viz.,

([I] − blkdiag {[Skk]} [T ]) [qs] = blkdiag {[Skk]}
[
qi

]
, (5)

η1([LANT] + [PAO] [S] [TOA]) [JA] = − [
Eg

A

]
, [qs] =

√
η1 [S] [TOA] [JA] , (6)

[S] := ([I] − blkdiag {[Skk]} [T ])−1blkdiag {[Skk]} , (7)
where
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• [I] is the identity matrix of size 2NF ND × 2NF ND;
• [qs,i] are column vectors with ND block entries [qs,i

k ] as defined in [24, Eq. (42)];
• [JA] is a column vector containing the NA expansion coefficients of JA.

2.3. The Low-Rank Nature of [Skk]

The algebraic scattering operator [Skk] is a singular matrix [20, 23, 25], whenever the following two
conditions are simultaneously met:

(i) The boundary ∂Dk of the brick sits at some distance away from the surface of the body.
(ii) The host medium (➁) which pads a brick’s interior is the same as the background medium (➀).

This circumstance is manifest from the explicit expressions for [Skk] given in [20, Eq. (21)] or [23,
Eq. (20)] in case 2NF > NO, that is, the number of unknowns on ∂Dk exceeds the number of unknowns
on the surface or in the volume of the object inside Dk. And yet, the low-rank nature of [Skk] is a
more fundamental characteristic related to the fact that the scattered tangential fields over ∂Dk possess
fewer degrees of freedom (DoF) than the corresponding quantities over the surface of the object, and
this property is somewhat independent of the specific discretization adopted for Eq. (1). In practice,
the rank of [Skk] decreases as the distance between ∂Dk and the object is increased [25]. By contrast,
if medium ➁ is different than medium ➀, then the boundary ∂Dk constitutes a material interface, and
[Skk] is full-rank [22]. This happens because the “observation” surface ∂Dk and the surface of the
“obstacle” coincide, and hence no reduction of DoF occurs.

In this regard, an insightful comparison can be drawn to the generalized scattering matrix (GSM)
of an obstacle, e.g., an iris, in a classic hollow-pipe waveguide [32]. As is well known, the number of
guided modes (i.e., DoF) that concur to define the GSM of the discontinuity decreases as the reference
planes are set farther away along the waveguide on either side of the obstacle. In particular, the choice
of reference planes flush with the discontinuity corresponds with the aforesaid situation where ∂Dk is a
material interface.

3. THE NEW SET OF SURFACE MACRO BASIS FUNCTIONS

3.1. Adaptive cross Approximation of [Skk]

Having recognized that, under the hypotheses of Section 2.3, [Skk] may be low-rank, we apply the
discrete version of the ACA algorithm [26, 29] to [Skk] in order to derive a set of macro basis functions
with support over ∂Dk. After rk steps of the algorithm have been completed, we can write

[Skk] ≈
[
S

(rk)
kk

]
:= [Ukk] [Vkk] , (8)

where [Ukk] and [Vkk] have size 2NF × rk and rk × 2NF , respectively, and rk denotes the effective rank
of [Skk]. The ACA is stopped as soon as the condition (adapted from [29, Section IV-C])

ε
(rk)
kk :=

∥∥∥[
U

(rk)
kk

]∥∥∥
2

∥∥∥[
V

(rk)
kk

]∥∥∥
2∥∥∥[

S
(rk)
kk

]∥∥∥
F

≤ t, (9)

is fulfilled, where

• ε
(rk)
kk is the approximation error of [Skk] at step rk;

•
[
U

(rk)
kk

]
(
[
V

(rk)
kk

]
) is the rkth column (row) of [Ukk] ([Vkk]) computed at step rk;

•
[
S

(rk)
kk

]
is the approximation of [Skk] attained at step rk;

• the symbol ‖ • ‖2 indicates the vector 2-norm, and ‖ • ‖F the matrix Frobenius norm;
• t ≤ 1 is a threshold value.



Progress In Electromagnetics Research M, Vol. 49, 2016 55

Storing [Ukk] and [Vkk] separately requires 4NF rk complex memory locations as opposed to the
(2NF )2 locations needed for [Skk], though saving memory is not the main reason for carrying out the
ACA of the scattering operator. Furthermore, in keeping with the ACA — which does not require
the full calculation of the matrix to be factorized — we employ the approximate scattering operator[
S

(rk)
kk

]
in Eq. (9), even though [Skk] is known when the algorithm is started. Finally, the time taken

to achieve the factorization (8) scales as O(4NF r2
k) (see discussion in [29, Section IV-C]). This number

ought to be contrasted with O((2NF )3), which is the asymptotic operation count for the calculation of
all eigenvectors and eigenvalues of [Skk] [20] through reduction to Hessenberg form and subsequent QR
factorization [33, Chapter 11].

Next, we insert the rightmost hand side of Eq. (8) into Eq. (5), and after a few manipulations we
obtain

[qs] = blkdiag {[Ukk]} blkdiag {[Vkk]}
([

qi
]
+ [T ] [qs]

)
= blkdiag {[Ukk]} [c] , (10)

where [c] is a column vector of
∑

k rk coefficients yet to be determined. Nevertheless, Eq. (10) suggests
that we can express the unknown vector [qs

k] as a linear combination of the columns of [Ukk]. The latter,
when associated with the underlying set of 2NF RWG functions on ∂Dk (see Section 2.2), define entire-
domain macro basis functions over ∂Dk, whereby Eq. (10) constitutes a basis change. More important,
since we expect that rk � 2NF , Eq. (10) enables compressing Eq. (5) and computing [S] efficiently for
subsequent usage in Eq. (6).

3.2. Change of Basis and Compression

To take advantage of Eq. (10) in practice, we let

[U ] := blkdiag {[Ukk]} , [qs] := [U ] [q̃s], (11)

[V ] := blkdiag {[Vkk]} , [q̃i] := [V ] [qi], (12)

where the column vectors [q̃s] and [q̃i] contain the
∑

k rk expansion coefficients in the reduced basis.
By substituting Eq. (8) into Eq. (5) again and making use of Eqs. (11) and (12) we arrive at

[U ] ([I] − [V ] [T ] [U ]) [q̃s] = [U ] [q̃i], (13)

where [I] is the identity matrix of rank
∑

k rk. The columns of [Ukk] are not orthogonal in general,
but surely they are linearly independent by construction [29]. Hence, we can left-multiply both sides
of Eq. (13) first by [U ]H and then by ([U ]H [U ])−1 (where the superscript H indicates the Hermitian
transpose) to obtain the reduced system [27]

([I] − [V ] [T ] [U ]) [q̃s] = [q̃i], (14)

whose rank is
∑

k rk or, when the bodies and the bricks are identical, NDr1. The inverse of the system
matrix in Eq. (14) constitutes the deflated analogue of the total algebraic scattering operator in Eq. (7)
that is,

[S̃] := ([I] − [V ] [T ] [U ])−1, (15)

or, in other words, the matrix [S] expressed in the vector spaces spanned by the columns of [U ] and the
rows of [V ]. Thus, on account of Eqs. (11), (12) and (15) we find the expression

[S] := [U ] ([I] − [V ] [T ] [U ])−1 [V ] , (16)

which provides us with an efficient way to compute [S] while shunning the direct solution of the possibly
large system in Eq. (5). Finally, Eq. (16) allows writing the algebraic operator appearing in the first of
Eq. (6) as follows

[PAO] [S] [TOA] := [PAO] [U ] ([I] − [V ] [T ] [U ])−1 [V ] [TOA] . (17)

We conclude this part by observing that, unlike the EEM [20, 24], the compression procedure hinged
on Eqs. (11) and (12) does not require inverting any matrix.
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3.3. Efficient Calculation of the Algebraic Operators

In spite of the compression that the vector basis [Ukk] can afford, we must regard Eq. (16) as a formal
expression, because the actual calculation and storage of [S] may be, in fact, computationally intensive
all the same. But then, determining [S] explicitly is hardly necessary; rather, we just have to organize the
matrix-vector and matrix-matrix multiplications judiciously, so as to handle relatively small algebraic
operators at any step of the numerical solution procedure. This goal is accomplished as follows:

• To fill [V ] [T ] [U ] in (14), we compute and store the off-diagonal blocks [Vkk] [Tkn] [Unn] and
[Vnn] [Tnk] [Ukk] by examining two bricks at a time.

• To obtain the scattered current coefficients [qs], we solve (14), and then apply (11).
• To build [PAO] [U ] and [V ] [TOA] in (17), we compute and store the matrices [PAOk] [Ukk] and

[Vkk] [TOAk] by considering the antenna and one brick at a time.
• To compute [PAO] [S] [TOA] in (17) we solve the multiple-right-hand-side system

([I] − [V ] [T ] [U ]) [X] = [V ] [TOA] , (18)

and then multiply the result by [PAO] [U ].
• To compute [qs] when an external antenna is present, we use [X] from Eq. (18) in the second of

Eq. (16) and apply Eq. (11) again.

4. PROPERTIES OF THE ACA BASIS

The compression of Eqs. (5)–(7) described in Sections 3.1 and 3.2 is independent of the calculation
of [Skk], [Tkn] and like operators. Since the overall correctness of the latter was already validated
in [20, 23, 24], here we concern ourselves with the properties of the change of basis represented by
Eqs. (11) and (12). Besides, the application of the ACA macro basis functions to EM scattering problems
involving PEC objects and penetrable isotropic and anisotropic bodies was considered in [27, 28], where
the solutions (scattered currents [qs

k] and radar cross section) were compared to those obtained by
compressing the LEGO equations with the eigencurrents [20, 23], that is, the eigenvectors of [Skk]. While
the ACA macro basis functions are equivalent to the eigencurrents in every respect, the generation of
the former takes far less time than the spectral decomposition of [Skk].
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Figure 1. Simple radiation problem: (a) A strip-dipole in the presence of four square loops; (b)
Corresponding LEGO model with ND = 4 cuboidal bricks.

To further support these statements, we employ the modified EFIE in Eq. (6) for the solution of a
simple radiation problem involving a center-fed PEC strip-dipole which is symmetrically placed above
four infinitely-thin PEC square loops in free space, as pictured in Fig. 1(a). The dipole (designed to
resonate at around the frequency f = 2.45 GHz when operated in isolation) is 6 cm long and 0.2 cm
wide. The inner (outer) side of the loops is 2.8 (3.2) cm long, and the loops (whose electric length is
about 1λ0 at f = 2.45 GHz) are arranged in a planar square lattice with period of 4 cm; the distance
between the dipole and the plane of the loops is 1 cm. The LEGO model of the structure comprises
ND = 4 adjacent cuboidal bricks, each one enclosing a loop, as illustrated in Fig. 1(b); the three sides of
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Figure 2. Input impedance of the antenna system in Fig. 1 as a function of the electric length of the
strip-dipole: (a) Convergence with increasing number of ACA macro basis functions; (b) Comparison
with the results obtained through the eigencurrents expansion method (EEM) [24].

a brick are 4 cm, 4 cm and 1 cm long. For the numerical solution of Eq. (3) with the MoM we have used
NA = 98 RWG functions on SA, 2NF = 1320 RWG functions on ∂Dk, and NO = 60 RWG functions on
the surface of a square loop. With these positions, the size of the algebraic scattering operator [S] is
2NF ND = 5280.

First of all, to assess the accuracy afforded by the transformations in Eqs. (11) and (12), we have
computed the matrix [PAO] [S] [TOA] through Eqs. (17) and (18) by employing an increasing number of
ACA macro basis functions; this test is accomplished by setting t ∈ {10−1, 10−2, 10−3} in Eq. (9). Since
[PAO] [S] [TOA] directly affects the computed antenna current coefficients [JA], wherefrom the input
impedance Z is derived [24], we have plotted Z in Fig. 2(a) as a function of the electric length d/λ0

of the strip-dipole and for the three selected values of t. The results are remarkably good even with
t = 10−1, though less accurate at higher frequencies, where the variations of Z are more pronounced.
Moreover, the differences between the lines for t ∈ {10−2, 10−3} are negligible for all practical purposes.

Secondly, to show that the ACA basis and eigencurrents yield the same results, in Fig. 2(b) we
have plotted Z obtained by setting t = 10−3 in Eq. (9) and by using NC = 50 eigencurrents [24]. The
lines are perfectly overlapped, and this comparison also serves as validation of Eqs. (16) and (17), since
the EEM was validated against the baseline MoM [24, 34].

All in all, these numerical tests confirm that t = 10−3 allows generating a number of ACA macro
basis functions which are sufficient to obtain accurate results in the near field. As the radiated fields
are less sensitive to approximation errors on the currents, we expect the fields produced by JA and
qs
k to be all the more accurate. To be specific, in Fig. 3 we have plotted the magnitude of the total

radiated electric field of the antenna system under investigation at d/λ0 = 0.49 and again for the three
chosen values of t. Convergence is attained for t = 10−3 in both principal planes — which is the same
conclusion also reached for the solution of scattering problems in [27, 28].

The effective rank rk of [Skk] for a given threshold t may vary depending on the relative size of Dk

and object embedded therein [27], but also the constitutive parameters of the object play an important
role [28]. Therefore, for the strip-dipole problem, in Fig. 4 we have collected the values of rk (◦) and
the CPU time (�) taken to carry out the ACA of [Skk] for t = 10−3. As the frequency is increased, the
electric size of a loop and its surrounding brick scale proportionally, but this circumstance, apparently,
is not sufficient for rk to exhibit a clear monotonic trend. This behavior may be due to the fact that the
ACA was developed for smooth kernels [26], whereas [Skk] results from the multiplication of algebraic
operators [20, Eq. (21)], [23, Eq. (20)] which involve the time-harmonic scalar Green’s function in
medium ➀. Likewise, the distribution of CPU times is also erratic, as it appears that the same time is
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Figure 3. Convergence of solutions with ACA macro basis functions: normalized magnitude of the
total electric field radiated by the antenna system in Fig. 1; (a) E-plane (yOz); (b) H-plane (xOz).
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required to generate varying numbers of columns of [Ukk]. Since the time values are quite small anyway,
it may well be the case that some unaccounted overhead dominates the calculation rather than the ACA
itself. Regardless, it is worthwhile mentioning that the spectral decomposition of the relevant algebraic
scattering operator (with size 1320 × 1320) takes about 33 s, a time which is two orders of magnitude
larger than the values of Fig. 4.

Finally, in Fig. 5 we have compared the spectrum of eigenvalues of [Skk] and the ACA error in
Eq. (9) at d/λ0 = 0.49. The eigenvalues (�) are ordered with decreasing magnitude and plotted versus
their index p, though only the first 100 eigenvalues are shown. The ACA error (•) is plotted as a
function of the rank rk of [Ukk] at each step of the algorithm [29]; in particular, the ACA continues
until the error is smaller than t = 10−15. Both the spectrum and ε

(rk)
kk exhibit a jump for p = rk = 60,

which corresponds with the number of RWG basis functions used to expand the electric current on the
square loop inside a brick [25]. The decay rate of |λ(k)

p | and of ε
(rk)
kk for p = rk < 60 is remarkably

similar (though the trend of the ACA error is not locally monotonic), and this behavior corroborates
the surmised similarities between the ACA macro basis functions and the eigencurrents [27, 28].



Progress In Electromagnetics Research M, Vol. 49, 2016 59

5. CONCLUSION

We have proposed a methodology based on the ACA algorithm to extract macro basis functions from the
low-rank scattering operators [Skk] of LEGO. While the ACA macro basis functions exhibit convergence
properties similar to those of the eigencurrents of [Skk], the former can be generated more quickly than
the latter. The ACA macro basis functions are efficacious at compressing the LEGO algebraic equations
for scattering and radiation problems, and have been shown to yield the same results as the eigencurrents.
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