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Abstract—Sparse signal recovery algorithms can be used to improve radar imaging quality by using the
sparse property of strong scatterers. Traditional sparse inverse synthetic aperture radar (ISAR) imaging
algorithms mainly consider the recovery of sparse scatterers. However, the scatterers of an ISAR target
usually exhibit block or group sparse structure. By utilizing the inherent block sparse structure of
ISAR target images, an iterative reweighted lp (0 < p ≤ 1) block sparse signal recovery algorithm is
proposed to enhance imaging quality in this paper. Firstly, an ISAR imaging signal model is established
with the aid of sparse basis, and the imaging is mathematically converted into block reweighted cost
function optimization problem. Then, an iterative algorithm is used to solve the reweighted function
minimization problem. In each iteration, the weights are updated based on the closed form solution of
the previous iteration. The proposed method is effective to exploit the underlying block sparse structures
which does not need the prior knowledge of the number of the blocks. Real data ISAR imaging results
are provided to verify that the proposed algorithm in this paper can achieve better images than the
images obtained by several popular sparse signal recovery algorithms.

1. INTRODUCTION

Inverse synthetic aperture radar (ISAR) has been widely used for targets imaging in both military and
civilian fields due to all day and all weather imaging ability [1–3]. High range resolution is achieved by
transmitting wideband signals, while high cross-range resolution is obtained by the coherent processing
interval. To achieve desirable ISAR imaging, a long coherent processing interval is needed. However, for
a long coherent processing interval, the target may move with maneuvering, and the phase of scatterers
cannot be approximated as linear function. Then it needs more complex target motion compensation
algorithm. At the same time, if the rotation angle is too large, the Radar Cross Section (RCS) of the
scatterer may be time varying, which will increase the difficulty of coherent processing. So implementing
imaging with limited pulses is meaningful.

Sparse learning has been very popular in signal processing [4–6]. It is a technique proposed to
improve signal separation ability using a prior information of sparse property of the signal. By using
the sparse signal recovery algorithm, the imaging quality can be improved. This has been successfully
shown in SAR imaging [7, 8], ISAR imaging [9, 10], MIMO radar imaging [11, 12].

Most of the current sparse signal recovery radar imaging algorithms only take advantage of the
sparsity of the scatterers, but not considering the structure information of the target. In general, the
target of ISAR imaging exhibits block sparse structure where nonzero large scatterers occur in clusters.
The block sparse structure can be regarded as a continuity form where the nonzero scatterers are
continuously located in the imaging region. Analyses have shown that exploiting the inherent block
sparse structure not only can make relaxed conditions for exact reconstruction, but also can greatly
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improve the recovery performance. If the structure of the sparse signal is exploited, better recovery
performance can be achieved. Several algorithms have been proposed for recovering block sparse signals,
such as Block-OMP [13], mixed l2/l1 norm minimization [14], model-based CoSaMP [15]. However,
these methods need a priori knowledge of the number of the block sparse signals. In many application
conditions, the prior information is often unavailable, which restricts their application and performance.

In order to enhance ISAR imaging performance, we reformulate the ISAR imaging into a block
sparse signal recovery problem by exploiting the inherent block sparse structure of the target. A novel
iterative reweighted lp algorithm is proposed to recovery block sparse signals. The proposed algorithm
does not need the information of the number of blocks. Real data ISAR imaging results show that the
proposed algorithm is effective to utilize the potential block sparse structure and can achieve image
performance improvement.

2. ISAR IMAGING MODEL

Assume that the translational motion of the target has been completely compensated via conventional
methods. So during the coherent processing interval, the radar transmits a linear frequency-modulated
signal
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where t̂ is the fast time, fc denotes the carrier frequency, γ the chirp rate, TP pulse duration, and rect(·)
the rectangle pulse function. The complex echo envelope from the scatterer can be expressed as
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where c is the velocity of light, Ta the coherent processing interval, and A the backward scattering
amplitude. After the range compression and neglecting the constant, the received signal can be denoted
as

s(t̂, t) = A · sin c
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where λ is the wavelength, and f = 2xω/λ, β = 2xα/λ are Doppler frequency and Doppler rate,
respectively. Assuming that the distance unit includes K strong scatterers, the signal in the range cell
corresponding to τ = 2(R0 + y)/c can be written as

y(t) =
K∑

k=1

xk · rect
(

t

Ta

)
· exp(−j2πfkt) + n (t) (4)

where xk and fk are the kth scattering centers’ complex amplitude and Doppler frequency, respectively.
n (t) is the additive noise. The time sequence is t = [1 : N ]T · Δt, Δt = 1/fr, being the time interval,
and fr is the pulse repetition frequency. N = Ta/Δt is the number of pulses. Δfd is the Doppler
frequency resolution. The sparse Doppler sequence is fd = [1 : Q] ·Δfd, Q = fr/Δfd. Q is the number
of Doppler units corresponding to Δfd. So construct the basis matrix as Φ = {ϕ1, ϕ2, . . . , ϕq, . . . , ϕQ},
ϕq(t) = exp(−j2πfd(q)t), 0 < q ≤ Q. Then the received discrete signal can be rewritten as

y = Φx + n (5)

where x corresponds to the amplitudes of the scatterers.
To estimate x, we can use the following sparse optimization strategy

x̂ = arg min ‖x‖p subject to ‖y − Φx‖2 ≤ ξ (6)

where ξ is a small positive number relating the norm of n. p indicates the lp norm. The imaging
quality depends greatly on reconstruction algorithms. A variety of popular optimization algorithms
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have been developed to solve Eq. (6), such as smoothed l0 norm (SL0) algorithm [16] and sparse
Bayesian algorithm [17]. In practice, better recovery performance can be obtained if the structure of
the sparse signal is exploited. We give a detailed description about the proposed algorithm in the next
section.

3. BLOCK SPARSE RECOVERY ISAR IMAGING ALGORITHM

A block sparse signal, where the nonzero coefficients occur in clusters, is an important structured
sparsity. A block sparse signal can be stated as follow:

x = [x1, . . . , xd︸ ︷︷ ︸
x[1]

, xd+1, . . . , x2d︸ ︷︷ ︸
x[2]

, . . . , xN−d+1, . . . , xN︸ ︷︷ ︸
x[M ]

]T (7)

where x[i] is the ith block with size d, and T is the transpose. In the block partition, the block sparsity
means that there are at most k < M non-zero blocks. We aim to estimate the original signal x with
unknown cluster structure.

l2/l1 minimization strategy was introduced in [18] to solve the block sparse signal reconstruction
problem

min
x

M∑
i=1

‖x[i]‖12 subject to ‖y − Φx‖2 ≤ τ (8)

where τ bounds l2 norm of the noise.
Although l1 norm minimization can solve the sparse signal recovery problem, it needs a larger

number of measurements for the sparse signal recovery due to its dependency on the magnitude of the
block sparse signal. If we can reduce the dependency of Eq. (8) on l2 norm of the block sparse signal
by exploiting a weighting strategy, the reconstruction performance can be improved. So we present the
iterative reweighted lp (0 < p ≤ 1) norm algorithm for the reconstruction of block sparse signal.

The cost function of Eq. (8) treats signal and noise equally, and we expect to make the utmost
efforts to extract signal components and suppress noise at the same time.

The following reweighted lp minimization is used:
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We rewrite Eq. (9) as the following objective function of the unconstrained minimization:
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where λ is a positive regularization parameter, and 0 < p ≤ 1,
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are a set of block sparse signal

weights, which can be considered as free parameters. {·}l denotes the lth iteration.
The first derivative necessary optimality condition for the solution of x is [19]:
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where H is the conjugate transpose.
We define the diagonal weighting matrix W , for the ith block,
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Setting Eq. (11) to zero, the following optimality condition can be obtained:(
ΦHΦx− Φy

)
+ λW−1x = 0 (13)
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Due to the nonlinearity, there is no straightforward method to solve the above equation. We use an
iterative algorithm to estimate the block sparse solution, where the weights in the current iteration are
determined based on the estimate of the block signal obtained in the previous iteration.

Suppose that the fixed W = W (l) have been obtained in the lth iteration step, the solution of
Eq. (13), set as the (l + 1)th iteration, then can be obtained as follows:

x(l+1) =
[
ΦHΦ + λ

(
W (l)

)−1
]

ΦHy (14)

We call the proposed block iterative reweighted l2/lp minimization algorithm as BIRL2-Lp.
The total algorithm can be summarized as follows.

1) Initialization step:
(a) Set the iteration number l← 1 and ε← ε0;
(b) Obtain x̂(0) = ΦHy;

2) While l < L do:
(a) Update the non-zero weights:

Determine ω
(l+1)
i = 1

‖x̂(l)[i]‖p

2
+ε

,using x̂(l);

(b) Signal reconstruction
Obtain x̂(l+1) by using Eq. (14).

(c) Update ε:

If ‖x̂
(l+1)−x̂(l)‖

2

‖x̂(l)‖
2

<
√

ε
100 , then ε← ε/10;

(d) l ← l + 1.

3) Output x̂(l+1) to be an approximate solution.

For parameter λ, an appropriately chosen parameter which controls the tolerance of noise. Although
the best λ may change continuously with respect to noise level, we use the fixed value of λ in the
experiments. An appropriate choice of the weights is to make them inversely proportional to the l2-
norm of the blocks. We use the updated weighted values according to the estimate of the solution in
the previous iteration. ε is a regularization positive parameter to prevent instability. We can see that
if the estimate solution of the ith block in the lth iteration,

∥∥x̂(l)[i]
∥∥p

2
, is small, ω

(l+1)
i will be large.

So the blocks with small l2-norm approach zero. To improve the ability of avoiding undesirable local
minimization, we can use a monotonically decreasing sequence for ε instead of a constant in updating
the weighting parameters. At the beginning, we can set a relatively large value to ε, then gradually
reduce the value by a factor of 10 in the subsequent iterations.

4. SIMULATION RESULTS

4.1. A ISAR Imaging Performance Versus Pulse Numbers

In this simulation, a set of real data of the Yak-42 plane is used to demonstrate the performance of the
proposed ISAR imaging algorithm. The parameters of the radar data are listed as follows: the carrier
frequency is 10 GHz with signal bandwidth of 400 MHz, and a range resolution is 0.375 m. The pulse
repetition frequency is 100 Hz, i.e., 256 pulses are used in this experiment. In order to investigate the
role of the pulse number, three different amounts of pulses (16, 32, and 64 pulses) are implemented. The
experimental results are compared to those images obtained by some sparse signal recovery methods
including BP method [20], SBL method [18], L1L0 method [12] and S-method [21]. For BIRL2-Lp
algorithm, parameter λ is set to 10−3. We consider two different values of p = 0.1, 0.5 for ISAR
imaging. The initial value of ε0 is 10−7. From Fig. 1, it is noticeable that more pulses generate better
imagery results. We can see that when the number of pulses is small (e.g., the plus number is 16 or
32), some clutter points of the target are missing, and several weak artificial points are around in the
images obtained by BP method. The images obtained by SBL, L1L0 and S-method can show most
of the strong scatterers. The target images obtained by BIRL2-Lp method using a small amount of
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(f) reconstruction ISAR images using BIRL2-Lp (p=0.5) algorithm with 16, 32, 64 pulse numbers

(e) reconstruction ISAR images using BIRL2-Lp (p=0.1) algorithm with 16, 32, 64 pulse numbers

(d) reconstruction ISAR images using S-method with 16, 32, 64 pulse numbers

(c) reconstruction ISAR images using L1L0 algorithm with 16, 32, 64 pulse numbers

(b) reconstruction ISAR images using SBL algorithm with 16, 32, 64 pulse numbers

(a) reconstruction ISAR images using BP algorithm with 16, 32, 64 pulse numbers

Figure 1. Comparison of the reconstruction ISAR images with different pulse numbers and different
algorithms.
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(f) reconstruction ISAR images using BIRL2-Lp algorithm (p=0.5) with SNR=6dB,8dB,10dB

(e) reconstruction ISAR images using BIRL2-Lp algorithm (p=0.1) with SNR=6dB,8dB,10dB

(d) reconstruction ISAR images using S-method with SNR=6dB,8dB,10dB

(c) reconstruction ISAR images using L1L0 algorithm with SNR=6dB,8dB,10dB

(b) reconstruction ISAR images using SBL algorithm with SNR=6dB,8dB,10dB

(a) reconstruction ISAR images using BP algorithm with SNR=6dB,8dB,10dB

Figure 2. Comparison of the reconstruction ISAR images with different SNRs and different algorithms.
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Table 1. Average running times of algorithm.

Algorithm BP SBL L1L0 S-method BIRL2-Lp
Run Time (sec) 136 243 129 65 86

pulse are satisfactory. The proposed algorithm generates better visual and more intensive ISAR images
than the images obtained by other methods. The average running times of different algorithms are also
provided when the pulse number is 32, and p is set to 0.1 in Table 1. The results are averaged over
100 independent runs. The running time of BIRL2-Lp method is shorter than that of BP method, SBL
method and L1L0 method, which is useful for real-time ISAR imaging.

4.2. ISAR Imaging Performance Versus Noise

To test the robustness of the proposed algorithm, complex valued Gaussian noise is added to the real
data to generate different SNRs. The imaging results obtained by BP, SBL, L1L0, S-method and
BIRL2-Lp method using a constant amount of pulses and different SNRs are given in Fig. 2. The SNRs
are 6 dB, 8 dB, 10 dB, respectively. It is noticeable that the reconstructed images of BP method and
L1L0 method are obscure.

The imaging results of BP method and L1L0 method are obscure. There are many artificial points
outside the target region. The SBL method, S-method and BIRL2-Lp method have superior robustness
to other methods. The ISAR images recovered by BIRL2-Lp method extract more proper scattering
centers of the target and have decent performance in the noisy case.

5. CONCLUSIONS

The traditional ISAR imaging algorithms based on sparse signal recovery only consider the sparsity
of the scatterers. They do not exploit the inherent structure information of the target in the imaging
region. A novel ISAR imaging algorithm based on iterative reweighted block sparse signal recovery is
proposed to obtain an enhanced image by exploiting the block sparse structure of target in this paper.
The real data experiments show that the proposed algorithm can improve ISAR imaging quality and
has superior robustness.
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