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Efficient Meshing Scheme for Bodies of Revolution — Application to
Physical Optics Prediction of Electromagnetic Scattering

Zohreh Asadi and Vahid Mohtashami*

Abstract—In this paper, we present an efficient meshing scheme for physical optics calculation of
electromagnetic scattering from bodies of revolution. Piecewise linear approximation is used to represent
the generatrix and circular perimeter of the body’s cross section. This results in quadrilateral meshes
and enables the application of multilevel search algorithms for efficient determination of the illuminated
portion of the surface. Besides, the physical optics surface integral is reduced to a closed form expression
using the Gordon’s method. Simulation results confirm the proper accuracy and efficiency of the
presented algorithm.

1. INTRODUCTION

Physical Optics (PO) is the most widely used method for calculating electromagnetic scattering from
electrically large objects [1]. It provides a good compromise between the accuracy of the results and
computational efficiency of the simulations [2–4]. The method incorporates Geometrical Optics (GO)
to determine the induced surface current and then integrates the current over the illuminated portion of
the surface to calculate the scattered field. To accurately determine the illuminated region, the surface
of object is represented by a number of meshes. The meshes should be small enough to model the
fine details of the geometry. However, the computational cost of determining the illuminated region
of the surface increases with the number of meshes. As a result, large meshes are desirable subject to
two important constraints: accurate representation of geometry and, at the same time, efficient and
accurate calculation of the physical optics integral on each mesh. Therefore, accuracy and efficiency of
the physical optics method strongly depends on size, shape and mathematical description of the meshes.

There are two general techniques for geometrical modeling of arbitrary surfaces in electromagnetic
problems: parametric representation [5, 6] and facet-based representation [7, 8]. In parametric
representation, the surface of an object is usually expressed in terms of Non-Uniform Rational B-Spline
(NURBS). By using this method, the surface of bodies with complex geometry is represented with high
accuracy. Little computer memory is required to store the geometry, and the NURBS representation
is also suitable for body shaping optimization techniques. However, ray intersection test with NURBS
surfaces involves iterative numerical methods, and hence, is very time consuming. Therefore, the
increased accuracy is achieved at the cost of higher computational burden due to complexity of the
intersection test [9]. In the facet-based representation, the surface of the object is usually described in
terms of triangular planar patches. The curvature of the object surface can be efficiently included by
increasing the number of patches. Besides, the physical optics integral over the planar patches can be
reduced to a closed form expression with Gordon’s method [10]. Moreover, the intersection test of a
ray with a planar surface has a simple analytical solution, which results in low complexity compared
to the NURBS surfaces. Hence, this kind of representation is usually performed in practice. Reducing
the number and computational cost of ray-object intersection tests plays an important role in efficiency
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enhancement of PO-based scattering prediction. This point is much more notable when the angular
pattern of backscattering cross section has to be obtained. One approach to finding the intersected patch
is ray-patch intersection test [11, 12]. The number of intersection tests for each ray is proportional to
the number of patches, which results in high computational cost specially for large complex objects with
high number of facets. Therefore, it is necessary to use acceleration techniques to improve the efficiency
of this process. For instance, in [13] the kd-tree and in [14, 15] space division algorithm are presented
to accelerate the ray-patch intersection test. Another approach is to find the intersection point between
the ray and the object by substituting the ray equation into the equation of the object surface [16].
Then search algorithms are used to find the patch containing the intersection point. This approach is
very efficient if the surface equation is not mathematically very complicated, and the object geometry
permits applying efficient multilevel search algorithms [17]. Such conditions are satisfied in the case of
bodies of revolution.

The purpose of the current paper is to present a mesh generation algorithm for efficient inclusion
of bodies of revolution in physical optics method. Due to the rotational symmetry, non-uniform
quadrilateral meshes will be used to efficiently determine the illuminated region and accurately calculate
the physical optics integral. The mesh resolution will be obtained by an algorithmic procedure which
takes into account the impact of curvature and frequency on the angle-dependent backscattering cross
section of the object.

The remainder of the paper is organized in three sections. The formulation of the method is
discussed in Section 2. The simulation results are provided in Section 3. Concluding remarks are given
in Section 4.

2. FORMULATION

A surface of revolution is created by rotating a curve, called generatrix, about an axis. Consider a
surface of revolution with the generatrix given by z = f(x) whose axis lies along the z-axis. The vertex
lies at the origin, and the circular edge lies on the plane z = H. Assume that this surface is made up of a
certain number of facets. To determine the illuminated facets, a multilevel procedure is employed. The
intersection points of the incident rays on the surface are first calculated by using the implicit surface
equation, then the enclosing facet for each point is determined by search algorithms. Therefore, the
efficiency of finding the illuminated region depends directly on how well these two parts are performed.

Each intersection point is obtained by substituting the parametric representation of the incident
ray into the implicit surface equation. This yields a one variable algebraic equation whose solution
determines the distance between the source location and the intersection point. For conventional bodies
of revolution, the solution to this algebraic equation is the smallest positive root of the polynomial [16].

Figure 1. General view of a body of revolution with quadrilateral meshes.
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The elliptic, parabolic and secant ogive nose cones are examples of these surfaces. The roots of the
polynomial are efficiently obtained analytically or by eigenvalue based methods [18]. More complicated
surfaces such as the Von Karman nose cone require iterative numerical methods. After obtaining the
intersection point, we have to locate the enclosing patch to calculate its contribution to the scattered
field. The computational complexity of search algorithm will be significantly reduced if simple meshing
pattern is used. One such pattern is depicted in Figure 1 in which piecewise linear approximation is
used in both φ and z directions to decompose the surface into quadrilateral patches. By knowing the z
and φ coordinates of the intersection point, the intersected patch is easily determined. The rotational
symmetry guarantees that for a patch in φ1 ≤ φ ≤ φ2 and z1 ≤ z ≤ z2 the line which passes through
the vertices (φ1, z1) and (φ1, z2) intersects the z-axis on exactly the same point as the line that passes
through the vertices (φ2, z1) and (φ2, z2). Therefore, the four vertices of each patch are coplanar and the
physical optics surface integral can be efficiently calculated using Gordon’s method. The key point is
the proper selection of mesh resolution such that the accuracy of the scattered field is not compromised.
This is investigated in details in following subsections.

2.1. Approximation in z Direction

Physical optics approximation uses geometrical optics to calculate the induced current density on a
surface and then integrating that current over the surface to calculate the scattered field. The scattered
magnetic field under these assumptions can be written as [19]
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is called physical optics integral. The problem is to approximate the generatrix of the surface by
a piecewise linear function with the minimum number of segments so that the difference between the

(a) (b)

Figure 2. Piecewise linear approximation of a surface of revolution (a) in z direction, (b) in φ direction.



166 Asadi and Mohtashami

approximation and the function does not exceed a given error. For the geometry depicted in Figure 2(a),
r̂, k̂, and �r′ are written in Cartesian coordinate as

r̂ = x̂ sin θ + ẑcosθ (4a)

k̂ = −(x̂ sin θi + ẑcosθi) (4b)
�r′ = x̂x′ + ẑz′ (4c)

In high frequency region, the phase of the integrand in physical optics integral varies rapidly in
comparison with its amplitude. Hence the phase variation is used as the meshing criteria. Assume
that the generatrix function f(x) is approximated by a piecewise linear function f̃(x). The phase term
of exact and approximated physical optics integral are, respectively

ψ(x) = k0[x(sin θ + sin θi) + f(x)(cos θ + cos θi)] (5a)

ψ̃(x) = k0[x(sin θ + sin θi) + f̃(x)(cos θ + cos θi)] (5b)
and the phase difference in mth subinterval, (αm ≤ x ≤ βm), is equal to

Δψ(x) = k0[f̃(x) − f(x)](cos θi + cos θ) (6)

define e(x) = f̃(x) − f(x) as the linear interpolation error in this subinterval, as a result |Δψ(x)| ≤
2k0|e(x)|. Given αm, we wish to find the value of βm such that the phase error does not exceed εzmax.

Due to convexity
d2f

dx2
> 0, therefore

df

dx
is increasing. Then according to mean value theorem there is

a single value x = ξm in this subinterval such that
de

dx
= 0. At x = ξm, |e(x)| reaches its maximum

which results in maximum phase error. By using straight forward mathematical calculation the equation
governing the value of ξm is obtained as

(αm − ξm)
df
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∣∣∣
ξm

+ f(ξm) − f(αm) − εzmax

2k0
= 0 (7)

This equation can be solved using analytical or numerical methods depending on the function f(x).
Starting from α1 = 0, The value of ξ1 can be calculated from Eq. (7) for a specified maximum phase
error Δψmax = εzmax. As a result, f̃(x) is the line that passes through (αm, f(αm)) and has the slope

of
df

dx

∣∣∣
ξm

. The intersection point of f(x) and f̃(x) gives β1. Then set α2 = β1 and repeat the same

procedure to find β2. The process is repeated until the last subinterval exceeds the body’s radius. This
way the local curvature of the generatrix is effectively taken into account. The smaller local curvature
results in larger subinterval which effectively reduces the number of subintervals and facets.

2.2. Approximation in φ Direction

In this case, piecewise linear approximation is performed in cross sectional plane. The circular cross
section has a constant curvature. Therefore, approximation is performed uniformly by inscribing an
N-edge regular polygon in the circle. Due to symmetry, the phase error follows the same trend in each
subinterval. As shown in Figure 2(b) this approximation results in a maximum approximation error
occurs at the midpoint of each subinterval. By using a similar procedure as the one following Eq. (6),
the phase error in each interval is bounded

|Δψ(z)| ≤ 2k0ρ(z)
(

1 − cos
(

Δφ(z)
2

))
(8)

where Δφ(z) =
2π
N(z)

and ρ(z) = f−1(z). The cross section curvature decreases as we move from

the nose of the body to the base. Therefore, the number of polygon edges is considered a function of
z-coordinate of the circular section. For small values of Δφ(z) we have

|Δψ(z)| ≤ k0π
2ρ(z)

N2(z)
(9)
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Given a maximum phase error of Δψmax = εφmax, we can find the number of segments in mth subinterval
by

N(z) = π

√
k0ρ̄m

εφmax

(10)

where ρ̄m is the average ρ(z) in subinterval z(αm) ≤ z ≤ z(βm). Figure 3 shows elliptical and secant
ogive nose cones meshed using the proposed method. The curvature near the tip of the elliptical nose
cone is higher, which results in finer segments in z-direction. The secant ogive, on the other hand, has
constant curvature in z-direction. This results in uniform meshing pattern along the z-axis. In both
nose cones, ρ̄ increases as we move to the base. According to Eq. (10), the mesh resolution in φ direction
is an increasing function of z as confirmed by Figure 3.
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Figure 3. Mesh generation by presented method for (a) elliptical nose cone, and (b) secant ogive nose
cone.

The proposed meshing scheme results in planar quadrilateral patches and hence, the PO integral
for each patch can be analytically calculated by Gordon’s method [10]. After meshing the surface and
determining the illuminated patches, the physical optics integral at an arbitrary illuminated patch,
denoted as Pi, can be calculated using the following closed-form representation [10]

�f =
jn̂

(
�r′

)
k0|�w|2 (T1 + T2 + T3 + T4) (11)

where �w is the projection of (r̂ − k̂) on Pi plane, and

Tn = (�w∗ · Δan)
sin[k0

2 �w · Δan]
k0
2 �w · Δan

exp
[
jk0

2
�w · ( �an + �an+1)

]
; 1 ≤ n ≤ 4 (12)

In this equation, for the vector �w = [w1, w2] in the plane of Pi, �w∗ = [w2,−w1] is the vector obtained
by rotating �w at 90◦ clockwise. The position vectors of vertices of quadrilateral mesh in Pi plane are
denoted as �a1, �a2, �a3,�a4. The value of �a5 is taken the same as �a1 and Δan = �an+1 − �an.

3. SIMULATION RESULTS AND DISCUSSION

The developed simulation code in this research calculates the PO integral in both monostatic and bistatic
scenarios by using the Gordon’s method [10]. Multiple reflections that occur in complex geometries
are included via the well-known multiple GO + PO approach [20]. The code includes the effect of
surface curvature on the electromagnetic field amplitude in multiple reflections [21, 22] and calculates
the diffraction and reflection-diffraction fields via the Method of Equivalent Currents [23]. In order to
verify the proposed meshing algorithm, scattering from two typical benchmark objects are studied and
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Figure 4. Mesh generation by presented method for a (a) single ogive, and (b) cone-sphere.

compared with experimental data and numerical methods. The first example is an ogive as depicted in
Figure 4(a). The ogive has a half length of 0.127 m and a maximum radius of 0.0254 m. For meshing the
surface, the maximum phase errors in z and φ direction are set to π/200 and π/100, respectively. The
linear approximation in z direction leads to 28 segments. Then the number of segments in φ direction
is obtained for each subinterval according to (10). As a result, the surface is modeled with 786 non-
uniform quadrilateral patches. The backscattering cross section is computed in φ = 0 plane for incident
angles 0◦ to 180◦ with angular resolution of 0.5◦ at 9GHz. The incident angles θ = 0, 180◦ correspond
to axial incidence. The procedure is repeated for a medium mesh resolution with εzmax = π/100 and
εφmax = π/50, which results in 396 patches. The backscattering cross section for both high and medium
mesh resolutions is obtained and compared with measurement data [24] in Figure 5(a). V V polarization
is assumed but similar results are obtained for HH polarization. The PO simulation results from the
commercial FEKO software [25] is also included in this figure. As observed, the scattering results from
proposed method with high mesh resolution can yield the same accuracy as the physical optics simulation
in FEKO. The discrepancies between the simulations and the measurements, specially for angles near
axial incidence are attributed to the errors caused by the faceting of the curved surface and ignoring
the creeping waves and tip diffraction effects. When using measurements as the reference values, one
must take special care because measurement data may not be very accurate. This is due to a variety of
sources such as measuring instruments or human factors. However, the geometries that are meshed and
simulated in this paper are benchmark targets that are provided for the validation of computational
electromagnetics programs by the Electromagnetic Code Consortium (EMCC) [24]. Furthermore, our
simulation results are compared with physical optics results of FEKO which demonstrate the proper
accuracy of the presented method. In Figure 5(b) the bistatic radar cross section for high mesh resolution
is computed by our code in φ = 90◦ plane for incident angle θi = 45◦ and observation angles 0◦ to 180◦ at
9GHz. The result is compared with the physical optics simulation of FEKO as well as Multi-Level Fast
Multipole Method (MLFMM) as an accurate numerical method. As observed, our simulation results
agree well with the physical optics simulation in FEKO. Our results exhibit the same level of error as
the physical optics simulation of FEKO with respect to MLFMM.

The second example is a cone-sphere with a half angle of 7 degrees and a radius of 0.075 m. The
length of object is 0.69 m, and the side of the cone is tangent to the sphere, which results in negligible
diffraction at the joint. The surface is meshed using high and medium mesh resolution, leading to 2478
and 1409 patches, respectively. The meshed surface is depicted in Figure 4(b). The backscattering cross
section for both medium and high mesh resolutions are computed in φ = 0 plane for incident angles 0◦
to 180◦ with angular resolution of 0.5◦ at 9GHz. The results are compared with measurement data for
V V polarization [24] and physical optics simulation of FEKO in Figure 6(a). As observed, the results
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Figure 5. Monostatic and bistatic radar cross section pattern for single ogive (a) monostatic, (b)
bistatic (θi = 45◦).
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Figure 6. Monostatic and bistatic radar cross section pattern for cone-sphere (a) monostatic, (b)
bistatic (θi = 60◦).

of our proposed method yields the same accuracy as FEKO. The differences between simulation results
and measured data are due to neglecting the tip and surface diffracted rays. The bistatic radar cross
section for high mesh resolution is also computed at 9 GHz in φ = 90◦ plane for incident angle θi = 60◦
and observation angles 0◦ to 180◦. The result is compared with those of physical optics simulation of
FEKO and MLFMM in Figure 6(b). The results obtained from our code with the proposed meshing
scheme has good agreement with those obtained from physical optics simulation of FEKO as well as
MLFMM.

To achieve backscattering cross section with desired level of accuracy, the mesh resolutions in z and
φ directions have to be adjusted. Decreasing εzmax and εφmax increases the accuracy of backscattering
cross section calculation at the cost of increasing the processing time. The meshing procedure is done
for various bodies of revolution to calibrate εzmax and εφmax. In each case, the absolute value of the error
between the result of our proposed method and the exact solution is computed in dB at all incidence
angles. The mean error and 95% confidence interval is obtained accordingly for the considered values
of εzmax and εφmax.

The exact solution is obtained by numerical calculation of physical optics integral using global
adaptive quadrature [26]. In error calculation, the samples less than 40 dB below the maximum value
are neglected. The proposed meshing procedure is performed for various types of nose cone shapes
involving parabolic, elliptical, secant ogive, tangent ogive and power series. Different values of εzmax and
εφmax are obtained for different nose cones. However, in order to provide a general rule of thumb, the
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Table 1. Values of maximum phase error in φ and z directions and the corresponding error of
backscattering cross section results.

Mean error (dB) Confidence Interval (dB) εφ
max εz

max

1 [0.7, 1.2] π/32 π/20

0.5 [0.3, 0.7] π/50 π/40

Table 2. Total number of patches and computation time of different methods in ellipsoid backscattering
cross section prediction.

Method No. of Meshing Computation

patches time (s) time (s)

Proposed method 720 0.65 22

Delaunay triangulation 1308 1.5 97

FEKO-PO 9422 3 48

upper bounds for εzmax and εφmax are reported in Table 1 for the desired level of accuracy. The values
provided in this table applies to meshing all considered bodies of revolution irrespective of their physical
dimensions and the frequency.

According to Eqs. (6) and (8), the criteria for mesh resolution is determined based on the incident
wavelength (frequency). In some cases, the length of meshes are more than three times the wavelength.
For example, in Figure 3, the generatrix of secant ogive nose cone is divided into 5 equal segments. The
height of nose cone is 0.54 m and the frequency is 9 GHz, so the length of meshes are 3.24 times the
wavelength in z direction. This is a desirable property which reduces the computational time throughout
the main PO simulation. Note that a geometrical criteria can also be used to ensure that the meshing
scheme is applicable in low frequencies as well. For instance, the mesh resolution in φ direction can be
chosen in a way that the area of the inscribed polygon exceeds 90% of area of the circular section. In z
direction, the longest segment can be set to be shorter than the half of the smallest dimension of object.
By applying such extended criteria, the proposed algorithm can also be used for bodies of revolution
with zero Gaussian curvature such as cone and cylinder. Such geometrical criteria can also be used to
generate quadrilateral meshes on planar surfaces such as dihedral and trihedral corner reflectors.

To evaluate the computational efficiency of proposed method, the surface of an ellipsoid is meshed
by the presented method as well as by the Delaunay triangulation [27]. The object has a half-length
of 0.54 m and a base radius of 0.09 m. The values of εφmax and εzmax in proposed method are set to
π/32 and π/20, respectively. As a result, the surface is modeled with 720 quadrilateral patches. To
determine the illuminated patches in the quadrilateral mesh, the simple multilevel procedure described
in Section 2 is used. Then the backscattering cross section is computed in φ = 0 plane for incident
angles 0◦ ≤ θ ≤ 180◦ with angular resolution of 1◦ at 9GHz. The results are compared with physical
optics simulation of FEKO within 0.7 dB mean difference. In order to make a fair comparison, the
mesh resolution in Delaunay triangulation method is chosen such that the result has the similar level
of accuracy with respect to FEKO simulation. In both methods, scattering field contribution of each
illuminated patch is calculated using Gordon’s method. In Table 2 the total number of patches and
runtime performances of these methods are reported. By using the quadrilateral patches, runtime
speedup of about 97/22 = 4.4 times is obtained compared to Delaunay triangulation. In the proposed
method, the mesh generation procedure is performed very quickly and the number of patches is much
less than those of other techniques. Note that the ray-object intersection tests in our simulations are
done without conventional acceleration techniques whereas commercial FEKO software uses various
acceleration algorithms in ray tracing and PO integral calculation. The efficiency of our simulation is
due to the proposed meshing scheme that simplifies that determination of the illuminated portion of
the object without compromising the accuracy. It should be noted that FEKO is a comprehensive
computational electromagnetic software for the electromagnetic field analysis of arbitrarily shaped
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structures. By presenting the entries of Table 2 we do not intend to show the superiority of our
code to the FEKO; rather, we want to emphasize that the proposed meshing scheme improves the
computational performance of PO calculations for bodies of revolution. The presented meshing scheme
is therefore suggested to be implemented in a commercial software that includes this kind of geometry.

4. CONCLUSION

In this paper, we introduce a mesh generation scheme for efficient calculation of electromagnetic
scattering from electrically large bodies of revolution. The curvature of the surface is approximated
by piecewise linear function in both directions, thereby meshing the surfaces into quadrilateral patches.
This enables finding the illuminated part of the surface through an efficient multilevel intersection test.
Furthermore, each four points defining a quadrilateral patch are coplanar. This results in closed-form
and hence efficient computation of physical optics integral.

The mesh resolution is adjusted according to the curvature of the object, frequency and the desired
level of accuracy. The procedure is based on deriving suitable upper bounds for phase error of the
physical optics integral. The upper bounds have been adjusted for various nose cones and thereby a
guideline is provided for meshing the surface. The simulation results show that the size of quadrilateral
meshes can be as large as several wavelengths with less than 1 dB error in backscattering cross section
calculation. As a result, the number of meshes and consequently the simulation time can be efficiently
reduced.
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