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A Complex Mix-Shifted Parallel QR Algorithm for the C-Method

Cihui Pan1, 2, 3, Richard Dusséaux1, *, and Nahid Emad2, 3

Abstract—The C-method is an exact method for analyzing gratings and rough surfaces. This method
leads to large-size dense complex non-Hermitian eigenvalue. In this paper, we introduce a parallel QR
algorithm that is specifically designed for the C-method. We define the “early shift” for the matrix
according to the observed properties. We propose a combination of the “early shift”, Wilkinson’s shift
and exceptional shift together to accelerate convergence. First, we use the “early shift” in order to
have quick deflation of some eigenvalues. The multi-window bulge chain chasing and parallel aggressive
early deflation are used. This approach ensures that most computations are performed in level 3 BLAS
operations. The aggressive early deflation approach can detect deflation much quicker and accelerate
convergence. Mixed MPI-Open MP techniques are used for performing the codes to hybrid shared and
distributed memory platforms. We validate our approach by comparison with experimental data for
scattering patterns of two-dimensional rough surfaces.

1. INTRODUCTION

The C-method is an efficient and versatile theoretical tool for analyzing gratings or rough surfaces
illuminated by an electromagnetic wave [1–6]. It is based on Maxwell’s equations solved in a non-
orthogonal coordinate system fitted to the surface geometry. Discretizing the Maxwell’s equations under
a non-orthogonal coordinate system and separating variables lead to solving the eigenvalue problem of
the high-dimensional, dense, complex and non-symmetric matrix. The scattered field is expanded as a
linear combination of eigensolutions satisfying the outgoing wave condition. The boundary conditions
allow the scattering amplitudes to be determined. The strength of the C-method is that it leads to the
eigensolutions of the scattering problem. It is an accurate method and it can be used as a reference
for the analytical methods [7]. The dominant computational cost for the C-method is the eigenvalue
problem solution that is of the order of O(N3) where N is the size of matrix. The C-method must be
improved with regard to this point, in particular, for analyzing random rough surfaces insofar as the
average scattered intensity is estimated over results of several surface realizations.

In this paper, we focus on the numerical aspects of the C-method in order to reduce the
computational time. Iterative eigensolvers, such as Bi-Conjugate Gradient methods, Krylov subspace
methods or Jacobi-Davidson methods have been developed to deal with large-scale eigenvalue
problems [8]. However, they have the possibility of missing some eigenvalues. Therefore, these iterative
methods are inefficient for the C-method because all the eigenvalues and eigenvectors are needed. In
contrast, the QR algorithm is based on similarity transformations and calculates all the eigenvalues
and eigenvectors without any danger of missing some eigensolutions [9, 10]. We present the parallel QR
algorithm that is specifically designed for the C-method. We define a technique, called “early shift” for
the matrix according to the properties that we have observed. We mix the “early shift”, Wilkinson’s
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shift and exceptional shift together to accelerate the convergence. Especially, we use the “early shift”
first to have quick deflation of some eigenvalues [11, 12]. The multi-window bulge chain chasing and
parallel aggressive early deflation (AED) are used [12, 13]. A Mixed Message Passing Interface and
Open Multi-Processing techniques (Mixed MPI-Open MP) are utilized for parallel implementation of
our application for hybrid shared and distributed memory platforms [14, 15].

The paper is structured as follows. In Section 2, we present the C-method. In Section 3,
we introduce the parallel QR algorithm specifically designed for the C-method and we present the
implementation details, architectures and platforms. In Section 4, we present numerical experiments
and we validate numerical results by comparison with experimental data.

2. THE C-METHOD AS AN EIGENVALUE PROBLEM

2.1. Formulation of the Problem

Consider a periodic surface with a height profile z = s(x, y) and a period D with respect to Ox and Oy
axis (See Figure 1). The surface separates the vacuum (ν(1) = 1) from a material with a reflective index
ν(2). It is illuminated by a monochromatic plane wave with wavelength λ(1). The time-dependence
factor varies as exp(jωt) where ω is the angular frequency. Each vector function is represented by its
associated complex vector function and the time factor is omitted. Superscripts (1) and (2) designate
quantities relative to the upper medium and the lower medium, respectively. The incident wave vector
k0 is defined from the zenith angle θ0 and the azimuth angle ϕ0 [4]. For an incident wave in (a)
polarization, the problem consists in working out the co- and cross-polarized components of the field
scattered within the two media.

Figure 1. An elementary cell of a periodic surface illuminated by a plane wave under (θ0, ϕ0). h0 and
v0 are the polarization vectors of the incident plane wave. In the vacuum, the diffracted elementary
wave is characterized by the wave vector k1, the polarization vectors h1 and v1, the zenith angle θ and
the azimuth angle ϕ [3, 4].

The C-method uses the translation coordinate system (u, v, ω) where (u, v) = (x, y) and w =
z − s(x, y). So, the height function z = s(x, y) coincides with the coordinate surface w = 0 and the
change from Cartesian components (ax; ay; az) of a vector �a to covariant components (au, av, aw) is
given by [1, 3]. ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
au(x, y,w) = ax(x , y , z) +

∂s(x, y)
∂x

az(x , y , z)

av(x , y,w) = ay(x ; , y , z) +
∂s(x, y)
∂y

az(x , y , z)

aw(x , y,w) = az(x , y , z)

(1)

The covariant components Eu, Ev, Hu and Hv are parallel to the rough surface and satisfy the boundary
value problem. Because the boundary surface coincides with a coordinate surface, the boundary value
problem is simplified. In a source-free medium, it can be shown from the time harmonic Maxwell
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equations and the constitutive relations expressed in the translation system that the component ψ = Ew

or ψ = ZHw obeys to the propagation equation:

∂2ψ

∂u2
+
∂2ψ

∂v2
+ gww ∂

2ψ

∂w2
+ k2ψ +

∂

∂w

[
guw ∂ψ

∂u
+
∂guwψ

∂u
+ gvw ∂ψ

∂v
+
∂gvwψ

∂v

]
= 0 (2)

k is the wave number of the medium under consideration and Z, this impedance. Terms guw, gvw and
gww are elements of metric tensor which depend on the derivatives of function s(u, v) with respect to u
and v [3].

guw = − ∂s

∂u

gvw = −∂s
∂v

gww = 1 +
(
∂s

∂u

)2

+
(
∂s

∂v

)2

(3)

As shown in [3], Eu, Ev, Hu and Hv can be expressed in terms of Ew and Hw only:

∂2Eu

∂w2
+ k2Eu =

∂2Ew

∂u∂w
− k2guwEw − jk

(
gvw ∂ZHw

∂w
+
∂ZHw

∂v

)
(4)

∂2Ev

∂w2
+ k2Ev =

∂2Ew

∂v∂w
− k2gvwEw + jk

(
guw ∂ZHw

∂w
+
∂ZHw

∂v

)
(5)

∂2Hu

∂w2
+ k2Hu =

∂2Hw

∂u∂w
− k2guwHw + j

k

Z

(
gvw ∂Ew

∂w
+
∂Ew

∂v

)
(6)

∂2Hv

∂w2
+ k2Hv =

∂2Hw

∂v∂w
− k2gvwHw − j

k

Z

(
guw ∂Ew

∂w
+
∂Ew

∂v

)
(7)

2.2. Eigenvalue System

In [3], a procedure is proposed for solving the propagation Equation (2). ψ(x, y,w) is represented in
terms of the quasi-periodic functions exp(−jαpx) exp(−jβqy):

ψ(x, y,w) =
∑

p

∑
q

ψpq(w)exp(−jαpx) exp(−jβqy) (8)

where
αp = k(1) sin θ0 cosϕ0 + p

2π
D
, βq = k(1) sin θ0 sinϕ0 + q

2π
D

(9)

Substituting (8) and (9) into (2) and projecting on the quasi-periodic functions gives:

j

k(1)

∂

∂w

[∑
p,q

(
αs

k(1)
guw
s−p,t−q + guw

s−p,t−q

αp

k(1)
+

βt

k(1)
gvw
s−p,t−q + gvw

s−p,t−q

βq

k(1)

)
ψpq(w)

]

+
j

k(1)

∂

∂w

[∑
p,q

gww
s−p,t−q ψ

′
pq(w)

]
=

γ2
st

k(1)2
ψst(w) (10)

where
j

k(1)

∂ψpq(w)
∂w

= ψ′
pq(w) (11)

and γ2
st = k2 − α2

s − β2
t . It is interesting to note that γst is the propagation coefficient of an elementary

plane wave with respect to the Oz axis [1]. Terms guw
p,q , gvw

p,q and gww
p,q are the Fourier coefficients of the

periodic functions guw, gvw and gww. Equations (10) and (11) can be written in matrix form:

j

k(1)
Ll

∂

∂w

(
�ψ
�ψ′

)
= Lr

(
�ψ
�ψ′

)
(12)
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ψpq and ψ′
pq are the components of vectors �ψ and �ψ′. For a truncation order M , −M ≤ p, q ≤ +M .

As a result, Ll and Lr are 2Ms-square matrices with Ms = (2M + 1)2. The elementary solution of
Equation (12) is defined as follows:(

�ψn(w)
�ψ′

n(w)

)
=
(
�φn
�φ′n

)
exp(−jk(1)rnw) (13)

�φn and �φ′n are the upper eigenvector and the lower eigenvector associated with the eigenvalue rn. They
are solutions of the eigenvalue problem (14).

rn Ll

(
�φn
�φ′n

)
= Lr

(
�φn
�φ′n

)
(14)

System (14) gives 2Ms eigensolutions ψn(x, y,w) defined as follows:

ψn(x, y,w) =
+M∑

p=−M

+M∑
q=−M

ϕn,pqexp(−jαpx) exp (−jβqy) exp
(
−jk(1)rnw

)
(15)

For each medium (m), the C-method requires the solution of an eigenvalue problem. The signs
of the real and imaginary parts of the eigenvalue define the nature of the wave corresponding to the
elementary wave function (15). ψ(m)

n (x, y,w) represents an outgoing wave travelling without attenuation
if Re

[
(−1)mr(m)

n )
]
< 0 and Im(r(m)

n ) = 0. For an evanescent wave, Im
[
(−1)mr(m)

n )
]
> 0.

The component ψ(m)
s (x, y,w) of the field scattered within the medium (m) is expanded as a linear

combination of eigensolutions ψ(m)
n (x, y,w) satisfying the outgoing wave condition. Among the 2Ms

eigenfunctions, there are Ms of them that correspond to outgoing waves and as many of them to
incoming waves.

ψ(m)
s (x, y,w) =

Ms∑
n=1

A(m)
n ψ(m)

n (x, y,w) (16)

For an incident wave in (a) polarization, we deduce from Eq. (4) to Eq. (7) the (ha)-polarized
components (E(m,ha)

su , E
(m,ha)
sv ,H

(m,ha)
su ,H

(m,ha)
sv ) by taking E

(m)
sw = 0 and H

(m)
sw = ψ

(m)
s . The (va)-

polarized components (E(m,va)
su , E

(m,va)
sv ,H

(m,va)
su ,H

(m,va)
sv ) by taking E(m)

sw = ψ
(m)
s and H(m)

sw = 0. The co-
amplitudes A(aa)

n and the cross-amplitudes A(ba)
n are found by solving the boundary value problem and a

2Ms-dimensional matrix system. In this section, we have succinctly presented numerical implementation
of the C-method. For more information, we refer the reader to Reference [3] for 2D-gratings and to
References [4–6] for 2D random rough surfaces.

3. ALGORITHMS

The most time-consuming part of C-method is to compute the eigenvalues and eigenvectors of A = L−1
r Ll

where A is a large size, complex, dense and non-Hermitian matrix. For determining the complete
spectrum, the most powerful and stable algorithm is the QR algorithm [8–10]. We choose this algorithm
to keep the stability and to save the computation time.

One of the important aspects of QR method is its capacity to conserve over iterations the Hessenberg
form of a matrix. This prevents computations on the zeros and therefore has a significant impact on
the cost of calculations of an iteration. Thus, a first stage of the method consists to similarly transform
the original matrix to a Hessenberg matrix and then apply the QR method on this matrix. The
convergence of the QR method for a Hessenberg matrix can be improved dramatically by introducing
shifts (Wilkinson’s shift, for example) or its variant techniques (double-shifts, multi-shift, etc.) into the
algorithm. The iterations of a shifted Hessenberg QR algorithm introduce a few non-zero values under
the sub-diagonal elements of the upper Hessenberg matrix [11, 12]. This group of non-zero elements is
called a bulge. The algorithm allows pushing this bulge over the iterations until his vanishing (chasing
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the bulge). In general, as the complement to the use of the shift, the deflation technique is used in the
QR algorithm. This means that once an eigenvalue has converged, the corresponding rows and columns
of the Hessenberg matrix will be removed and thus, the following QR iterations will be applied on a
smaller matrix.

We make use of three techniques in the implementation of our parallel QR algorithm: early shift,
parallel bulge chasing and parallel aggressive early deflation (AED). We introduce in parallel QR
algorithm, the early shifts to give approximation of a part of the eigenvalues of the matrix. For the bulge
chasing, instead of only a single bulge, containing two shifts, a chain of several tightly coupled bulges,
each containing two shifts, is chased in the course of one multi-shift QR iteration [11, 12]. This idea
allows performing most of the computational work in terms of matrix-matrix multiplications to benefit
from highly efficient level 3 basic linear algebra subprograms (BLAS, the level 3 contains matrix-matrix
operations) [16]. The idea of AED allows to detect converged eigenvalues much earlier than conventional
deflation strategies. We will first present QR sequential algorithm and the shift strategy to accelerate
the convergence, then we present all the parallel techniques for this specifically designed QR algorithm.

3.1. Double Shifted QR Algorithm

The QR algorithm is an iterative method for reducing a matrix to almost upper triangular form by
unitary similarity transformations. The idea is to compute the Schur decomposition of a N -square
complex matrix A (here, N = 2Ms with Ms = (2M + 1)2): T = WHAW [9] where T is an upper
triangular matrix and WH is the conjugate transpose of W which is the Schur matrix of A. Formally,
let A0 := A. A0 := A. At the k-th step (starting with k = 0), we compute the QR decomposition:
Ak = QkRk where Qk is an unitary matrix and Rk is an upper triangular matrix. We then form
Ak+1 = RkQk and:

Ak+1 = RkQk = QH
k AkQk (17)

So all the matrices Ak are similar to each other and hence they have the same eigenvalues. By this
iteration, the matrices Ak converge to an upper triangular matrix, the Schur form of A. Usually, the
QR algorithm starts with the Hessenberg decomposition [10]:

H = QHAQ (18)

H is a Hessenberg matrix and Q is a unitary matrix. This is because the Hessenberg form is preserved
by the QR algorithm and this form can decrease the cost of the QR iterations [10]. There are
several ways of Hessenberg reduction such as Gram-Schmidt transformation, Householder reduction
and Givens rotation [10]. Efficient parallel algorithm for this Hessenberg reduction is implemented in
the ScaLAPACK (Scalable Linear Algebra PACKage) routine PZGEHRD [17]. So we will focus on the
iterative part that comes after this Hessenberg reduction.

The convergence of the Hessenberg QR algorithm can be improved dramatically by introducing
spectral shifts into the algorithm. Nevertheless, in some cases, the shifted Hessenberg QR algorithm
does not work well. For the single shift, when the element hN−1,N−1 of the Hessenberg matrix H is
negligible with respect to hN,N−1, the convergence could be slow even if the Rayleigh quotient shift
gives a very good approximation (e.g., hN,N−1 is very small). For this reason, we make use of double
shifted Hessenberg QR algorithm. This technique is also used for real matrices with complex conjugate
eigenvalues because it allows avoiding the introduction of complex numbers in calculations during QR
iterations. Indeed, the so-called implicit Q theorem allows us to use the implicit double shift QR
algorithm without explicitly computing the QR decomposition [10]. The algorithm is characterized by
a “bulge chasing” procedure.

Suppose that two shifts σ1 and σ2 of the Hessenberg matrix H are given. The implicit double shift
QR algorithm proceeds as follows:
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a) Calculate the first column of the shift polynomial

v = (H − σ1I)(H − σ2I)e1 =

⎛
⎜⎜⎜⎜⎜⎝

∗
∗
∗
0
�
0

⎞
⎟⎟⎟⎟⎟⎠ (19)

b) Construct a 3 × 3 Householder transformation Q1 such that the second and third entries of v are
transformed to zero (i.e., Q1v). The similarity transformation gives the updated matrix H1:

H1 = QH
1 HQ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗ ↔
X X X ∗ ∗ ∗ ↔
X X X ∗ ∗ ∗ ↔
X X X ∗ ∗ ∗ ↔
0 0 0 ∗ ∗ ∗ ↔
0 0 0 0 ∗ ∗ ↔
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(20)

The Hessenberg structure is damaged by the bulge that we denote with symbol “X”.
c) Construct a 3× 3 Householder transformation Q2 such that the third and fourth entries of the first

column of H1 reduce to zero. The similarity transformation gives the updated matrix H2:

H2 = QH
2 H1Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗ ↔
∗ ∗ ∗ ∗ ∗ ∗ ↔
0 X X X ∗ ∗ ↔
0 X X X ∗ ∗ ↔
0 X X X ∗ ∗ ↔
0 0 0 0 ∗ ∗ ↔
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(21)

d) Continue similar operations to chase the bulge. In general, construct a 3 × 3 Householder
transformation Qk such that the (k + 1)th and (k + 2)th entries of the (k − 1)th column of Hk are
mapped to zero. Applying the corresponding similarity transformation to Hk results the updated
matrix Hk+1 where k = 2, 3, . . . , N − 1. The bulge will be chased to vanish at the bottom right
corner and leads to zeros, thus deflations. For example, H3 will be look like as follows:

H3 = QH
3 H2Q3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗ ∗ ↔
∗ ∗ ∗ ∗ ∗ ∗ ↔
0 ∗ ∗ ∗ ∗ ∗ ↔
0 0 X X X ∗ ↔
0 0 X X X ∗ ↔
0 0 X X X ∗ ↔
� � � � � � �

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(22)

3.2. Early Shift

Some eigenvalues of the scattering matrix can be approximated as follows [1]:

r(m)
n ≈ ±γ̃(m)

pq = ±
√
ν(m)2 − α̃2

p − β̃2
q (23)

where α̃p = αp/k
(1), β̃q = βq/k

(1) and γ̃
(m)
pq = γ

(m)
pq /k(1). As shown in [1], the values γ̃(m)

pq constitute
very good approximations when the indexes p and q are small relative to the matrix size. In general,
if n(m) is real or has a very small imaginary part, for the pair (p, q) that satisfies α̃2

p + β̃2
q < Re(ν(m)),

the approximation can be quite accurate. We recall that for a lossless medium (m), a real value
γ̃

(m)
pq can be associated with two angles defining a propagation direction with α̃p = sin θ(m)

n cosϕ(m)
n ,
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β̃q = sin θ(m)
n sinϕ(m)

n and γ̃
(m)
pq = ± cos θ(m)

n (see Figure 1). The real eigenvalue r
(m)
n defines the

propagation direction of the eigenfunction ψ
(m)
n (x, y,w). In [1], this approximation is used in order

to describe the asymptotic scattered field in the lossless medium by a sum of elementary plane waves
propagating without any attenuation. As shown in [1], this procedure is numerically efficient.

Here, the expression of γ̃(m)
pq can be used as shifts to approximate the real eigenvalues or eigenvalues

with very small imaginary part. The convergence is very quick due to the good approximation. We
call this the “early shift”. This specific shift is used in pairs corresponding to above double shift QR
algorithm. One pair of the “early shift” will create a bulge to be chased. Each pair will be used only
once during one iteration of double shifted Hessenberg QR which corresponds to (n − 1) right and left
multiplications of A by Householder reflectors. Wilkinson shift can be used after the “early shift” [10].
The “early shift” represents a further step forward in relation to previous works on the C method.

3.3. Parallel QR with Tightly Coupled Bulge Chasing

The parallel bulge chasing algorithm was first proposed by Braman et al. [11]. In order to benefit from
the level 3 BLAS, they parallelize the bulge chasing procedure by performing the chasing of multiple
chains of tightly coupled bulges. With the delay and accumulate technique, the main computation
work becomes the matrix-matrix multiplications. The procedure of intra-block chasing and inter-block
chasing are described below.

To describe the parallel algorithm, we first introduce the data layout mapping in a distributed
memory environment as follows:

• The processors are arranged into a pr × pc rectangular mesh labeled from (0, 0) to (pr − 1, pc − 1)
according to their specific positions indices in the mesh. Usually the values of pr and pc are set to
be as close as possible.

• The N ×N matrix is partitioned in 2D block cyclic scheme [17] and is mapped on our pr × pc grid.
The block size is Mb ×Nb and we require the block to be square Mb = Nb. Generally, a processor
will store a collection of non-contiguous blocks. Figure 2 shows an example with a fourth-order
grid where pr = pc = 2. The four processors are represented by different colors. If the matrix size
is N = 16, then the block size is 4x4 and the processor (0, 0) will store the elements A(1 : 4, 1 : 4),
A(1 : 4, 9 : 12), A(9 : 12, 1 : 4) and A(9 : 12, 9 : 12). An array descriptor stores the details of data
layout. The mapping between entries of the global matrix and their corresponding locations in the
memory can be established from the array descriptor.

 

Figure 2. 2D block cyclic scheme with four processors and pr = pc = 2.

Locally, each processor in the mesh may also utilize multithreading often associated with shared
memory architectures. This can be seen as adding another level of explicit parallelization by organizing
all the pr × pc processors into a three-dimensional mesh [12].

We use the shifts that are mentioned earlier to introduce the chain of bulges into diagonal blocks.
Each of the chains resides on a different diagonal block. We choose the number of shifts in such a
way that each chain covers at most half of the data layout block. The “early shift” is distributed from
left-upper diagonal blocks to right-lower diagonal blocks. Each “early shift” is used once. When there
is no “early shift” to distribute, we use Wilkinson shift [10].

For the intra-block chasing where the chain is chased from the top left corner to the lower right
corner within a contiguous diagonal block, we may use a sequence of 3× 3 Householder transformations
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Figure 3. Intra-block parallel bulge chasing. The grey bulges are chased to the black bulges. The
matrix under consideration is a 40 × 40 matrix. It is partitioned into 4 square blocks of size 20 × 20.

to chase the chain of bulges down some rows to the down right-hand corner of the contiguous diagonal
block. We start from the lowest bulge of the block and chase one bulge at a time. The intra-block chasing
can be performed locally on the process that owns this chain and simultaneously between different
diagonal contiguous blocks that saves computation time. Figure 3 shows how the intra-block chasing
are performed, the grey bulges are chased to the black bulges. After the bulge chasing within the diagonal
block, the accumulated unitary matrices are sent to the corresponding processors in order to update
the off-diagonal blocks. The off-diagonal blocks are then updated by matrix-matrix multiplications that
use level 3 BLAS. The broadcasts are sent in parallel. In order to avoid conflicts in the intersecting
parts, they are performed first in the row direction and then in the column direction (See Figure 3 for
the intra-block chasing with pr = pc = 2 and Mb = Nb = 20).

For the inter-block chasing, for each diagonal blocks in which the bulge chains reside, we create
copies of its neighbors and it becomes similar to the case of intra-block chasing. Figure 4 illustrates
the procedure with pr = pc = 2 and Mb = Nb = 20, the grey bulges are chased to the black bulges.
More precisely, the processor that stores the grey bulges creates a copy of the block on each side of
the border. Then we can perform the chasing locally, just as in the intra-block chasing and broadcast
the corresponding orthogonal factors to the blocks on both sides of the cross border. The updated
neighboring blocks are sent to its owner. To update the corresponding off-diagonal blocks, we broadcast
orthogonal matrix accumulated in the diagonal chasing stage to the corresponding rows/columns of
processors that are involved in off-diagonal updating. Then each involved processor exchanges data
blocks with its neighbor as illustrated in Figure 4 in the two large gray blocks. The off-diagonal blocks
are then updated by multiplication with the accumulated orthogonal matrix. We perform inter-block
chasing first for the odd-numbered blocks and then for the even-numbered blocks. This odd-even manner
avoids conflicts between different tightly coupled chains [12].

For each diagonal block, the corresponding orthogonal transformations are accumulated into an
orthogonal factor. Each orthogonal has the following form:

U =
(
U11 U12

U21 U22

)
(24)

U12 is a lower triangular matrix and U21 is a upper triangular matrix. As a result, matrix multiplications
by U will be broken into two dense by dense matrix multiplications and two triangular by dense matrix
multiplications. Computation time is saved because of the triangular structure and the required memory
is the same (of the order of 0(N2). The method presented in this section has already been published.
However, the published papers are for real matrices [10, 12]. The implementation here concerns the
complex matrices including the adaptation of the mixed-shift strategy. It is a novelty.
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Figure 4. Inter-block parallel bulge chasing. The dark grey large parts exchange data blocks with
neighbors when updating off-diagonal blocks.

3.4. Parallel AED

The AED algorithm was proposed in [13]. We divide the Hessenberg matrix H as follows:

H =

(
H11 H12 H13

H21 H22 H23

0 H32 H33

)
(25)

where H11 and H33 are (N − k − 1)-and k-square matrices, respectively. We use the pipeline parallel
QR algorithm to find the Schur decomposition of H33 with H33 = V TV H and perform the following
similarity transformation:⎛

⎝ I 0 0
0 1 0
0 0 V H

⎞
⎠( H11 H12 H13

H21 H22 H23

0 H32 H33

)(
I 0 0
0 1 0
0 0 V

)
=

(
H11 H12 H13V
H21 H22 H23V
0 s T

)
(26)

I is the (N −k−1)-square identity matrix and T an upper triangular k-square matrix. Now the matrix
looks like as in Figure 5 where the spike s is denoted as the gray part.

3.5. Hardware and Software Platforms

For the sequential case, there are two stages: the Hessenberg matrix implementation and the triangular
decomposition of the Hessenberg matrix. Each of these stages requires one matrix and a few buffers
with “negligible” sizes for intermediate calculations. For the parallel QR case, the matrix is distributed
over the computation nodes. It is necessary to store it somewhere and to update it regularly. We must
therefore store at most two matrices and we need a few buffers for the intermediate calculations. The
computer memory required is proportional to N2.

The experiments are performed on the machine Poincare hosted by IDRIS national computing
center in France (http://www.idris.fr/). This machine is IBM computer, composed mainly iDataPlex
dx360 M4 servers: 92 nodes equipped with 2 Sandy Bridge E5-2670 processors (2.60 GHz, 8 cores every
processor, 16 cores every node) and 32 Gb memory every node.

The following tools are installed: mkl 11.0, intelmpi 4.0.3, lapacke 3.5 gnu47. The program is
written in Fortran and compiled with Intel compiler ifort. Our implementation is based on a simple
imitation of the ScaLAPACK routine PDHSEQR and we use this to a complex implementation with
our own shift strategy. We adopt the recommended values such as the size of the deflation window and
the tuning parameter NIBBLE that determines when to skip a QR sweep and to perform AED in [12].
For all the following experiments, Mb = Nb = 50.
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Figure 5. Aggressive early deflation. The grey spike contains the vector s.

4. NUMERICAL RESULTS

4.1. Surfaces under Consideration

The parallel QR algorithm presented in Section 3 can be used for analyzing crossed gratings or two-
dimensional random gratings. As an illustration, we consider in this section periodic random surfaces
having a Gaussian height distribution. The correlation function is Gaussian and isotropic. We note σs

the root mean square height of the surface and ls, the correlation length, respectively. For an incident
wave in (a) polarization and a scattered wave in (b) polarization, the average scattered intensity in the
upper medium is derived from the scattering amplitudes A(ba)

n associated with angles (θn, ϕn) [18]. The
average scattered intensity is estimated by averaging the scattering amplitudes over Nr realizations.
The interface realization is obtained by filtering of uncorrelated white noise [18, 19].

4.2. Reduction on the Computational Time

To compare the computation times of sequential algorithm and parallel algorithm, we present Figure 6
that is based on numerical result of one realization. The perfectly conducting surface we consider is of
64 square wavelengths and σs = λ(1) and ls =

√
2λ(1). The incident angle is chosen as θ0 = 30◦ and

ϕ0 = 0◦. The truncation order M is equal to 28 and the matrix size is N= 6498.
Figure 6 gives the results of the pairs (pr; pc) = (1; 1) (2; 2) (4; 4) (6; 6) and (8; 8). Considering

one core, the proposed algorithm with respect to the sequential one leads to a substantial reduction
in the computational time (factor higher than 5). With the new version of parallel strategy by using
16 cores for one simulation, the solutions for 100 eigenvalues problems associated with 100 surface
realizations require approximately 12 minutes if we use 1600 cores. The naive parallel strategy based on
using the sequential algorithm and on solving of individual realizations on individual processors requires
approximately 330 minutes. The proposed parallel strategy can be significantly more efficient than the
naive parallel strategy.

We also compare the computation cost of sequential algorithm and parallel algorithm when the
truncation order M is varying. Figure 7 shows this comparison based on a single surface realization.
For M = 12, the matrix size is N = 1250, for M = 36, N = 10658, respectively. The surface parameters
are the same as above. For the parallel QR algorithm, the number of cores is fixed with pr = pc = 4.
This curves shows that the reduction in the computational time is important. For instance, the ratio is
close to 25 when M = 28.
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Figure 6. Computation times with respect to
number of cores.
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truncation order.

4.3. Comparison with Experimental Data

We use the parallel QR algorithm for analyzing random grating and we compare numerical results with
published experimental data considering random rough surfaces. We analyze moderately rough and very
rough surfaces. For all simulations, D = 8λ, M = 28 and Nr = 200. First, we consider a surface with
a moderate roughness, σs = 0.352λ(1) and ls = 2.21λ(1), and illuminated under θ0 = 55◦ and ϕ0 = 0◦.
The reflective index of the lower medium is ν(2) = 1.62 − 0.001j. Figure 8 shows the (vv)-polarized
differential reflection coefficient (DRC) as a function of the observation angle in the incidence plane [20].
It is noteworthy that the DRC curve presents a minimum similar to the Brewster angle for a planar
surface (By analogy with reflection from a smooth surface, a lossless dielectric with a refractive index
equal to 1.62 provides a Brewster angle close to 58◦). The comparison with experimental data that
come from [20] is excellent. The comparison is also conclusive for (hh)-results.
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Figure 8. Differential reflection coefficient versus observation angle in the incidence plane. Moderately
rough surface. Polarization (vv).

Figure 9 shows the (vv)-polarized normalized bistatic cross section as a function of the observation
angle in the incidence plane for a perfectly conducting surface [21]. Figure 10 gives results for the
(hv)-polarized bistatic cross section. We consider a very rough surface for which the predictions of the
standard analytic methods are inaccurate [7]. Roughness parameters are: σs = λ(1) and ls =

√
2λ(1)

and the surface is illuminated under θ0 = 20◦ and ϕ0 = 0◦. The C-method used with M = 28 leads to
an error on the power balance smaller than 5% for all the realizations. The mean error estimated over
the 200 realizations is smaller than 2 × 10−3.

The early shift is used. The approximations of real eigenvalues by (23) are good. As an example,
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Figure 9. Normalized bistatic scattering cross
section versus observation angle in the incidence
plane. Very rough surface. Polarization (vv).
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Figure 10. Normalized bistatic scattering cross
section versus observation angle in the incidence
plane. Very rough surface. Polarization (hv).

for the first surface realization, the relative errors are small and vary within the range [10−8, 10−3].
With early shift, the computational time of parallel multi-shift and AED decreases by approximately
16%.

It is noteworthy that the studied surface exhibits backscattering enhancement in both co-polarized
and cross-polarized returns. We recall that the truncation order is a numerical parameter of the C-
method. The Mth-order truncation removes the evanescent waves in the field components as shown
in Equations (15) and (16). The evanescent waves contribute to the near field and take part in the
couplings between propagating waves. For the roughness parameters under consideration, when we use
the C-method with M = 28, the proportion of the evanescent wave functions is sufficient to describe
the electromagnetic couplings and to analyze the backscattering enhancement. The comparison with
experimental data coming from [21] is very good and the backscattering peaks coincide well. The
comparison is also conclusive for (hh)- and (vh)-results.

5. CONCLUSION

In this paper, we have proposed a parallel QR algorithm that is specifically designed for the C-method
applied to the scattering of electromagnetic plane wave by a rough surface. From numerical experiments,
we have observed that some eigenvalues can be approximated efficiently by the propagation coefficients
of elementary plane waves with respect to the Oz axis. We design the “early shift” algorithm to take
advantage of this property. We plug this “early shift” method, together with Wilkinson shift and
exceptional shift, into the new parallel QR algorithm. This algorithm uses multiple chains of tightly
coupled bulges chasing technique to parallelize the conventional bulge chasing and the aggressive early
deflation technique to detect deflation quickly. We apply this specifically designed parallel QR algorithm
to the matrix characterizing the scattering problem. We also compare the computation time with that
of the sequential code. The proposed algorithm leads to a substantial reduction in the computational
time.

This parallel QR algorithm can be used for analyzing crossed gratings or two-dimensional random
gratings. In this paper, we have analyzed two-dimensional random rough surfaces by a grating approach.
Comparisons with experimental data are conclusive in both co- and cross-polarized components and
validate the grating approach for moderately rough and very rough surfaces under consideration.
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