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Design of Dual-Band Filters with Individually Controllable Passband
Responses and Orders

Xiaofeng Sun* and Eng Leong Tan

Abstract—This paper presents a novel design of dual-band filters with individually controllable
passband responses and orders. Besides the center frequency and bandwidth, the response and order of
each passband can be different and controlled individually. The dual-band filter is formed by synthesizing
each filter element (resonator, inverter) one by one, exploiting the corresponding individual single-band
filters design tables/formulas for different prototype responses and orders. Trisection stepped-impedance
resonators (TSSIR) are adopted with novel considerations as dual-band resonators, whose additional
design parameters could help to realize the required in-band responses (resonances, slope parameters)
and improve simultaneously the out-of-band performances (transmission zeros of TSSIR). Furthermore,
they can be used to design a dual-band filter with far separation between two passbands. Meanwhile,
stepped-impedance inverters are chosen as dual-band inverters with novel additional conditions to obtain
symmetric passbands, which can also provide different inverter immittance parameters J/K at two
center frequencies when the response or order of each passband is different. To illustrate the two
passbands being controlled individually, two dual-band filters with different orders and responses are
demonstrated.

1. INTRODUCTION

With the rapid developments of modern wireless and mobile communications, a bandpass filter becomes
a more important component in RF and microwave communication systems and applications [1–4].
The requirements of microwave filters also become more stringent. Compared with multiple single-
band bandpass filters, multi-band bandpass filters with dual-band or tri-band attract more researchers’
attention.

Most previous works claimed that the proposed dual-band filters were controllable [5–19]. However,
their “controllability” was merely in center frequencies and bandwidths, not in detailed responses or
orders of individual bands. Actually, for dual-band filter design, we should not be complacent with
only center frequencies and bandwidths, but should also consider, specify and control the responses in
more detail including prototypes and orders. In [5, 6], some numerical approaches were proposed for
dual-band filter design, which relied heavily on some general optimization of the whole filter. There
was no guarantee that the orders or prototypes would be realized eventually (especially for poor initial
values, or ill offsprings not constrained well enough, etc.) In [7, 8], dual-band responses were realized by
splitting a wide passband with a narrow stopband, using the bandpass and bandstop filters in cascade, or
the bandpass and bandstop resonators in parallel connections. Since the dual-band responses were split
from a common wide passband, each of the dual bands cannot be controlled flexibly in the individual
orders and prototype responses. In [9], a dual-band frequency transformation was proposed. However,
the limitation of the proposed design was that the center frequency of the stopband cannot deviate
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far from that of the passband. Moreover, the prototypes and orders of both passbands were the same.
In [10], based on dual-behavior resonator (DBR) realized by parallel open stubs, a dual-band response
was created. The DBR mainly concerns about transmission zeros in stopbands and not so much about
the total transmission of interest in passbands. In [11] and [12], a dual frequency transformation was
proposed whereby a lowpass filter is first transformed to a single-band bandpass filter and then further
transformed to a dual-band bandpass filter. Thus, the responses and orders of the proposed dual-
band filter cannot be controlled individually. In [13], a dual-band bandpass filter with p-i-n diodes
was proposed. In [14], a multilayer dual-band balun filter was proposed. In [15], a dual-band filter
based on asymmetric quarter-wavelength resonator pairs with shared via-hole ground was proposed.
[13–15] claimed that the dual-band filters were controllable. Again, the “controllability” was in center
frequencies and bandwidths, but not in responses or orders of individual bands.

Considering the filter elements, in most previous resonators, only resonant conditions and slope
parameters were considered [11, 16–19]. That means only in-band responses were controlled, and
no detailed responses or orders of individual bands could be specified or designed. In [11, 16, 17],
dual-band filters with a controllable second passband were designed using quarter wavelength shorted
stubs as resonators, whose harmonics cannot be controlled. Thus, it is difficult to control the out-
of-band performance of the quarter wavelength shorted stubs. Meanwhile, the stepped-impedance
resonators (SIRs) were used to design dual-band filters in [18, 19]. They allow easy control of resonant
frequencies by adjusting their characteristic impedance ratios and the electrical length ratios [20],
However, only in-band responses (resonances, slope parameters) of SIRs were considered, while the
out-of-band performances (transmission zeros) of SIRs were not considered.

Some inverters were also proposed in previous works [10, 11, 16–19]. In [10], the inverter used was
quarter-wavelength transmission line, but such quarter-wavelength was not specified at which (single)
frequency and its fixed characteristic impedance limited the flexibility in the order/response of dual-
band filter. In [11], many inverters were introduced and realized by quarter-wavelength transmission
lines, but these are not general dual-band inverters. In [16, 17], the electrical lengths of the stubs of
inverters were limited to be same as those of resonators. In [18, 19], the omission of inverter stubs could
save space but at a cost of reducing the bandwidth. Moreover, the dual-band inverter used in [16–19]
can only provide the same inverter immittance parameters J/K, which also limited the flexibility in
order/response of dual-band filter if the required J/K values at both bands need to be different.

It should be noted that the periodicity in the response of quarter-wavelength transmission line
and stub also limits the separation between two passbands [10, 11, 16–19]. Fewer design parameters of
bisection SIR also limited the flexibility of the dual-band filter design, especially for farther separation
between two bands due to fabrication limitations [9]. In [21], a dual-band filter with widely separated
passbands was proposed and implemented by non-planar cylindrical cavities. Still, its separation may
not be wide enough. Although [22] and [23] proposed the trisection stepped-impedance resonator
(TSSIR) and the stepped-impedance inverter (SII), the separations between two passbands were not
very great. Each passband response was not in different prototype nor different order. In [24], each
passband response was in different prototype, but the orders of individual passbands were the same.

This paper presents a novel design of dual-band filters with individually controllable passband
responses and orders. Besides the center frequency and bandwidth, the response and order of each
passband can be different and controlled individually. The dual-band filter is formed by synthesizing
each filter element (resonator, inverter) one by one, exploiting the corresponding individual single-
band filters design tables/formulas for different prototype responses and orders. Trisection stepped-
impedance resonators are adopted with novel considerations as dual-band resonators, whose additional
design parameters could help to realize the required in-band responses (resonances, slope parameters)
and improve simultaneously the out-of-band performances (transmission zeros of TSSIR). Furthermore,
they can be used to design a dual-band filter with far separation between two passbands. Meanwhile,
stepped-impedance inverters are chosen as dual-band inverters with novel additional conditions to obtain
symmetric passbands, which can also provide different inverter immittance parameters J/K at two
center frequencies when the response or order of each passband is different. To illustrate the two
passbands being controlled individually, two dual-band filters with different orders and responses are
demonstrated.
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2. DUAL-BAND FILTER DESIGN

In this section, the dual-band filter is formed by synthesizing each filter element (resonator, inverter) one
by one, exploiting the corresponding individual single-band filters design tables/formulas for different
prototype responses and orders.

2.1. Single-Band Resonators and Inverters

We shall first summarize one such single-band filter element design applicable for individual bands of
dual-band filter.
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Figure 1. Geometry of a N1-th single-band bandpass filter.
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Figure 2. Geometry of a N2-th single-band bandpass filter.

A single-band bandpass filter can be realized by quarter-wavelength microstrip stubs and lines,
which are serving as resonators and inverters as shown in Fig. 1 and Fig. 2 [1–4]. In Fig. 1, the
proposed filter can be recognized as N1-th order structure with passband center frequency f01. One
can calculate the parameters of the structure including the characteristic impedances of stub resonators
(Zf01

n1 , where n1 = 1 to N1.) by
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and the characteristic impedances of inverters (Zf01

Jk1,k1+1
, where k1 = 1 to N1 − 1.) by

Zf01

J1,2
=

1

Jf01
1,2

=
Z0

gf01
0

√√√√ gf01
2

hf01gf01
1

,

Zf01

JN1−1,N1
=

1

Jf01

N1−1,N1

=
Z0

gf01
0

√√√√ gf01
0 gf01

N1−1

hf01gf01
1 gf01

N1+1

,

Zf01

Jk1,k1+1
=

1

Jf01

k1,k1+1

= Z0

√
gf01

k1
gf01

k1+1

hf01gf01
0 gf01

1

for k1 = 2 to N1 − 2.

(2)

Note that Z, J , Δ, θ, g and h with superscript f01 merely signify that they are the parameters of a
single-band filter whose center frequency is f01, it does not mean that they are dependent on f01. Δf01 is
defined as the fractional bandwidth. gf01 is the element value, which can be Chebyshev or Butterworth
lowpass prototype, etc. hf01 is a constant which can adjust the admittance level in the interior of the
filter. The electrical lengths of the stub resonators (θf01

n1 , where n1 = 1 to N1) and inverters (θf01

Jk1,k1+1
,

where k1 = 1 to N1 − 1) are 90◦ at f01. Thus, the susceptance slope parameters of these stubs at f01

can be expressed by

bf01
n1

=
f01

2

dY f01
inn1

(f)

df

∣∣∣∣∣∣
f=f01

=
π

4Zf01
n1

. (3)

where Y f01
inn1

are the input admittances of the quarter wavelength stubs with characteristic impedances

Zf01
n1 .

Similarly, Fig. 2 shows a N2-th order structure with external feeding lines of characteristic
impedances Zf02

J0,1
, Zf02

JN2,N2+1
= Z0 and electrical lengths θf02

J0,1
, θf02

JN2,N2+1
= 90◦ at passband center

frequency f02. Here N2 can be different from N1, e.g., N2 < N1. The characteristic impedances of
the stub resonators (Zf02

n2 , where n2 = 1 to N2) and inverters (Zf02

Jk2,k2+1
, where k2 = 1 to N2 − 1) can

also be calculated by replacing f01 with f02 in Eqs. (1) and (2). Likewise using Eq. (3), the susceptance
slope parameters of stubs (bf02

n2 ) at f02 can also be obtained.

2.2. Dual-band Resonators and Inverters

To implement a dual-band filter with two individually controllable passbands, we shall use trisection
stepped-impedance resonators (TSSIR) as dual-band resonators due to its controllable resonances, and
stepped-impedance inverters (SII) as dual-band inverters, as shown in Fig. 3. The TSSIR should not
only have two resonances (fR1, fR2) at two required frequencies of the individual single-bands, but
should also satisfy the corresponding susceptance slope parameters as below:
• N1 ≥ N2:
− For central n = floor(N1−N2

2 ) + 1 to floor(N1+N2
2 ):

Yinn(fR1)|fR1=f01 = 0, (4)
Yinn(fR2)|fR2=f02 = 0, (5)

bn(fR1)|fR1=f01 = bf01
n1

, n1 = n (6)

bn(fR2)|fR2=f02 = bf02
n2

, n2 = n − (N1 − N2)/2 (7)



Progress In Electromagnetics Research B, Vol. 68, 2016 21

− For peripheral n =1 to floor(N1−N2
2 ), and floor(N1+N2

2 )+1 to N1:

Yinn(fR1)|fR1=f01 = 0, (8)
Yinn(fR2)|fR2=fs = 0, fs � f02 (9)

bn(fR1)|fR1=f01 = bf01
n , (10)

bn(fR2)|fR2=fs = bfs . (11)

• N1 ≤ N2:
− For central n = floor(N2−N1

2 ) + 1 to floor(N1+N2
2 ):

Yinn(fR1)|fR1=f01 = 0, (12)
Yinn(fR2)|fR2=f02 = 0, (13)

bn(fR1)|fR1=f01 = bf01
n1

, n1 = n − (N2 − N1)/2 (14)

bn(fR2)|fR2=f02 = bf02
n2

, n2 = n (15)

− For peripheral n =1 to floor(N2−N1
2 ), and floor(N1+N2

2 )+1 to N2:

Yinn(fR1)|fR1=fs = 0, fs � f01 (16)
Yinn(fR2)|fR2=f02 = 0, (17)

bn(fR1)|fR1=fs = bfs , (18)

bn(fR2)|fR2=f02 = bf02
n . (19)

If N1 �= N2, the central TSSIRs are used to realize both passbands, and the peripheral TSSIRs are
employed to realize the passband with higher order. The peripheral TSSIRs should also control their
resonances to avoid interfering the passband with lower order.

As the dual-band inverters, the SII should have two inverter admittance parameters J at two center
frequencies as below:
• N1 ≥ N2:
− For central k = floor(N1−N2

2 )+1 to floor(N1+N2
2 )-1:

Jk,k+1(f)|f=f01 = Jf01

k1,k1+1, k1 = k, (20)

Jk,k+1(f)|f=f02 = Jf02

k2,k2+1, k2 = k − floor
(

N1 − N2

2

)
(21)

− For peripheral k = 1 to floor(N1−N2
2 ), and floor(N1+N2

2 ) to N1-1:

Jk,k+1(f)|f=f01 = Jf01

k,k+1, (22)

Jk,k+1(f)|f=f02 = 1/Z0. (23)

• N1 ≤ N2:
− For central k = floor(N2−N1

2 )+1 to floor(N1+N2
2 )-1:

Jk,k+1(f)|f=f01 = Jf01

k1,k1+1, k1 = k − floor
(

N2 − N1

2

)
(24)

Jk,k+1(f)|f=f02 = Jf02

k2,k2+1, k2 = k (25)

− For peripheral k = 1 to floor(N2−N1
2 ), and floor(N1+N2

2 ) to N2-1:

Jk,k+1(f)|f=f01 = 1/Z0, (26)

Jk,k+1(f)|f=f02 = Jf02

k,k+1. (27)

If the prototypes are different (gf01

k1
�= gf02

k2
), SII can provide different inverter immittance parameters

J/K at two center frequencies if the response or order of each band is different.
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To be more specific for subsequent discussion, the separation between two passbands is defined in
terms of the center frequencies of the first (f01) and second (f02) passbands as

δ12 =
f02 − f01√

f01f02
. (28)

Such definition may be extended for tri-band bandpass filter and beyond, e.g., the separation between
the second and third passbands can be written as

δ23 =
f03 − f02√

f02f03
. (29)

where f03 is the center frequency of the third passband not within scope.
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Figure 3. Dual-band filter using TSSIRs and SIIs.

2.3. Trisection Stepped-Impedance Resonator

A trisection stepped-impedance resonator (TSSIR) is used instead of a quarter-wavelength or bisection
stepped-impedance stub resonator to implement dual-band resonator. The resonant condition of a
short-ended TSSIR can be expressed as
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(30)

where Zpq is the characteristic impedance of the q-th section of TSSIRp, and θpq is corresponding to
electrical length at the first resonant frequency f01. Referring to Fig. 3, subscript p denotes the shunt
branch of filter, which is from 1 to max(N1, N2). Subscript q indicates the section of TSSIR, which is
from 1 to 3, starting from the short-circuit end.

The definition of the susceptance slope parameter can provide a convenient means for relating the
resonance property of a resonator circuit to that of a simple lumped equivalent circuit [2, 3]. Thus,
when we replace quarter-wavelength resonator by TSSIR, the susceptance slope parameter of TSSIR
should be made equal to that of the single-band quarter-wavelength resonator. The susceptance slope
parameters of the proposed TSSIR is [22]

bp(f) =
f

2
dYinp(f)

df
=

Nbp(f)
Dbp(f)

(31)

where Nbp(f) and Zp2D(bpf) are the numerator and denominator of the susceptance slope parameter
bp(f), respectively,
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Dbp(f) =2Zp3DY inp(f)2.

(32)

In most previous works, only resonant conditions and slope parameters were considered, which
means that only in-band responses were controlled. In our design, we wish to control the out-of-band
performances simultaneously. Therefore, to suppress the undesired spurious (e.g., spikes) between two
passbands and make the out-of-band cleaner, the transmission zeros S21(fz) of the proposed TSSIR are
also considered (Z0 = 50Ω),

|S21(fz1)|2 =
∣∣∣∣ 2
2 + Yinp(fz1)Z0

∣∣∣∣
2

= 0, (33)

|S21(fz2)|2 =
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2 + Yinp(fz2)Z0

∣∣∣∣
2

= 0. (34)

Here, fz1 is the first transmission zero which should be set in between two passbands, and they are at or
near certain same frequency. fz2 is the second transmission zero that is preferably set at or near certain
same frequency beyond the second passband. Note that these considerations of transmission zeros are
for each TSSIR, not for the whole filter yet.

There are 6 unknown variables of TSSIR, i.e., Zp1, Zp2, Zp3, θp1, θp2, and θp3 and 6 simultaneous
Equations (4)–(11), (33)–(34). We can solve these 6 equations to obtain the 6 variables’ values. In
practice, if it is difficult to achieve exact zero in these equations, they can be approximated as 0 (or
minimized) in order to find the unknowns.

2.4. Stepped-Impedance Inverter

The dual-band inverter we adopted is stepped-impedance inverter (SII) by using three section stepped-
impedance transmission lines, as shown in Fig. 3. The ABCD of the proposed structure can be
calculated by
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, (37)

CJ(f) = j
1

Z
Jk,k+1

2

(
sin
(

2θJk,k+1

1

f

f01

)
cos
(

θ
Jk,k+1

2

f

f01

)/
R

Jk,k+1
c

−sin
(

θ
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2

f

f01

)/(
R

Jk,k+1
c

)2

+cos
(

θ
Jk,k+1

1

f

f01

)2

sin
(

θ
Jk,k+1

2

f

f01

)/(
1 + 1/

(
R

Jk,k+1
c

)2
))

. (38)

where f = f01 or f02. With reference to Fig. 3, θ
Jk,k+1

1 and θ
Jk,k+1

2 are the electrical lengths of the
inverter sections at f01. R

Jk,k+1
c is the characteristic impedance ratio of the inverter sections,

R
Jk,k+1
c = Z

Jk,k+1

1 /Z
Jk,k+1

2 . (39)
In the previous dual-band inverters, following the definition of ideal inverter, the considerations are

usually

|BJ(f01)| =
1

Jf01

k1,k1+1

, (40)

|BJ(f02)| =
1

Jf02

k2,k2+1

, (41)

AJ(f01) = 0, (42)
AJ(f02) = 0. (43)

However, these considerations alone cannot provide symmetric passband responses. Therefore, we
introduce new considerations of the inverter to make the passband performance symmetric. Referring
to the traditional single-band quarter-wavelength inverters in Fig. 1 and Fig. 2, the B absolute values
of their corresponding ABCDs are 1/Jf01

k1,k1+1 and 1/Jf02

k2,k2+1, and they are local maxima at f01 and
f02 also, while the A values are 0. These can ensure their respective passband has symmetric response.
Thus, for the proposed SII, which is a dual-band inverter, the BJ(f)|f=f01,f02 absolute values should
also be the local maxima with dBJ(f)/df = 0, so Eqs. (40) and (41) can be modified as(

|BJ(f01| − 1

Jf01

k1,k1+1

)2

+ γ

∣∣∣∣dBJ(f)
df

∣∣∣∣
2
∣∣∣∣∣
f=f01

= 0, (44)

(
|BJ(f02)| − 1

Jf02

k2,k2+1

)2

+ γ

∣∣∣∣dBJ (f)
df

∣∣∣∣
2
∣∣∣∣∣
f=f02

= 0, (45)

where γ is certain scale factor. Note that Jf01

k1,k1+1 and Jf02

k2,k2+1 can be different in order to realize different
prototypes or orders. Meanwhile, following the definition of ideal inverter, the values of AJ(f)|f=f01,f02

should satisfy Eqs. (42) and (43).
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Based on these requirements in Eqs. (42)–(45), the 4 unknown variables of SII, i.e., Z
Jk,k+1

1 , Z
Jk,k+1

2 ,
θ

Jk,k+1

1 and θ
Jk,k+1

2 can be solved directly. Again in practice, it may be difficult to achieve 0 exactly.
Thus, those equations can be approximated as 0 in order to find the solution within an acceptable
tolerance.

3. DUAL-ORDER FILTER WITH DIFFERENT RESPONSES

In this section, two dual-order filters with different responses are introduced. These two filters are
designed and fabricated on a 25 mil Taconic RF-60A substrate with dielectric constant εr = 10.5. The
via diameter is set to be 0.6 mm.

3.1. Example I

Example I is a dual-order filter with N1 > N2. The detailed specifications of both passbands are:
• Lowpass prototype responses: Passband 1 — Chebyshev (0.1 dB passband ripple), Passband 2

— Chebyshev (0.05 dB passband ripple).
• Orders: N1 = 5, N2 = 3.
• Center frequencies: f01 = 1.8 GHz, f02 = 5.8 GHz.
• Fractional bandwidths: Δ1 = 0.7 (1.17 GHz–2.43 GHz), Δ2 = 0.15 (5.37 GHz–6.24 GHz ).
For simplicity, the corresponding individual single-band filters are selected as Π-type structures.

Because the 5th order passband needs two more resonators than the 3rd order one, we assume that the
first (TSSIR1) and last (TSSIR5) resonators are only needed to realize the passband with higher (5th)
order. Therefore, for the first (5th order) passband, TSSIR1 = TSSIR5 should have their first resonances
at f01, and satisfy the required susceptance slope parameters at f01 (b1(f01) = bf01

1 ). However, for the
second (3rd order) passband, TSSIR1 and TSSIR5 should have their second resonances fR2 = fs being
pushed away to avoid interference. In this example, the second resonances fs of TSSIR1 and TSSIR5 are
set at 6.6 GHz. As we know, a smaller slope parameter of the resonator would give a wider passband.
Thus, to reduce the attenuation from TSSIR1 and TSSIR5 at f02, the susceptance slope parameter at
fs (b1(fs)) should be as small as possible. Because the 3rd order passband needs two inverters fewer,
Jf02

01 and Jf02
34 in Fig. 2 can be corresponding to extended feeding lines with electrical lengths λ/4 at f02

and characteristic impedances Z0. Thus, referring to Eqs. (22) and (23), J12 = J45 in Fig. 3 should be
J12(f02) = J45(f02) = Jf02

01 = Jf02
34 = 1/Z0 at f02, while J12(f01) = J45(f01) = Jf01

12 = Jf01
45 at f01.

Table 1 lists the calculated parameters of the two single-band bandpass filters. From this table, we
can also find that the characteristic impedances of Zf02

n2 (where n2 = 1 to 3) are too small to be realized,
but TSSIRs in our case can be realized readily. For TSSIR1 and TSSIR5, considering the fabrication
limitations, we set the susceptance slope parameter ratio to be bp(f01)/bp(fs) = 0.56. To suppress the
spikes between two passbands and improve the out-of-band performance, the first transmission zeros of
TSSIRs are set at 3.6 GHz. The second transmission zeros of TSSIR2, TSSIR3 and TSSIR4 are set at
7GHz. Because the second resonances fs of TSSIR1 and TSSIR5 have been set at 6.6 GHz, which are
too close to 7 GHz, the second transmission zeros of TSSIR1 and TSSIR5 are set at 8.5 GHz. By solving
Eqs. (4)–(11), (33)–(34), all parameters of TSSIRs can be found, which are listed in Table 2.

The calculated parameters of dual-band resonators TSSIRs and dual-band inverters SIIs of Example
I are listed in Table 2. The final dimensions in Fig. A1 along with the initial dimensions in Table A1
can be found in Appendix A. The theoretical, simulated and measured results are shown in Fig. 4, and
one can find that they are in good agreement. To show the effect of all transmission zeros, the frequency
rang shown in Fig. 4(a) is from 0 to 9GHz. From Fig. 4(a), the transmission zeros can be found around
7GHz and 8.5 GHz. The photo is also shown in the inset of Fig. 4.

3.2. Example II

Example II is a dual-order filter with N1 < N2 and the absolute bandwidth of the second passband
wider than that of the first passband. The detailed specifications of both passbands are:
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Table 1. Calculated parameters of the two single-band BPFs of Example I.

Low Passband High Passband

Jf01
12 = Jf01

45 1/38.66 Jf02
01 = Jf02

34 1/50 Jf01
12 /Jf02

01 1.29

Jf01
23 = Jf01

34 1/35.87 Jf02
12 = Jf02

23 1/56.25 Jf01
23 /Jf02

12 1.57

bf01
1 = bf01

5 0.0134

bf01
2 = bf01

4 0.0263 bf02
1 = bf02

3 0.1044 bf01
2 /bf02

1 0.2517

bf01
3 0.0257 bf02

2 0.0921 bf01
3 /bf02

2 0.2788

Zf01
1 = Zf01

5 58.43 Ω Z0 50 Ω

Zf01
2 = Zf01

4 29.89 Ω Zf02
1 = Zf02

3 7.52 Ω

Zf01
3 30.59 Ω Zf02

2 8.53 Ω

Table 2. Calculated TSSIRs and SIIs of Example I.

ZJ12
1 = ZJ45

1 40.25 Ω ZJ12
2 = ZJ45

2 15.51 Ω

SII ZJ23
1 = ZJ34

1 39.20 Ω ZJ23
2 = ZJ34

2 13.23 Ω

θJ12
1 = θJ45

1 40.24◦ θJ12
2 = θJ45

2 3.35◦

θJ23
1 = θJ34

1 38.58◦ θJ23
2 = θJ34

2 5.33◦

Z11 = Z51 81.79 Ω Z12 = Z52 30.07 Ω Z13 = Z53 66.82 Ω

Z21 = Z41 32.70 Ω Z22 = Z42 23.08 Ω Z23 = Z43 44.98 Ω

TSSIR Z31 33.34 Ω Z32 25.39 Ω Z33 40.98 Ω

θ11 = θ51 39.45◦ θ12 = θ52 11.33◦ θ13 = θ53 27.20◦

θ21 = θ41 58.29◦ θ22 = θ42 17.88◦ θ23 = θ43 9.21◦

θ31 56.23◦ θ32 20.56◦ θ33 10.31◦

• Lowpass prototype responses: Passband 1 — Butterworth, Passband 2 — Chebyshev (0.2 dB
passband ripple).

• Orders: N1 = 4, N2 = 5.
• Center frequencies: f01 = 1.8 GHz, f02 = 5GHz.
• Fractional bandwidths: Δ1 = 0.4 (1.44 GHz–2.16 GHz), Δ2 = 0.2 (4.5 GHz–5.5 GHz).
According to the specifications, Table 3 lists the calculated parameters of the corresponding

individual single-band bandpass filters. In this example, we use TSSIR1 to TSSIR4 to realize the lower
passband. TSSIR5 is only used to implement the higher passband. Therefore, to avoid the influence of
the first resonance of TSSIR5 on lower passband, its first resonance fR1 = fs is set as 1.44 GHz and the
second resonance is set as f02. Meanwhile, its corresponding susceptance slope parameter ratio is set as
bp(fs)/bp(f02) = 0.12. The first transmission zeros of all these 5 TSSIRs are set at 3.7, 3.7, 3.7, 4.1 and
3.9 GHz. The second transmission zeros are set as 6.6, 6.6, 6.6, 6.5 and 6.5 GHz, respectively. Thus,
we can find all the TSSIRs by solving Eqs. (12)–(19), (33)–(34). The calculated parameters are listed
in Table 4. Because Z23 and Z33 are too small, the corresponding widths of microstrip transmission
lines are wide. Therefore, we use a short taper line to connect TSSIR2 and TSSIR3 with SIIs. Because
the 4th order passband needs one inverter less, referring to Fig. 2, Jf02

01 can be omitted and Jf02
45 can be

corresponding to an extended feeding line with electrical length λ/4 at f01 and characteristic impedance
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Figure 4. The theoretical, simulation and measurement results of Example I.

Z0. Thus, referring to Eqs. (26) and (27), J45 in Fig. 3 should be equal to J45(f01) = Jf01
45 = 1/Z0 at

f01, while J45(f02) = Jf02
45 at f02.

The initial dimensions can be found in Table A2 and the final dimensions of TSSIRs and SIIs after
tuning can be found in Fig. A2 in Appendix A. The theoretical, simulation and measurement results
of Example II are shown in Fig. 5. All the results can be found to be in a good agreement. The photo
of Example II is also shown in the inset of Fig. 5. In theory, compared with Butterworth response,
Chebyshev response has a worse group delay. From Fig. 5(b), we can see that the group delay of the
first Butterworth passband is also better than that of the second Chebyshev passband.

Table 5 shows the comparison of simulation and measurement results of both examples including
center frequencies, fractional bandwidths (Δ), Chebyshev passband ripples and Butterworth insertion
loss (IL). From Table 5, we can observe that the simulation and measurement results are in good
agreement.

Table 6 shows the comparison with other previous works. From this table, we can find that the
separation between two passbands of this work is much farther than other works. For previous works,
such as [10], [11] and [16], whose resonators were quarter-wavelength stub resonators, the separations
between two passbands are very small. Even when the dual-band resonators were bisection SIRs in [9]
and [19], the separations between two passbands are still smaller than 0.8. On the other hand, the
separations of our examples can be larger than 1. Meanwhile, the prototype responses and orders of
passbands in our examples can be different, unlike most other works with same or unspecified ones.



28 Sun and Tan

Table 3. Calculated parameters of the two single-band BPFs of Example II.

Low Passband High Passband

Jf01
12 1/56.3613 Jf02

12 1/36.2404 Jf01
12 /Jf02

12 0.6430

Jf01
23 1/63.5319 Jf02

23 1/33.4338 Jf01
23 /Jf02

23 0.5263

Jf01
34 1/56.3613 Jf02

34 1/33.4338 Jf01
34 /Jf02

34 0.5932

Jf01
45 1/50 Jf02

45 1/36.2404 Jf01
45 /Jf02

45 0.7248

bf01
1 0.0257 bf02

1 0.1130 bf01
1 /bf02

1 0.2276

bf01
2 0.0488 bf02

2 0.2113 bf01
2 /bf02

2 0.2325

bf01
3 0.0488 bf02

3 0.2098 bf01
3 /bf02

3 0.2309

bf01
4 0.0257 bf02

4 0.2113 bf01
4 /bf02

4 0.1218

bf02
5 0.1130

Zf01
1 30.2577 Ω Zf02

1 6.9492 Ω Z0 50 Ω

Zf01
2 16.1020 Ω Zf02

2 3.7178 Ω

Zf01
3 16.1020 Ω Zf02

3 3.7443 Ω

Zf01
4 30.2577 Ω Zf02

4 3.7178 Ω

Zf02
5 6.9492 Ω

Table 4. Calculated TSSIRs and SIIs of Example II.

ZJ12
1 48.47 Ω ZJ12

2 66.73 Ω

ZJ23
1 50.03 Ω ZJ23

2 75.88 Ω

ZJ34
1 47.15 Ω ZJ34

2 67.87 Ω

SII ZJ45
1 45.07 Ω ZJ45

2 58.32 Ω

θJ12
1 32.43◦ θJ12

2 31.84◦

θJ23
1 31.94◦ θJ23

2 33.29◦

θJ34
1 32.40◦ θJ34

2 32.01◦

θJ45
1 32.73◦ θJ45

2 31.03◦

Z11 21.89 Ω Z12 33.61 Ω Z13 27.20 Ω

Z21 10.95 Ω Z22 17.36 Ω Z23 14.11 Ω

Z31 10.67 Ω Z32 17.25 Ω Z33 14.00 Ω

Z41 15.24 Ω Z42 37.78 Ω Z43 22.22 Ω

TSSIR Z51 10.00 Ω Z52 73.80 Ω Z53 35.94 Ω

θ11 32.85◦ θ12 39.44◦ θ13 23.07◦

θ21 30.96◦ θ22 45.19◦ θ23 19.96◦

θ31 30.29◦ θ32 47.48◦ θ33 18.70◦

θ41 31.32◦ θ42 41.32◦ θ43 22.31◦

θ41 17.93◦ θ52 50.63◦ θ53 20.07◦
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Figure 5. The theoretical, simulation and measurement results of Example II.

Table 5. Comparison of simulation and measurement results.

f01(GHz) Δ1(%) Ripple (dB)/IL(dB)

Sim Mea Sim Mea Sim Mea

Example I 1.76 1.77 72 70 0.18 0.21

Example II 1.75 1.75 38 39 0.4∗ 0.45∗

f02(GHz) Δ2(%) Ripple (dB)

Example I 5.8 5.78 13 11 0.22 0.20

Example II 5.05 5.1 19 20 0.06 0.12
∗ For Butterworth passband, the values are the insertion losses.
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Table 6. Comparison with other proposed dual-band filters.

Specified Frequency Bandwidth Ripple (dB)/ Upper-Stopband

Order/Prototype (GHz)
Separation

(%) IL (dB) (GHz)

1st & 2nd f01 & f02
f02−f01√

f01f02
Δ1 & Δ2 1st & 2nd S21@−10 dB

[7] −/−&−/− 2.4 & 5.2 0.79 41 & 20 ≈ 2 & ≈ 3 > 7

[8] −/− &−/− 0.9 & 1.93 0.78 22.22 & 3.1 1.1 & 1.8 > 2.5

[9] 9/C0.1 & 9/C0.1 3.87 & 7.75 0.70 46.5 & 44.8 ≈ 1 & ≈ 1 ≈ 13

[10] 2/− & 2/− 1.5 & 2 0.29 5 & 4 1 & 4 ≈ 3

[11] 2/C0.01 & 2/C0.01 1.8 & 2.4 0.28 2.8 & 2.8 ≈ 2 & ≈ 3 > 3

[13] 2/− & 2/− 2.3 & 4.8 0.79 10.3 & 6 2.77 & 2.88 > 10

[16] 3/C0.1 & 3/C0.1 1.0 & 1.5 0.40 10 & 10 1.3 & 2.1 ≈ 2.2

[19] 2/B & 2/B 2.4 & 5.2 0.79 54 & 20 0.4 & 0.8 ≈ 8

[21] 2/C & 2/C 5 & 7.5 0.4 2 & 2 0.26 & 0.68 > 8

Example I 5/C0.1 & 3/C0.05 1.8 & 5.8 1.20 72 & 13 0.2 & 0.2 > 7

Example II 4/B & 5/C0.2 1.8 & 5 1.07 39 & 20 0.2 & 0.2 > 8

−:Not sepcified. B: Butterworth passband. C0.1: Chebyshev passband with 0.1 dB passband ripple, etc.

4. CONCLUSION

This paper presents a novel design of dual-band filters with individually controllable passband responses
and orders. Besides the center frequency and bandwidth, the response and order of each passband
can be different and controlled individually. The dual-band filter has been formed by synthesizing
each filter element (resonator, inverter) one by one, exploiting the corresponding individual single-
band filters design tables/formulas for different prototype responses and orders. Trisection stepped-
impedance resonators are adopted with novel considerations as dual-band resonators, whose additional
design parameters could help to realize the required in-band responses (resonances, slope parameters)
and improve simultaneously the out-of-band performances (transmission zeros of TSSIR). Furthermore,
they can be used to design a dual-band filter with far separation between two passbands. Meanwhile,
stepped-impedance inverters have been chosen as dual-band inverters with novel additional conditions
to obtain symmetric passbands, which can also provide different inverter immittance parameters J/K
at two center frequencies when the response or order of each passband is different. To illustrate the two
passbands being controlled individually, two dual-band filters with different orders and responses have
been demonstrated.

APPENDIX A.

The initial dimensions of both examples are given in Table A1 and Table A2. The final dimensions of
both examples after tuning are shown in Fig. A1 and Fig. A2, units in mm. According to theoretical
results of each TSSIR and SII, we can tune their initial widths and lengths in full-wave EM solver to
obtain the similar results. After tuning TSSIRs and SIIs one by one, we can tune TSSIRs and SIIs
together in full-wave EM solver to find the final dimensions according to the theoretical results of the
whole structure.
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Table A1. Initial dimensions of Example I (Units in mm).

W J12
1 = W J45

1 0.85 LJ12
1 = LJ45

1 6.99
W J12

2 = W J45
2 3.57 LJ12

2 = LJ45
2 0.53

SII W J23
1 = W J34

1 0.89 LJ23
1 = W J34

1 6.68
W J23

2 = W J34
2 4.36 LJ23

2 = LJ34
2 0.84

W11 = W51 0.13 W12 = W52 1.33 W13 = W53 0.26
W21 = W41 1.23 W22 = W42 2.09 W23 = W43 0.68

TSSIR W31 1.19 W32 1.82 W33 0.82
L11 = L51 7.44 L12 = L52 1.91 L13 = L53 5.00
L21 = L41 9.91 L22 = L42 2.94 L23 = L43 1.62

L31 9.58 L32 3.41 L33 1.80

Table A2. Initial dimensions of Example II (Units in mm).

W J12
1 0.68 W J12

2 0.38
W J23

1 0.62 W J23
2 0.25

W J34
1 0.55 W J34

2 0.17
SII W J45

1 0.58 W J45
2 0.26

LJ12
1 5.76 LJ12

2 5.62
LJ23

1 5.73 LJ23
2 5.90

LJ34
1 5.68 LJ34

2 6.22
LJ45

1 5.75 LJ45
2 5.85

W11 2.25 W12 1.17 W13 1.64
W21 5.48 W22 3.09 W23 4.02
W31 5.66 W32 3.11 W33 4.06
W41 3.65 W42 0.95 W43 2.21

TSSIR W51 6.11 W52 0.18 W53 1.04
L11 5.37 L12 6.72 L13 3.85
L21 4.79 L22 7.24 L23 3.15
L31 4.68 L32 7.60 L33 2.95
L41 4.97 L42 7.13 L43 3.65
L51 3.46 L52 11.78 L53 4.31
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Figure A1. Final dimensions of Example I.
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Figure A2. Final dimensions of Example II.
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