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An Improved MoM-GEC Method for Fast and Accurate
Computation of Transmission Planar Structures in Waveguides:

Application to Planar Microstrip Lines

Nejla Oueslati* and Taoufik Aguili

Abstract—This paper presents a new hybridization between MoM-GEC and a MultiResolution analysis
(MR) based on the use of wavelets functions as trial functions. The proposed approach is developed
to speed up convergence, alleviate calculation and then provide a considerable gain in requirements
(processing time and memory storage) because it generates a sparse linear system. The approach
consists in calculating the total current and input impedance on an invariant metallic pattern through
two steps. The first one consists in expressing the boundary conditions of the unknown electromagnetic
current with a single electrical circuit using the Generalized Equivalent Circuit method (GEC) and then
deduce an electromagnetic equation based on the impedance operator [6, 7]. The impedance operator
used here is described using the local modal basis of the waveguide enclosing the studied structure.
The second step consists in approximating the total current using orthonormal periodic wavelets as
testing functions and the local modal basis of the waveguide as basis functions. The proposed approach
allows fast calculation of such inner products through the use of the wavelets multiresolution (MR)
analysis advantages, thus significantly reducing the required CPU-time for microstrip-type structure
analysis [13, 14]. A sparse matrix is generated from the application of a threshold. A sparsely filled
matrix is easier to store and invert [15, 16]. Based on this approach, we study the planar structures. The
obtained results show good accuracy with the method of moments. Moreover, we prove considerable
improvements in CPU time and memory storage achieved by the MR-GEC approach when studying
these structures.

1. INTRODUCTION

Microwave devices applications cover a wide band of electromagnetic domain and have numerous
functions and dimensions according to their frequency range of use. To model such devices and their
interactions, there is a set of methods that solves a number of problems, in some scope. Maxwell’s
equations cannot be analytically solved in most cases. Hence, many modeling methods and various
techniques have been developed to solve electromagnetic problems in time or frequency domain. They
provide an approximate solution by numerically solving Maxwell’s equations, in differential or integral
form.

Among all these numerical techniques, full wave ones [1, 2] have the most high return, since it is
possible to know the electromagnetic field in any point by taking into account of singularities. All
the publications in this domain [2, 3] have shown that the integral formulation was the best to set
this method more efficiently. Then small dimensions of the integrated circuits cause some problems
of precision, and the coupling conditions between different elements must be taken into account. A
general procedure for finding a solution accurate enough for most practical purposes is the method of
moments (MoM) [4, 5]. The MoM uses the integral from of Maxwell’s equations. However, in most
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cases, knowledge of the Green’s functions, either in simple functional form or series expansion form,
are required. This limits the use of MoM to simple structures in which Green’s functions are available.
The integral equation needs enormous amount of analytical effort to implement since it gives rise to
singular integrals that causes problems in the compute of matrix elements. In addition, the application
of the spatial-domain MOM requires the necessary Green’s functions in the spatial domain that can be
obtained from their spectral domain counterparts; therefor, additional numerical implementation are
needed.

Hence, the investigation of complex structures poses a major problem due to the limitation of
MoM. Thus, it is necessary to use the hybridization of numerical methods to overcome the problem of
modeling complex structures that contain fine details in large domains. Indeed, the hybridization of
numerical methods is one of the speediest, efficient and accurate solutions of electromagnetic modeling
of complex structures. For example, hybridization of analytical solution and MoM has been investigated
in [33, 34].

In this paper, the method of moment is combined to the Generalized Equivalent Circuit (MoM-
GEC) to convert an integral or differential equation into a linear system that will be solved using a
matrix representation.

The equivalent circuits have been introduced in the development of integral methods formulation
with equivalent circuit problems (V, I) instead of field problems (E,H).

This constitutes the concept of MoM-GEC. Its key idea is the transposition of field problems in
GEC which are simpler to treat and the use of the impedance (admittance) operator simplifying the
transition between spectral and spatial domains.

A major feature of this method is reducing the spatial degree size of problems. The study of a
volume structure is solved by a surface approach which makes this method particularly suitable for
finite areas in infinite medium. Determining the electromagnetic field radiated by an object in a certain
volume of calculation is reduced to determine the current on its surface, and this problem requires a
surface meshing and not a volume one, so that we can find the electromagnetic field radiated by the
structure in the entire space. MoM-GEC is a general method that transforms a functional (differential
or integral equation) into a linear equations system that can be solved by matrix techniques.

The procedure of the MoM-GEC method is based on minimizing the residual error on basis and
test functions in order to get the convergence of the solution. As the number of test functions is high,
we need a very high number of basis functions to get convergence [21, 25]. This leads to manipulating
matrices with great sizes. Consequently, the needed memory resources and computational time to solve
such problems will be considerably increased.

In this context, several fast algorithms have been used to reduce the computational complexity
and memory requirement, such as Finite Element Method (FEM), which formulate electromagnetic
problems using differential equation and more power methods such as the Fast Multi-pole Method or
Multilevel Fast Multi-pole Algorithm (MLFMA), which need more powerful machine implemented. In
contrast, Wavelet-Based Moment method can be implemented easily in personal computer [8–12].

The approach proposed in this paper uses Galerkin’s procedure, leading to a sparse matrix, whose
elements are constituted of inner products of local modal basis of the waveguide as basis functions, with
periodic wavelets as trial functions obtained by integral calculation.

The remainder of the paper is organized as follows. Section 2 describes the generalized equivalent
circuits’ concept. The choice of wavelets as trial functions is described in Section 3. The MR-GEC
method will be applied in Section 4 to a planar microstrip line, and the theoretical formulation is
presented. Section 5 illustrates the numerical results and discussions for the convergence of the input
impedance viewed by located source, the convergence of current density on the strip line and compared
to advanced design system (ADS), SONNET and to those of previously published data.

2. PRINCIPLES OF GEC METHOD

The equivalent circuit presents a true electric image of the studied structures for describing the
discontinuity and its environment. In fact, for alleviating the resolution of Maxwell’s equations, the
method of Generalized Equivalent Circuit (MGEC) was proposed [17, 18] in order to represent integral
equations by equivalent circuits that express the unknown electromagnetic boundary conditions. The
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discontinuity environment is expressed by an impedance operator or admittance operator that represents
boundary conditions on each side of discontinuity surface.

In a discontinuity plane, the electromagnetic state is described by generalized test functions modeled
by virtual sources not storing energy. The discontinuity environment is expressed by an impedance
operator or admittance operator that represents boundary conditions on each side of discontinuity
surface. However, the wave exciting the discontinuity surface is represented by a real field source or a
real current source because it delivers energy.

Generally, the electromagnetic modeling with GEC extends the Kirchhoff’s laws used in (V, I)
concept to the Maxwell’s formalism (E,H). In order to apply Kirchhoff’s laws accurately, we should

substitute the magnetic field by the current density J defined as J⃗ = H⃗ ∧ n⃗ where n⃗ is the normal
vector to the discontinuity surface. It is noted that these generalized equivalent circuits are associated
to perfect interfaces, which are characterized by the fact that electric field and current density are
defined on complementary domains.

2.1. The Adjustable Virtual Sources

Let’s consider D a discontinuity plane formed by metallic and dielectric patterns (D = DM +DD).
Based on current and field properties on D, DM is the metallic sub-domain on which the field is null,
and its dual-current is not null. However, DD is the dielectric domain on which the current is null, and
its dual field is not null. The concept of virtual source is to assemble all field and current representations
in an only one which will be valid in all points of the domain D. Figure 1(a) and Figure 1(b) describes
virtual sources.

(a) (b)

Figure 1. Symbolic notation of virtual sources: (a) field source; (b) current source.

2.2. The Impedance Operator

The impedance operator, as shown in Figure 2, is a modal integro-differential operator and presents an

alternative to the Green operator in the spectral field. The relation between E⃗ and J⃗ classically takes

the form of the Ohm’s law: E⃗ = ẐJ⃗ or J⃗ = Ŷ E⃗.

Figure 2. Equivalence between the half-space (S + C).

2.3. The Excitation Sources

The excitation sources are defined on a small surface (S) and characterized by a quasi-static voltage
or current. We can distinguish two types of planar localized sources: the localized field and current
sources. Each of the two sources is described in Figure 3.
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(a) (b)

Figure 3. (a) Field source, (b) current source.

3. CHOICE OF TRIAL FUNCTIONS: WAVELETS EXPANSION

The testing functions are presented as a superposition of wavelets at several scales and include a scaling
function. A Galerkin’s method is then applied to transform the integral equation into algebraic equations
in the expansion coefficients.

Wavelet theory is detailed in many books [16–18]. In this section, we concisely list basic wavelet
principles.

A multiresolution analysis of L2(R) is defined as a sequence of closed subspaces Vs of L
2(R), s ∈ Z.

A unique function ϕ(x) ∈ V0 with a typical width of unity, referred to as the scaling function (scalet),
with a nonvanishing integral, exists so that the collection {φ(t− k); k ∈ Z} forms a Riesz (stable) basis
of V0.

The collection of functions {φs,k; k ∈ Z} contains the dilated and translated versions of the mother
wavelet and are defined with

ϕs,k(x) = 2s/2ϕ(2sx− k) (1)

It forms a Riesz basis of Vs which is the space of all square integrable functions possessing details whose
length scales are not smaller than 2s.

An approximation of an arbitrary function f(x) ∈ L2(R) at a specific resolution of 2−s0 can be
defined as the orthogonal projection of f(x) into Vs0, i.e.,

Ps0(f) = Σk⟨f(x)|ϕs0,k(x)⟩ϕs0,k(x) = Σkas0ϕs0,k (x) , (2)

It is desirable to describe a function in terms of its approximation in Eq. (2) and remaining terms
containing local measure of the finer details. It is formally facilitated by the fact that there exists a
complementary subspace Ws of Vs in Vs+1; that is, a space that satisfies

Vs+1 = Vs ⊕Ws (3)

The orthogonal projection of a function f(x) ∈ L2 (R) into Ws,

Qs (f) = Σk⟨f(x)|ψs,k(x)⟩ψs,k(x) = Σkds,kψs,k (x) , (4)

gives finer details at resolution level 2−s. Consequently, Eq. (3) implies

Ps+1 (f) = Ps (f) +Qs (f) . (5)

Starting with a coarse approximation at an initially lowest resolution level s0, one can improve the
accuracy to any desired stage, up to the resolution level s(+) + 1, by adding the projections onto the
intermediate wavelet subspaces Ws as follows:

Psu+1 (f) = Ps0 (f) + Σsus=s0Qs(f) (6)

Thus, the last equation describes f(x) at the resolution of 2−su in terms of its approximation at the
resolution 2−s0 and its finer details.

The electromagnetic study of a perfectly-conducting body is usually formulated as an integral
equation written to describe the current distribution on the body surface with finite size.

In literature, many solutions are provided to construct a multiresolution on a finite interval, and
in this work, to expand the current on the fundamental interval, the use of a periodic multiresolution
system is kept. Such a system can be derived from a conventional multiresolution one by the periodic
extension described below.
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Given a multiresolution system defined on R with scaling function ϕ and wavelet ψ, periodic
functions {ϕps,k} and {ψps,k} of unit period are given by

ϕps,k (x) = Σl∈Zϕs,k (x− l) , s ≥ 0, 0 < k ≤ 2s − 1 (7)

ψps,k (x) = Σl∈Zψs,k(x− l), s ≥ 0, 0 < k ≤ 2s − 1 (8)

For any function f(x) ∈ L2([0, 1]), we have the following wavelet projection in a periodic system [19, 20]:

Pf (x) = Σ2s(−)

k=0 cs(−),kϕs(−),k (x) + Σ
s(+)
s=s(−)Σ

2s−1
k=0 ds,kψs,k(x) (9)

where s(−) is the coarsest resolution level, s(+) the finest resolution level and k the translation index [21].
The scale coefficients are calculated for the coarse level of resolution s(−) by:

cs−,k = ⟨f | ϕs−,k⟩ =
∫
f (x)ϕs−,k (x) dx; ∀k ∈ [0, 2s − 1] (10)

The wavelet coefficients are calculated for in intermediate resolution level s by:

ds,k = ⟨f | ψs,k⟩ =
∫
f (x)ψs−,k (x) dx;∀k ∈ [0, 2s − 1] (11)

4. VALIDATION OF NUMERICAL RESULTS

4.1. Formulation of the MR-GEC

The proposed approach will be validated through the study of the structure described in Figure 4.
It is an open-end planar microstrip line excited by an arbitrary located voltage source E0 placed on
the circuit plane. The dielectric substrate used to analyze shielded microstrip-type structures has
been assumed homogeneous, isotropic, and lossless. Its upper face is partially metallized with a uniform
zero-thickness conducting strip along the direction of propagation (ox). This structure is embedded in a
metallic waveguide whose cross section corresponds to the shape of the circuit. The considered waveguide
is infinite in the positive direction of (oz) axis and lossless. It is associated to EEEE boundaries: four
perfect electric plates. The characterization of the structure is made by modeling current density with
appropriate wavelets used as trial functions.

Figure 4. Open-end microstrip line.

Based on the implementing rules, we can formulate the problem of searching the current J flowing
in the structure by studying its equivalent circuit. To do this, we bring back different modes propagating
in space on the study area, and we transpose vacuum to a dipole representing the admittance of vacuum
Ŷ1. The same applies to the ground plane which is replaced by a dipole representative of the admittance

shorted Ŷ2. We use an arbitrary excitation E⃗0 on the microstrip line subregion. On the plane of the

strip, the current density on the metal region J⃗M is expressed in terms of trial functions basis. We then
obtain the circuit of Figure 5.
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Table 1. Modeling of geometric constraints.

Geometric constraints

Box dimensions: a = b = 100mm

Length of dipole: L = 64mm

Width of dipole: d = 2.3mm

High of substrate: h = 0.8mm

Modeling constraints

Bilateral source polarized according to x

Length of source: λg/18 = 1.5mm

Electric walls

Permittivity of substrate: εr = 2.2

Frequency: 8GHz

Figure 5. Equivalent circuit of the microstrip line.

Let {fTE,TM
mn } be the local modal basis of the EEEEE waveguide enclosing the microstrip line [22].

E⃗0 = V0G⃗(x, y) denotes the electric field excitation, defined on the surface of the planar source

according to a distribution G⃗ on a sub-region of the microstrip line and with an amplitude V0.
JM can be expressed in terms of the magnetic fields defined in the discontinuity plane as:

J⃗M = H⃗1 ∧ n⃗1 + H⃗2 ∧ n⃗2 = J⃗1 + J⃗2 (12)

where n⃗1 and n⃗2 indicate unit vectors normal to the discontinuity plane and directed toward z > 0
and z < 0, respectively. Here, the admittance operators Ŷ1 and Ŷ2 for region 1 and 2, respectively, are
viewed by the discontinuity plane.

Figure 5 describes the electric circuit obtained by the application of GEC modeling to the studied
structure, and the generalized Ohm and Kirchhoff laws are then rewritten as equations system: E0 + E2 = Ŷ −1

2 J2
E0 + E1 = Ŷ −1

1 J1
J1 + J2 = JM

(13)

We then obtain the following system:{
JM = J1 + J2 = J

E = −E0 +
(
Ŷ1 + Ŷ2

)−1
JM = −E0 + ẐJM

(14)

Sources and their duals are related as:(
J
Ee

)
=

(
0 1

−1 Ẑ

)(
E0

Je

)
(15)

This method requires the involvement of a complete set of orthogonal basis functions {|fm,n⟩}m,n=0,N ,
with N the number of modes), which should satisfy the boundary conditions imposed by the
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shielding [23]. This process also needs to calculate the mode impedances z1mn and z2mn, of regions
1 and 2, respectively, at the discontinuity plane. For each medium i ∈ {1, 2}, the expressions of the
total modal admittance and impedance for TEm,n and TMm,n modes are given respectively by:

TE : yi,TEm,n =
γim,n
jωµ0

TM : yi,TMm,n =
jωε0
γim,n

⇒


TE : zi,TEm,n =

1

yi,TEm,n

TM : zi,TMm,n =
1

yi,TMm,n

(16)

with
γim,n =

√(
mΠ
a

)2
+
(
nΠ
b

)2 − k2i

k2i =

{
k20; (i = 1(vacuum))
k20εr; (i = 2(dielectric))

.

When the structure along the z axis is terminated in the metallic wall (short circuit), the admittance
seen by each mode at the interface is given by:

Y α,i
m,n = yα,im,n coth

(
γim,nhi

)
, (17)

hi is the thickness of the medium i, in our case, i = 2; hi = h (the medium is the dielectric).
If a termination was an open circuit (no metallic wall at the end of the medium i), the admittance

seen by each mode at the interface is given by:

Y α,i
m,n = yα,im,n (18)

In our case, the medium i is the vacuum.
The total impedance seen by each mode at the interface is given by:

Zαm,n =
1

Y α
m,n

=
1

Y α,1
m,n + Y α,2

m,n

; α ∈ {TE,TM} (19)

The expression of the impedance operator is expressed as:

Ẑ = Σm,n |fm,n⟩ zm,n⟨fm,n| = Σm,n
∣∣fTE
m,n

⟩
zTE
m,n⟨fTE

m,n|+Σm,n
∣∣fTM
m,n

⟩
zTM
m,n⟨fTM

m,n| (20)

At this stage, we can project the unknown J⃗M (current) on the basis of trial functions, so we will express
it with series of scaling and wavelets functions (test functions) and then write:

JM (x) = Σ2s(−)

k=0 cs(−),kϕs(−),k (x) + Σ
s(+)
s=s(−)Σ

2s−1
k=0 ds,kψs,k(x) (21)

where s(−) is the coarsest level and s(+) the finest level.
We use the Galerkin method to solve Eq. (21) numerically. The method consists in determining the

system matrix from the equivalent circuit and makes projections based on test functions. The resulting
matrix equation is written in this form:[

[Zϕϕ] [Zφψ]

[Zψϕ] [Zψψ]

][ [
cs(−),k

]
k

[ds,k]s,k

]
=

[
[⟨ϕs(−),k′ , E0⟩]k′
(⟨ψs′,k′ , E0⟩)s′,k′

]
⇒ A ·X = B (22a)

where,

Zϕϕ
(
k′, k

)
= ⟨ϕs(−),k′(x), Ẑϕs(−),k(x)⟩
= ΣNBTE

m,n ⟨ϕs(−),k′(x), f
TE
m,n(x))⟩zTE

m,n⟨fTE
m,n(x), ϕs(−),k(x))⟩

+ΣNBTM
m,n ⟨ϕs(−),k′(x), f

TM
m,n(x))⟩zTM

m,n⟨fTM
m,n(x), ϕs(−),k(x))⟩ (22b)

Zϕψ
(
k′, k

)
= ⟨ϕs(−),k′(x), Ẑψs,k(x)⟩
= ΣNBTE

m,n ⟨ϕs(−),k′(x), f
TE
m,n(x))⟩zTE

m,n⟨fTE
m,n(x)), ψs,k(x)⟩

+ΣNBTM
m,n ⟨ϕs(−),k′(x), f

TM
m,n(x))⟩zTM

m,n⟨fTM
m,n(x)), ψs,k(x)⟩ (22c)

Zψϕ
(
k′, k

)
= ⟨ψs′,k′(x), Ẑϕs(−),k(x)⟩
= ΣNBTE

m,n ⟨ψs′,k′(x), fTE
m,n(x))⟩zTE

m,n⟨fTE
m,n(x)), ϕs(−),k(x)⟩

+ΣNBTM
m,n ⟨ψs′,k′(x), fTM

m,n(x))⟩zTM
m,n⟨fTM

m,n(x)), ϕs(−),k(x)⟩ (22d)
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Zψψ
(
k′, k

)
= ⟨ψs′,k′(x), Ẑψs,k(x)⟩
= ΣNBTE

m,n ⟨ψs′,k′(x), fTE
m,n(x))⟩zTE

m,n⟨fTE
m,n(x)), ψs,k(x)⟩

+ΣNBTM
m,n ⟨ψs′,k′(x), fTM

m,n(x))⟩zTM
m,n⟨fTM

m,n(x)), ψs,k(x)⟩ (22e)

The input impedance seen by the source is determined by:

Zin =
⟨E0|E0⟩
⟨E0|JM ⟩

=
(
BTA−1B

)−1
(23)

The reflection coefficient is then expressed as:

S11 =
Zin − Zc
Zin + Zc

(24)

where ZC = 50Ω is also the characteristic impedance of microstrip line.
Optimization of the Evaluation of Matrix Elements
In the application of the MR-GEC approach, some improvements can be realized to speed up our

method. Indeed, wavelets are localized functions whose support is too narrow for the finer resolution
which generates a strong interaction between the elements of the matrix. In addition, wavelets may not
have analytical expressions which oblige us to perform additional treatments to evaluate the impedance
matrix. Here we present the numerical implementation of the presented MR-GEC.

In the general structure of the matrix, we are led to the calculation of the following two terms as
basic functions and test are real functions:

fαmn,ϕs(−),k
= ⟨ϕs(−),k(x), f

αx
m,n(x, y)⟩; ∀k ∈ [0, 2s(−) − 1] (25a)

fαmn,ψs,k
= ⟨ψs,k(x), fαxm,n(x, y)⟩; ∀s ∈ [s (−) , s (+)] ∀k ∈ [0, 2s − 1] (25b)

where,
fαxmn(x, y) = Nα

x f
x
m(x)f

x
n (y); α ∈ {TE,TM}

are the basis functions in the longitudinal direction.
The corresponding terms described with Eq. (25a) are first computed with scaling function at a

fine resolution level (s(+) + 1).

fm,ϕs(+)+1,k
= ⟨ϕs(+)+1,k(x), f

x
m(x)⟩; k ∈

[
0, 2s(+)+1 − 1

]
(26)

As we use the periodic wavelets, a linear mapping relation between the length of the microstrip line and
[0, 1] is made. We can simplify the evaluation of the inner products and make the calculation faster by
applying the one point quadrature rule [24–26]:

⟨f(x), ϕ(s, k)(x)⟩ ≈ mf(k/2s); m =

∫ +∝

−∝
ϕ (x) dx (27)

The accuracy of this approximation increases with the level of resolution s and negligible for the Coifman
family.

The next step in our algorithm is to apply the pyramidal algorithm of Mallat (Discrete Wavelet
Transform DWT) from the fine resolution level (s(+) + 1) to the coarse resolution level s(−). This
decomposition allows reducing the CPU time for the impedance matrix fill in [27].

The last step of the computation of the impedance matrix is a thresholding procedure. This is
done in order to reduce the memory storage and matrix time computation. This step is to look for the
largest element of the impedance matrix Z. The other elements are thus compared to this reference
value multiplied by a thresholding parameter δ. Thresholding rule is defined as follows:

Zi,j = 0 if |Zi,j | < |Zmax| × δ (28)

The compression rate is defined as follows:

TC (%) =
NBzero

ns2
× 100 (29)
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4.2. Validation of the Analysis Method

In order to validate the detailed approach, a MATLAB code has been written to analyze the microstrip
line. A study of convergence is performed to verify the stability of the method.

Let us consider the structure given in Figure 4 to calculate the input impedance using the MR-GEC
procedure. A convergence study of Zin based on the basis functions is performed, knowing that the
Daubechies family of wavelets (db5) is used as test functions describing the metal part for different levels
of resolution s, and the following result is obtained as shown in Figure 6.

We observe in Figure 6 that beyond a mesh size of the order of
λg
30 and 400 basis functions (200

TE guide’s modes +200 TM guide’s modes), the results stabilize. In the remainder of the study, the

number of basis functions retained is 600, and the level of discretization retained is about
λg
50 which

corresponds to a resolution level s = 6, so 64 scaling functions and 64 wavelet functions are used as
test functions (128 trial functions). This level of resolution is the minimum mesh size to ensure good
accuracy of numerical calculation and stability of the obtained results.

Input Impedance Zin is calculated for the frequencies between 2–8GHz.

Figure 6. Numerical convergence of the input impedance evaluated by the MR-GEC method as a
function of number of cells per guided wavelength at f = 8GHz.

(a) (b)

Figure 7. The imaginary and real parts of Zin evaluated by the MoM-GEC method at the convergence
as a function of frequency.
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Figure 8. Numerical convergence of current as a function of wavelet functions number (db5) at
f = 8GHz.

Figure 9. Numerical convergence of current as a function of basis functions number (db5) at f = 8GHz
and using 128 trial functions (db5).

The comparison between our results and those calculated by using SONNET simulation tools
(Figure 7(a) and Figure 7(b)) show that they have the same graphs against the frequency.

The behavior of Zin as a function of frequency allows determining the resonance frequency of the
studied structure. These frequencies are in good agreement with electromagnetic theory that between
two distinct resonances. We should assure a difference equal to λ0

2 ≈ 18.7mm.
Figure 8 represents the current behavior as a function of the resolution level (number of trial

functions) of the db5 wavelet’s family along the x direction dependence.
We remark that the current convergence is obtained for 128 trial functions (which correspond to a

resolution level of wavelets equal to 6).
Figure 9 represents the current behavior as a function of basis functions number. It is shown that

the current convergence is obtained starting from 200 basis functions.
Figure 10 illustrates that the current evaluated by the MR-GEC and obtained at convergence

conforms to the theory with consideration to the boundary conditions. In fact, the current along the
direction of propagation is minimal at an open circuit (contact with a magnetic wall). The shape of the
current along the direction of propagation behaves as an almost perfect sinusoidal function of period
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Figure 10. Representation of the current density in the direction of propagation at 8GHz.

Figure 11. Representation of the current density as a function of frequency.

Table 2. Microstrip line characteristics.

LineCalc (HP-MDS) MoM GEC+wavelets R. Loison [26]

εeff 1.90 1.929 1.92

λg 27.2 27 27.05

λg.
Figure 11 shows the agreement between our results, those obtained by Loison [26] and the results

calculated by the conventional moment method.
Table 2 depicts the results from the behavior of the current density presented above. For

comparison, the results obtained with the LineCalc (HP-MDS) are also presented. The results are
consistent, and a difference does not exceed the order of 0.75% is observed.
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5. GAIN IN STORAGE MEMORY COST AND COMPUTATIONAL TIME

In this paragraph, we highlight the benefits of using wavelet trial functions in storage memory cost and
reducing computational time compared to traditional MoM method. Indeed, the computational time
needed by MoM is as [29]:

TMoM = A+BP + CP 2 +DP 3 (30)

P is unknowns’ number. A, B, C and D are constants independent of P .
A accounts for the simulation set-up time. The meshing of the structure leads to the linear term

BP. The filling of the system matrix is responsible for the quadratic term, and solving the matrix
equation for the cubic term. The values of A, B, C and D depend on the problem at hand. The number
of operations needed by MoM Nop-MoM is evaluated using [30]:

Nop-MoM ≈ O
(
P 3

)
(31)

To show the gain of the MR-GEC compared to the MoM, we need to evaluate the cost of the new
approach required to compute the input impedance.

The parameters used are the following:

- Ts: Computational time of ⟨gp|fn⟩.
- Tc: Computational time of multiplication or addition.

- Ti(q): Time inversing of a square matrix including q2 elements.

- P : Number of test functions characterizing the structure.

- N : Number of waveguide modes.

The time used by the MoM-GEC to compute the input impedance of a planar microstrip structure
is as:

TMoM GEC = N × P × Ts +
[
(N + 1)× P 2 + P

]
× Tc + Ti(P ) + δ (32)

So, in the MoM-GEC, the number of operations Nop−MoM GEC can be expressed as:

Nop−MoM GEC ≈ O(P 2) (33)

We can deduct that Nop−MoM GEC ≪ Nop−MoM chiefly when studying large structure with significant
number of test functions. This reduction in number of operations leads then to a reduction in the
computational time.

Obviously, in MoM-GEC, the same computational time in the impedance matrix fill in is needed
as the conventional moment method since a direct scheme based on a standard numerical integration is
used to compute each element of the matrix, and the wavelet functions, which have localized supports,
must be computed and stored.

Fortunately, we can take advantage of MALLAT’s algorithm when using wavelets as trial functions.
In this paper, an indirect implementation scheme is used to significantly improve the cost of the matrix
fill in.

In the MoM GEC method, to compute all matrix elements, we have to compute N × P times the
inner product ⟨gp|fn⟩ for N modes in the modal basis and P different test functions.

However, according to Eq. (25) and Eq. (26), we need only to calculate fm,ϕs(+)+1,k
which can be

approximated by applying the one point quadrature rule.
At the finest resolution level (s (+) + 1), for each value of m ∈ [1, N ], the vector of P = 2s(+)+1

coefficients (fm,ϕs(+)+1,k
; k = 0, 1, . . . , 2s(+)+1−1) is filtered by hk and gk employing 2LP multiplications

and 2L(P − 1) additions [34], where L is the filter length.
The number of required operations is divided by two with regard to the previous stage, due to the

data decimation.
Therefore, the total number of multiplications used to compute all scalar products ⟨gp|fn⟩ is

Nop mult = 2LN(P + P
2 + P

4 + . . .+ P
2s(−) = 4LNP

(
1− 21−s(−)

)
.

The total number of additions used to compute all scalar products is Nop add = 4LN(P −
1)

(
1− 21−s(−)

)
.
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Using periodic wavelets and GEC modeling, the computational time required by MR-GEC to solve
a proposed problem is as:

TMR GEC =
[
(N + 1)× P 2 + P +Nop mult +Nop add

]
× Tc + Ti(P ) + δ (34)

In the adopted approach, after applying a threshold and by discarding all elements smaller than a
predetermined threshold δ, the impedance matrix will be converted into a very sparse matrix. Then,
the use of wavelets as trial functions in the MoM GEC method produces a sparse impedance matrix
which may be solved rapidly thanks to the existence of several efficient techniques.

For such problems, wavelets can be used to obtain a solution in O(P logP ) operations, where P is
the number of unknowns [31, 32]. This is in contrast with a cost of O(P 3) for a dense matrix inversion
or O(P 2) per dense matrix-vector multiply in an iterative solution such as conjugate-gradient.

The comparison of the computing time of simulation obtained by using this technique with
sinusoidal, piecewise sinusoidal basis functions (PWS) and wavelet test functions is shown in Table 3.

Table 3. Comparison of computational time.

Trial functions
CPU time

(minutes)

TE et TM modes

number at

convergence

Test function

number at

convergence

Sinusoidal function 472.58 400 25

PWS function 71.59 600 6

db5 wavelet function 17.6 250 128

There is a noticeable improvement in the required computing time for calculating the input
impedance in our proposed method despite the relatively high number of wavelets functions. For
instance, at the frequency of 8GHz, the computing time in a 2.6GHz Pentium IV processor with 2 Go
of RAM is about 17.6 minutes for MR GEC and 71.59 minutes for MoM GEC with PWS test functions
and 472.58 minutes for MoM GEC with sinusoidal test functions.

At this point, the CPU time by our technique represents 96% in relation with the one obtained by
sinusoidal functions and 75% with PWS functions.

This contribution in considerable saving in computing time will be more apparent in the study of
more complex structures formed by several metallization and with no invariance.

The memory storage is also reduced due to the sparsity of the impedance matrix which is reached
by using the thresholding technic.

Figure 12 depicts the compression rate TC(%) for the MOM GEC with sinusoidal functions and
MR GEC.

It is shown that the performances obtained with the two types of test functions are not identical.
For the simulation of the line, it is possible to achieve a compression rate of 68% with wavelets and only
48% with sinusoidal test functions.

Figure 13 depicts the current’s behavior on the microstrip line obtained by sparse matrices for
different values of thresholding parameter δ.

In comparison with the exact solution obtained by uncompressed impedance matrix, the result
computed by using the sparse matrix with until 68% nonzero entries demonstrates excellent accuracy.
A good precision is always detected when the used number of the nonzero entries reaches 68.2%.

Owing to its sparsity, the impedance matrix, evaluated using wavelet functions, is stored with 220
KO of memory, whereas it would have required 1024 KO to store the dense matrix.

Starting from the two matrices of the same size (128 × 128), it is noticeable that the reduction
of memory requirements is more appreciated with the wavelets than the sinusoidal functions since the
gain in storage memory reaches 78% with the wavelets, and it is just about 21% for sinusoidal functions
after applying a thresholding scheme.
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Figure 12. Compression rate of the matrix impedance for two types of test functions at 8GHz.

Figure 13. Compression effect on the current distribution.

Table 4. Comparison of storage memory of the impedance matrix of a microstrip line at 8GHz.

Storage memory space (KO)

Gain (%)Before compression After compression

Trial functions Dense (1) TC (%) sparse (2)

sinusöıdal 1024 48 812 21

wavelets 1024 68 220 78

6. CONCLUSION

In this paper, we detail an integral method based on MoM to study microstrip circuits. This original,
simple but rigorous approach is obtained by the use of the generalized equivalent circuit modeling based
on the impedance operator. Consequently, the electromagnetic problem is transposed to electrical one.

To make the proposed method more efficient and obtain a significant reduction in required memory
resources, periodic wavelets are used as trial functions in the representation of the unknown current.

In fact, wavelets are characterized by the number of vanishing moments to cancel a significant
number of terms of the impedance matrix and thus obtain a sparse matrix and a remarkable gain in
memory storage. This gain is enhanced by thresholding operation without affecting the accuracy of
found results. Further, the use of the Mallat algorithm allowed us to obtain a gain in computation time
thanks to an indirect calculation of the different scalar products.

The solution procedure and dependence of its accuracy on the threshold level have been studied via
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a numerical analysis of current distribution. A good agreement with technical literature and with those
obtained by the software momentum of ADS and the software SONNET was observed which proves the
efficiency of the present method.

The technique described in this paper could be extended to model active circuits, multilayer
antennas and arrays.
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