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Reduction of RCS Samples Using the Cubed Sphere
Sampling Scheme
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Abstract—An alternative to the traditional method of sampling radar cross section data from
measurements or electromagnetic code is presented and evaluated. The Cubed Sphere sampling scheme
solves the problem of oversampling at high and low elevation angles and at equal equatorial resolution
the scheme can reduce the number of samples required by approximately 25%. The analysis is made of
an aircraft model with a monostatic radar cross section at C-band and a bistatic radar cross section at
VHF-band, using Physical Optics and the Multilevel Fast Multipole Method, respectively. It was found
that for the monostatic radar cross section, the Cubed Sphere sampling scheme required approximately
12% fewer samples compared to that required for traditional sampling while maintaining the same
interpolation accuracy over the entire domain. For the bistatic data, it was possible to reduce the
number of samples by approximately 35% for high sampling resolutions. Using spline interpolation the
number of samples required could be reduced even further.

1. INTRODUCTION

Since the introduction of radar on the battlefields of World War II, the prediction and reduction of
aircraft radar cross section (RCS) has received much attention [1–7]. As measuring equipment, computer
power, and algorithms continue to be improved, grow, and evolve, the accuracy of prediction methods
increases. However, although accurate estimates can be made for a given target, aspect angle, carrier
frequency, polarization, etc., it is not fully understood what requirements various applications put on the
resulting target models. For complex targets, such as ships, tanks, and aircraft, it is often only possible
to estimate the RCS value at discrete electromagnetic configurations, whereas, for many applications,
continuous RCS models are desired. Such continuity is achieved by systematically calculating the RCS
values and interpolating to obtain values between the samples [8–10]. This work aims to investigate
and analyze the possibility of decreasing the number of samples required, while maintaining the same
interpolation accuracy, by applying alternative RCS sampling schemes. This is desirable because RCS
computations or measurements are time consuming and expensive.

In stealth design the greatest concern for accurate aircraft RCS modeling is often confined to
the tactical sectors, where the RCS has been reduced by design to avoid or delay detection by hostile
radar. However, space and airborne early-warning radar [11–14] require RCS models that support higher
elevation angles. In addition, bistatic radar configurations [15–17] create challenges for RCS signature
analysts.

The aspect angles to be sampled are usually determined by defining a desired sampling resolution in
azimuth and elevation respectively. This is a straightforward and commonly used method of obtaining
sampling angles that works well when sampling at modest elevation angles. However, the method has
a major drawback when sampling over the entire domain. This drawback stems from the fact that for
decreasing and increasing elevation angles, the density of samples increases until the elevation angle is at
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one of the poles, where the same point is sampled with different polarizations for a full revolution. This
problem is well known and referred to as the “pole problem” [18]. The “pole problem” is encountered in
map projections and it increases the computational cost and run time for electromagnetic codes when
sampling RCS data. This problem has also been addressed for antenna measurement setups [19–21],
with the main objective of reducing measurement time.

This work aims to present and evaluate an alternative sampling scheme, called the Cubed Sphere,
to overcome the pole problem for RCS measurements and computations.

Below is a list of generally desired properties for RCS sampling schemes:
1. A measure of merit for any RCS sampling scheme is great accuracy in predicting the RCS at

any given aspect angle, frequency, and polarization, with as few samples as possible.
2. The density of samples should be independent of aspect angle, i.e., an equidistant grid.
3. Exceptions from the requirements of an equidistant grid can occur in applications where higher

resolution is required locally. In such cases, the sampling scheme should allow for custom sampling
resolution within certain ranges of aspect angles.

4. The samples should be arranged in a logical order so that the RCS value at a given aspect angle
is easily identified.

5. The sampling scheme should not hamper electromagnetic computation or measurement setups.
Section 2 begins with a general description of the investigation, which is followed by an introduction

to the two sampling schemes investigated in this study. The procedure for evaluating the interpolation
accuracy is then presented. In Section 3 the results of the investigation are presented. Section 4 contains
a discussion of the implication of the findings and Section 5 contains conclusions from the study.

2. METHOD

Two sampling schemes, referred to as the Conventional scheme and the Cubed Sphere scheme, are
studied. The sampling schemes are evaluated at VHF and C-band, for bistatic and monostatic
RCS respectively, using an F-117 model developed by the authors. The F-117 model used in the
electromagnetic calculations has been depicted in Figure 1 and a movie clip showing the model can be
found online†.

The monostatic RCS of the F-117 model was computed using Physical Optics (PO) at 5 GHz
and the bistatic computations were performed with a surface Method of Moments (MoM), improved
with the Multilevel Fast Multipole Method (MLFMM) at 100 MHz. The PO analysis was done in
POFACETS [22] and the MLFMM analysis was done using PUMA-EM [23]. The computations were
limited to the given frequencies with horizontal polarization. Thus, the results in this work are limited
to the F-117 model under the given electromagnetic configurations. However, the aim of this work is
of a methodological nature; i.e., to illustrate the benefits of using the described sampling scheme when
sampling RCS data, independent of how the data is obtained. The definition of the aspect angles used
can be seen in Figure 1, where θ is the elevation angle and φ is the azimuth angle.

The assumed application of the RCS model is for radar detection simulation; therefore, the
performance parameter is how well a RCS model can assist in predicting the maximum detection range
Rmax(m), which in the monostatic case is given by

Rmax = 4

√
PtG2λ2σ

(4π)3 P r

, (1)

where σ(m2) is the RCS of the target, Pt(W ) the transmitted power of the radar, Pr() the minimum
detectable power of the received signal, G the gain of the radar antenna, and λ (m) the wavelength [24].

The monostatic RCS is defined as

σ(θ, φ, λ) = 4πR2 |Es|2
|Ei|2

, (2)

where R(m) is the range to the observer, and Ei( V
m) and Es( V

m) are the vector incident and scattered
electric field intensities, respectively [24]. For the bistatic case, σ is a function of both incident and
scattered θ and φ.
† Björn Persson, DiVA, http://urn.kb.se/resolve?urn=urn:nbn:se:fhs:diva-4230
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Figure 1. The F-117 model and definition of the spherical coordinate system used.

Depending on the application, the relative interpolation error in square meters may also be a good
measure of merit. However, in this work the relative interpolation error in Rmax is used, the difference
being that the implication of the relative error in Rmax is easier to transfer to operational applications
than the value in square meters or decibel square meters (dBsm).

2.1. Sampling Schemes

2.1.1. Conventional Sampling Scheme

The first sampling scheme, referred to as the Conventional scheme, consists of two vectors θ and φ,
both containing equally spaced angular elements. This is the sampling scheme commonly found in
electromagnetic codes. For the monostatic case, a RCS matrix can be generated to store the sampled
values and each matrix element corresponds to the RCS value at the aspect angles defined by the two
vectors. For the bistatic case, a four-dimensional matrix is calculated, where each dimension corresponds
to an incident or scattered θ or φ angle. The lowest sampling resolution for this scheme is obtained in
the vicinity of the equator of the sphere.

2.1.2. Cubed Sphere Sampling Scheme

The alternative sampling scheme is the Cubed Sphere, which is obtained by projecting the grid of a
cube onto the surface of a unit sphere, as illustrated by Figure 2.

Figure 2. The spherical and unfolded Cubed Sphere transformation map (Redrawn from [18]).
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The scheme consists of six regions, I–VI, where each region contains two local vectors, η and ξ,
which originate from the center of each side of the cube. Both vectors lie in the same plane as their
respective side of the cube, where η is parallel to the right and left edges, and ξ is parallel to the upper
and lower edges of each side. Both vectors span the interval [−π

4 , π
4 ] and the distribution of elements in

the vectors can be chosen freely and independently between regions. However, here all η and ξ vectors
were chosen so that the distance between the samples was equal in local coordinates. This confines the
lowest sampling resolution to the center of each side of the cube.

By letting φ span [0, 2π] and θ span [0, π], the Equations (3)–(8) can be used to transform the
aspect angles on a unit sphere to local coordinates, η and ξ.
In region I

ξI = φ ηI = tan−1

(
1

tan (θ) cos (φ)

)
(3)

In region II

ξII = φ−π

2
ηII = tan−1

( −1
tan(θ) sin(φ)

)
(4)

In region III

ξIII = φ−π ηIII = tan−1

( −1
tan (θ) cos (φ)

)
(5)

In region IV

ξIV = φ − 3
π

2
ηIV = tan−1

( −1
tan (θ) sin (φ)

)
(6)

In region V
ξV = tan−1 (tan (θ) sin(φ)) ηV = tan−1 (−tan (θ) cos (φ)) (7)

In region VI
ξVI = tan−1 (−tan (θ) sin(φ)) ηVI = tan−1 (− tan (θ) cos (φ)) (8)

From Eqs. (3)–(8) it is straightforward to derive the transformation from local coordinates to the
spherical coordinates defined in Figure 1. The monostatic output of RCS data from the Cubed Sphere
can be stored in six sub-matrices.

For monostatic RCS models, the result is a three-dimensional RCS matrix, two dimensions for η
and ξ and one for specifying the region. For the bistatic case, a similar, but six-dimensional, RCS
matrix is generated; four dimensions for the incident and scattered η and ξvalues, one for the incident
region, and one for the scattering region.

2.2. Evaluation of Sampling Schemes

In order to compare the two sampling schemes, the number of RCS samples per azimuth angle in
the vicinity of the equator was calculated to be the same for both sampling schemes. By setting the
resolution in elevation equal to the resolution in azimuth, square elements of the same size were obtained
for both sampling schemes in the equatorial region and it is therefore convenient and sufficient to only
specify the resolution in azimuth, from here on referred to as the equatorial resolution. If different
resolutions in azimuth and elevation are desired, the resolution measurement would have to be samples
per steradian to get a number by which to compare the sampling resolutions.

Figure 3 illustrates examples of what meshes constructed from the two sampling schemes look like
when the equatorial resolution is 0.2 samples per degree.

In order to compare the interpolation accuracy of the Conventional and the Cubed Sphere sampling
schemes, the following procedure was used:

(i) Generate RCS data at aspect angles for the sampling scheme of interest.
(ii) Create a spline approximation (SA) [25] of the RCS data obtained in Step 1.
(iii) Generate random evaluation aspect angles [26] and calculate the RCS for each generated aspect

angle.
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Figure 3. Examples of grids obtained with the two sampling schemes with an equatorial angular
resolution of 0.2 samples per degree. The Conventional sampling scheme with 2664 samples is to the
left and the Cubed Sphere sampling scheme with 1946 samples is to the right.

(iv) Obtain the nearest-neighbor (NN) RCS value from Step 1 and the RCS value from the spline model
generated in Step 2 for each evaluation aspect angle generated in Step 3.

(v) Calculate the relative interpolation error ε in Rmax using (9).
(vi) Present the interpolation error in the form of a box plot for comparison of accuracy.

The above procedure was performed for both the monostatic and bistatic cases with different
sampling resolutions and the relative interpolation error in Rmax from Step 5 was calculated for each
evaluation aspect angles using

ε= 4

√
X

X̂
−1 (9)

where X is the interpolated RCS value and X̂ the calculated RCS value.
Several quantities can be used to obtain the interpolated RCS value of the target in Step 2, for

example the RCS value in square meters, in dBsm, or the real and imaginary parts of the scattered
electric field. In this work, the RCS in dBsm was interpolated. However, it was found that the difference
between interpolation in dBsm and square meters was negligible.

3. RESULTS

The results obtained from the presented analysis are below. Firstly, the monostatic and bistatic RCS
data obtained with the Conventional and the Cubed Sphere sampling scheme are shown. This is followed
by an analysis of the number of samples required by each scheme and the interpolation accuracy they
provided.

The Conventional sampling scheme was used to generate the monostatic RCS matrix at 5 GHz for
the F-117 model shown in Figure 4. The upper part of the image is the aircraft seen from above and
the lower part is from below, while the RCS of the front region is in the center. The dynamic range in
the image is 150 dB, indicating that the difference between regions with RCS spikes and tactical sectors
is substantial.

As a comparison, the same RCS obtained with the Cubed Sphere sampling scheme is seen in
Figure 5. This image illustrates the behavior of the RCS at the top and bottom more clearly. The
different regions can be connected along each edge of every region. The right edge of the back region
can be connected with the left edge of the right side and the right edge of the bottom region can be
connected with the lower edge of the left side, etc.

The Conventional scattered bistatic RCS matrix of the F-117 model at 100 MHz is depicted in
Figure 6 for an incident angle of 90 degrees in elevation and 0 degrees in azimuth. Thus, the incident
aspect angle coincides with the longitudinal axis of the aircraft.

The Cubed Sphere sampling of the same electromagnetic configuration as in Figure 6 can be seen
in Figure 7.
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Figure 4. The monostatic RCS matrix of the F-
117 model at 5 GHz and horizontal polarization
sampled with the Conventional sampling scheme.
The dynamic range is 150 dB.

Figure 5. The monostatic RCS matrix of the
F-117 model at 5 GHz and horizontal polarization
sampled with the Cubed Sphere sampling scheme.
The dynamic range is 150 dB.

Figure 6. The scattered bistatic RCS of the F-
117 model at 100 MHz and horizontal polarization
with an incident angle of 90 deg. elevation and 0
degrees azimuth, sampled with the Conventional
sampling scheme. The dynamic range is 50 dB.

Figure 7. The scattered bistatic RCS of the F-
117 model at 100 MHz and horizontal polarization
with an incident angle of 90 deg. elevation and 0
degrees azimuth, sampled with the Cubed Sphere
sampling scheme. The dynamic range is 50 dB.

Figures 4–7 show the RCS calculated using the two sampling schemes and as expected it can be
seen that the patterns are similar. However, the figures do not reveal which scheme that offers the best
modeling accuracy.

It was found that with an equal equatorial resolution the Cubed Sphere only required close to 75%
of the samples for resolutions above one sample per degree in the monostatic case, and consequently
56% percent in the bistatic case.

The box plot in Figure 8 illustrates the distribution of the relative interpolation error in Rmax for
the Conventional and Cubed Sphere sampling schemes using NN and SA interpolation. The equatorial
angular resolution in the Conventional sampling scheme was ten samples per degree. From the box
plot it can be seen that the best interpolation accuracy was obtained by interpolating the Conventional
sampling scheme with a SA, since the interquartile distance (IQD) is smallest for that box. The worst
interpolation method was the NN on the Cubed Sphere. Since the Cubed Sphere only contains 75% of
the samples it has a clear disadvantage for obtaining good interpolation accuracy. Therefore, Figure 8
does not compare the sampling schemes under the same conditions. For all box plots, with varying
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Figure 8. Box and whisker plots of the relative interpolation error for samples with an equatorial
resolution of 0.1 degree for the monostatic RCS. The dashed center-line is the median value of the
relative interpolation error in Rmax; the bottom and top lines of the boxes correspond to the first and
third quartile respectively. Values larger or smaller than 1.5 times the IQD beyond each quartile were
considered outliers; this is represented by the length of the whiskers.

Figure 9. A comparison of interpolation accuracy as a function of the number of samples for the
monostatic RCS at 5 GHz.

angular resolution, generated during this work, it was found that the median value approached zero as
the number of evaluation samples increased. Therefore, the IQD alone can be a good measure of merit
for different sampling schemes.

Figure 9 shows the IQD as a function of the number of samples required by each sampling scheme.
This is a more reasonable comparison of sampling schemes because it shows how many samples are
required to achieve certain interpolation accuracy for each scheme.

The markers indicate the equatorial angular resolution in the Conventional sampling scheme and
the numbers and straight dashed lines in the figure are plotted to assist interpretation of the graph.
Starting at 1, in Figure 9, it can be seen that if 6.5 million samples are taken with the Conventional
scheme, and interpolated using NN, an IQD of 12.5 percent is obtained.

Points 2, 3, and 4 give the same IQD with the Cubed Sphere sampling scheme using NN,
Conventional using SA, and Cubed Sphere sampling scheme using SA. In these cases, about 5.7, 3.9,
and 3.5 million samples were required, respectively. Thus, by using the Cubed Sphere sampling scheme
and interpolating with the SA it is possible to reduce the number of samples required by about 55
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Table 1. A comparison of the IQD of monostatic interpolation for different regions at an equatorial
resolution of 0.1 degrees.

Region: I II III IV V VI All
Conventional NN 11.0 14.2 13.7 14.3 10.1 13.3 12.6
Cubed Sphere NN 11.0 13.8 13.4 13.8 12.4 16.6 13.7
Conventional SA 6.2 12.1 9.3 12.2 5.1 8.3 8.5
Cubed Sphere SA 5.7 12.2 8.9 12.2 7.8 12.7 9.9

Figure 10. A comparison of interpolation accuracy as a function of the number of samples for the
bistatic RCS at 100 MHz.

percent, without any loss of interpolation accuracy in the monostatic case. Going from 1 to 5 it can
be seen that the IQD decreases from 12.5 to 8.5 percent by interpolating the Conventional sampling
scheme with the SA instead of NN. The same IQD can be obtained with the Cubed Sphere sampling
scheme using the SA, then the number of samples can also be decreased by about 0.7 million samples.

In Table 1 the IQD for the monostatic interpolation at 5GHz has been listed for the different
regions of the Cubed Sphere sampling scheme and compared to the Conventional sampling scheme.
The table reveals that, in regions I–IV the IQD of the cubed sphere is slightly lower compared to that
of the Conventional scheme. In regions V–VI the IQD is 2–4 percentage points higher for the Cubed
Sphere sampling scheme.

For the bistatic interpolation in Figure 10 it can be seen that the number of samples can be
reduced substantially by using the Cubed Sphere sampling scheme instead of the Conventional sampling
scheme when interpolating using NN. However, the SA seems to provide the same interpolation accuracy
independently of the sampling scheme used.

4. DISCUSSION

A list of desirable properties for sampling schemes was given in the introduction. Each item on that
list is addressed below, in light of the work presented.

1. The Cubed Sphere sampling scheme outperforms the Conventional sampling scheme when using
the NN in terms of RCS accuracy per sample, in both the monostatic and bistatic evaluations; this can
be seen in Figure 9 and Figure 10.

2. The Cubed Sphere sampling scheme has an almost constant spatial resolution, whereas the
Conventional sampling scheme has the highest resolution at the poles and the lowest resolution at the
equator.
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3. The Cubed Sphere sampling scheme can increase the resolution in certain regions, while confining
the increased number of samples to one side of the cube. By comparison, refining the resolution in a
certain region in the Conventional sampling scheme affects the entire domain.

4. The fact that the Conventional sampling scheme is stored in a structure consisting of a single RCS
matrix, without any transformations, makes it more intuitive. However, by plotting the six sub-matrices
of the Cubed Sphere sampling scheme, as seen in Figures 5 and 7, a better image of the complete RCS
can be generated.

5. The Cubed Sphere scheme will inevitably introduce complications to regular measurement setups,
which is not the case in the Conventional sampling scheme. Thus, there is a trade-off between time
spent on setting up the sampling scheme and the time it takes to generate a sample.

In the work presented only one target is considered at two different carrier frequencies. Future
studies could consider different kinds of targets; both simple and complex targets should be of interest.
However, the aim of this study was to present and evaluate the idea of using the Cubed Sphere for
sampling RCS data. For this purpose one complex target should be sufficient as a demonstrator and it
is very likely that the benefits presented will also apply to other targets.

The IQD was herein used as a measure of merit for interpolation of RCS data. This is a good
candidate for measuring the variability in the accuracy, since it is straightforward to interpret its
meaning, since it can be related to operational demands on the platform for which the RCS is analyzed.

Table 1 shows that the Conventional sampling scheme has higher interpolation accuracy around
the poles, where the sampling density is higher, and performs similar to the Cubed Sphere sampling
scheme around the equator. When sampling over the entire domain it is desirable to have a similar
resolution over the entire domain; this is achieved by the Cubed Sphere sampling scheme.

In this work, the number of samples taken is much higher than what is realistic in any measurement
setup; however, the number of samples can be reduced by 25% at an equatorial resolution of one degree
in the monostatic case. This comes with the price of lower interpolation accuracy, especially at the poles.
However, since measurements are often expensive and time consuming, it should be worth considering
the Cubed Sphere sampling scheme.

5. CONCLUSIONS

By using the Cubed Sphere sampling scheme in RCS measurements and calculations it is possible to
decrease the number of samples required by approximately 25% for the same equatorial resolution when
sampling monostatic RCS data.

It has been shown that, without any loss in accuracy, the number of samples can be reduced
significantly when sampling RCS data over the entire domain by using the Cubed Sphere sampling
scheme and interpolating with the SA. If properly implemented, alternative sampling schemes can
greatly reduce costs in terms of both time and money spent on electromagnetic computations and
measurements.
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7. Gürel, L., H. Bağcı, J. C. Castelli, A. Cheraly, and F. Tardivel, “Validation through comparison:
Measurement and calculation of the bistatic radar cross section of a stealth target,” Radio Science,
Vol. 38, No. 3, 2003.

8. Bucci, O. M., C. Gennarelli, G. Riccio, and C. Savarese, “Electromagnetic fields interpolation
from nonuniform samples over spherical and cylindrical surfaces,” IEEE Proceedings Microwaves,
Antennas and Propagation, Vol. 141, No. 2, 77–84, 1994, DOI: 10.1049/ip-map:19949838.

9. Persson, B. and M. Norsell, “On modeling RCS of aircraft for flight simulation,” IEEE Antennas
and Propagation Magazine, Vol. 56, No. 4, 34–43, Aug. 2014, DOI: 10.1109/MAP.2014.6931656.

10. Yang, J. and K. T. Sarkar, “Interpolation/Extrapolation of Radar Cross-Section (RCS) data in the
frequency domain using the cauchy method,” IEEE Transactions on Antennas and Propagation,
Vol. 55, 2844–2851, Oct. 2007.

11. Davis, M. E., “Space based radar moving target detection challenges,” RADAR, 143–147, 2002.
12. Manasse, R., “Idealized radar GMTI detection with space-time processing,” IEEE Transactions

on Aerospace and Electronic Systems, Vol. 45, No. 4, 1610–1618, Oct. 2009, DOI:
10.1109/TAES.2009.5310322.

13. Li, J., G. Liu, N. Jiang, and P. Stoica, “Moving target feature extraction for airborne high-range
resolution phased-array radar,” IEEE Transactions on Signal Processing, Vol. 49, No. 2, 277–289,
Feb. 2001, DOI: 10.1109/78.902110.

14. Wang, Y. L., Z. Bao, and Y. N. Peng, “STAP with medium PRF mode for non-side-looking
airborne radar,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 609–620,
Apr. 2000, DOI: 10.1109/7.845249.

15. Ulander, L., P. Förlind, P. Grahn, and A. Gustavsson, “Bistatisk och passiv radar,” FOI,
Stockholm, 2014.

16. Amanipour, V. and A. Olfat, “CFAR detection for multistatic radar,” Signal Processing, Vol. 91,
No. 1, 28–37, Jan. 2011, DOI: 10.1016/j.sigpro.2010.06.003.

17. Willis, N. J. and G. Griffiths, Advances in Bistatic Radar, 91–104, SciTech Publishing, Raleigh,
2007.

18. Ronchi, C., R. Iacono, and P. S. Paolucci, “The ‘cubed sphere’: A new method for the solution of
partial differential equations in spherical geometry,” Journal of Computational Physics, Vol. 124,
No. 1, 93–114, Mar. 1996, DOI: 10.1006/jcph.1996.0047.

19. Hiroyuki, A. and I. Nozomu, “Sampling points reduction in spherical scanned TRP,” IEEE
Conference on Antenna Measurements & Applications, 1–4, 2014.

20. Cornelius, R. and D. Heberling, “Analysis of sampling grids for spherical near-field antenna
measurements,” PIERS Proceedings, 923–927, Prague, Jul. 6–9, 2015.

21. Giordanengo, G., M. Righero, F. Vipiana, G. Vecchi, and M. Sabbadini, “Fast antenna testing with
reduced near field sampling,” IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5,
2501–2513, May 2014, DOI: 10.1109/TAP.2014.2309338.

22. Jenn, D. C., “POFACETS 4.1,” 2013, [Online], Available: http://faculty.nps.edu/jenn.
23. Van den Bosch, I., “Puma-EM 5.8,” 2014, [Online], Available: http://sourceforge.net/projects/

puma-em/.
24. Shaeffer, J. F., M. T. Tuley, and E. F. Knott, Radar Cross Section, 2nd Edition, 17, 44–45, Artech

House Publishers, Norwood, 1993.
25. De Boor, C., A Practical Guide to Splines, 291–296, Springer New York, New York, NY, 2001.
26. Marsaglia, G., “Choosing a point from the surface of a sphere,” The Annals of Mathematical

Statistics, Vol. 43, No. 2, 645–646, 1972.


