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Pattern Synthesis Using Hybrid Fourier-Neural Networks
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Abstract—In this paper, the application of Artificial Neural Network (ANN) with back-propagation
algorithm and weighted Fourier method are used for the synthesis of antenna arrays. The neural
networks facilitate the modelling of antenna arrays by estimating the phases. The most important
synthesis problem is to find the weights of the linear antenna array elements that are optimum to
provide the radiation pattern with maximum reduction in the sidelobe level. This technique is used
to prove its effectiveness in improving the performance of the antenna array. To achieve this goal,
antenna array for Wi-Fi IEEE 802.11a with frequency at 2.4GHz to 2.5GHz is implemented using
Hybrid Fourier-Neural Networks method. To verify the validity of the technique, several illustrative
examples of uniform excited array patterns with the main beam are placed in the direction of the useful
signal. The neural network synthesis method not only allows to establish important analytical equations
for the synthesis of antenna array, but also provides a great flexibility between the system parameters
in input and output which makes the synthesis possible due to the explicit relation given by them.

1. INTRODUCTION

Antenna arrays represent a fundamental technology in several electromagnetics applicative scenarios,
including satellite and ground wireless communications, MIMO systems, remote sensing, biomedical
imaging, radar, and radio astronomy. Pattern synthesis is the process of choosing the antenna
parameters, such as the specific position of the nulls, the desired sidelobe level and beamwidth of
antenna pattern, to obtain radiation pattern close to the desired one. Sidelobe level (SLL) is one of the
most important parameters in array designing. The sidelobe level can degrade the system performance
as well as antenna power efficiency significantly. In literature there are many papers concerned with the
synthesis of antenna array. Today a lot of research on antenna array are being carried out using various
optimization techniques to solve electromagnetic problems due to their robustness and easy adaptiveness.
In the literature, various pattern synthesis techniques can be found. Different synthesis techniques, such
as genetic algorithm [1] and particle swarm optimization algorithm [2] have been successfully used for
reducing the sidelobe level. In [3] the authors present sidelobe level reduction in linear array pattern
synthesis using particle swarm optimization (PSO). The synthesis of radiation patterns of linear arrays
using the Schelkunoff method and genetic algorithms (GAs) is presented in [25, 26]. A pattern synthesis
method based on thinning using Boolean Differential Evolution Algorithm and FFT for planner array
has been reported in [4]. In array synthesis to get low-sidelobe patterns, Iterative Fast Fourier Technique
(IFFT) is presented in [5]. Linear array thinning using iterative Fourier techniques is reported in [6].
Phase-only synthesis has been successfully used in [7, 8] to get the desired radiation pattern. In [9] the
authors presented hybrid near-field and far-field transformation algorithm which combines a Fast Fourier
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Transform pre-processing with the plane wave based fully probe corrected near-field transformation of
low numerical complexity. The inherent nonlinearities associated with antenna radiation patterns make
antennas very suitable candidates for ANNs. A major consequence that has emerged in recent years,
with the growth of interest in NNs, is the Multilayer Perceptron (MLP) with single hidden layer. This
network is capable of approximating any smooth nonlinear input-output mapping to an arbitrary degree
of accuracy, provided that sufficient number of hidden layer neurons is used [10]. In [11] RBF neural
network is used to optimize the radiation pattern of non-uniform linear arrays of High superconducting
rectangular microstrip antennas. Phased array in communication system based on Taguchi-neural
networks is presented in [12]. In [20] the authors present a usual application of back-propagation neural
networks for synthesis and optimization of antenna array. In this paper, we are interest to present
the adaptive Fourier Neural-Networks method that will be applied to the synthesis of antenna arrays.
A big flexibility between features of the antennas array: amplitude and phase of feeding, ondulation
domain, and secondary lobe level are introduced. For the simulation package we use the Matlab software
and CST microwave studio. The paper is organized as follows. The synthesis problem formulation is
presented in Section 2. Artificial Neural networks is developed with the simulation result in Section 3
and finally, Section 4 makes conclusions.

2. SYNTHESIS PROBLEM FORMULATION

An antenna array is a configuration of individual radiating elements that are arranged in space and can
produce direction radiation pattern. For a linear antenna array, let us assume that there are N isotropic
radiators placed symmetrically along the x-axis as shown in Figure 1.

The far-field F (u) of a linear array with N antennas arranged along a periodic grid at distance
d apart, can be written as the product of the embedded element pattern EF (u) and the array factor
AF (u)

F (u) = EF (u)AF (u) (1)

AF (u) =

N−1∑
m=0

wme
jkmdu (2)

where

• wm is the complex excitation of the mth element.

• k is wave number
(
2π
λ

)
.

• λ is the wavelength.

• u = sin θ and θ angular coordinate measured between far-field direction and the array normal.
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Figure 1. Symmetrical placed linear antenna
array.
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2.1. Fourier Synthesis Method

The array factor can be written with the DFT Discrete Fourier Transform or with z transformation as
follows [22] :

• If N is odd (N = 2M + 1).

AF (u) =

M∑
m=−M

wme
jmψ = w0 +

M∑
m=1

[
wme

jmψ + w−me
−jmψ

]
(3)

AF (z) ∼= w0 +

M∑
m=1

[
wmz

m + w−mz
−m] (4)

where ψ = kdu and z = ejψ.
In the following, we express array factor in a desired angular sector using the Fourier series method.
For this we will present an ideal band pass filter centred ψo with the bandwidth of 2ψb, then this
will plot actual characteristic as shown in Figure 2. Thus, the response of an ideal band pass filter
is defined between −π ≤ ψ ≤ π as follows:

AFPB (ψ) =

{
1, ψ0 − ψb ≤ ψ ≤ ψ0 + ψb
0, otherwise

(5)

• If N is even (N = 2M).

AF (u) =
M∑
m=1

wme
j(m− 1

2)ψ =
M∑
m=1

[
wme

j(m− 1
2)ψ + w−me

−j(m− 1
2)ψ

]
(6)

F (z) ∼=
M∑
m=1

[
wmz

(m− 1
2) + w−mz

−(m− 1
2)
]

(7)

In particular, if the array weights wm are symmetric with respect to the origin, wm = w−m, as they
are in most design methods, then the array factor can be simplified into the cosine forms:

AF (ψ) = w0 + 2

M∑
m=1

wm cos [mψ], N = 2M + 1 (8)

F (ψ) = 2
M∑
m=1

wm cos

[(
m− 1

2

)
ψ

]
, N = 2M (9)

In both for odd and even cases, the two Equations (4) and (7) can be expressed as the left-shifted
version of a right-sided z-transform:

AF (z) = z−(M−1) 1
2AF̃ (z) ≈ z−(M−1) 1

2

M−1∑
m=0

w̃m (z) zm (10)

In the symmetric notation, the steered weights are as follows:

w′
m = wme

−jmψ0 , m = 0,±1,±2, . . . ,M (11)

w′
±m = w±me

±j(m− 1
2)ψ0 , m =, 1, 2, . . . ,M (12)

To justify the use of Fourier method, several well-known optimization methods; such as Taylor [23],
Dolph-Chebyshev [24], Schelkunoff [25, 26] are selected for comparison. Best results obtained using
Fourier. Best results are defined as the ones that provide a radiation pattern not only with SLL reduced
but also with the best Half Power Beamwidth (HPBW) which is a very important pattern parameter
for array synthesis. Figure 3 shows the radiation patterns of Taylor, Schelkunoff, Dolph-Chebyshev
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as compared to Fourier method. The computational results from Figure 3 show that sidelobe level
is reduced to −30 dB and more for all techniques but with HPBW about 4.5◦ for Taylor, 7◦ for
Schelkunoff, 8◦ for Dolph-Chebyshev and about 18◦ with Fourier method. The obtained optimized
array factor was compared to that obtained using other well-known numerical optimization techniques
(Taylor, Schelkunoff and Dolph-Chebyshev). Array factor patterns synthesis obtained from Fourier
results outperform the other methods.

At the end of simulation, we have as a results different optimized values which are used as excitations
for amplitude and phase. Our linear antenna array is optimized using Fourier method, so as expected,
the ideal weights are used for the design of band pass filters ∆ θ = 70◦, ∆ θ = 40◦ and ∆ θ = 5◦. Ideal
weights (amplitudes and phases) are summarized in Table 1.
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Figure 3. Radiation pattern comparaison for a
16-antenna linear array.

Figure 4. Geometry of the proposed antenna.

Table 1. Fourier excitation linear array (at angle = 90◦, M = 16 and d = 0.5λ).

Fourier Excitation (M = 16 and d = 0.5λ )

θ1 = 50◦ and θ2 = 120◦ θ1 = 60◦ and θ2 = 100◦ θ1 = 75◦ and θ1 = 80◦

∆ θ = 70◦ ∆ θ = 40◦ ∆ θ = 5◦

Number of

elements m
Phase (deg.) Amplitude Phase (deg.) Amplitude Phase (deg.) Amplitude

1 −83.61 0.0029 40.28 0.0137 111.9154 0.0046

2 83.53 0.0235 −169.08 0.0112 −107.0067 0.0046

3 −109.32 0.0290 161.54 0.0350 −145.9287 0.0216

4 −122.17 0.0052 −47.82 0.0038 175.1492 0.0459

5 44.97 0.0674 −77.19 0.0742 136.2272 0.0747

6 −147.87 0.0956 −106.57 0.0346 97.3051 0.1037

7 −160.72 0.0068 44.05 0.1777 58.3831 0.1277

8 6.42 0.5483 14.68 0.4004 19.4610 0.1420

9 −6.42 0.5483 −14.68 0.4004 −19.4610 0.1420

10 160.72 0.0068 −44.05 0.1777 −58.3831 0.1277

11 147.87 0.0956 106.57 0.0346 −97.3051 0.1037

12 −44.97 0.0674 77.19 0.0742 −136.2272 0.0747

13 122.17 0.0052 47.82 0.0038 −175.1492 0.0459

14 109.32 0.0290 −161.54 0.0350 145.9287 0.0216

15 −83.53 0.0235 169.08 0.0112 107.0067 0.0046

16 83.61 0.0029 −40.28 0.0137 −111.9154 0.0046



Progress In Electromagnetics Research B, Vol. 67, 2016 49

In this section a linear array structure of isotropic antennas with equal spacing of 0.5λ between
any two consecutive elements has been considered. Minimization of sidelobe level is done using Fourier
method. By controlling the phase and magnitude of the input signal assigned to each antenna element
and the number of array elements, the radiation pattern can be steered in a desired direction with a
preferred level of gain. In this example, a 16-array of patch antennas is fed from a single feed point,
with all elements fed with synthesis phase and magnitude using Fourier method [5, 6, 21].

The synthesis results obtained with Fourier method of a 16 antennas are shown in Table 1.

2.2. Antenna Array Design

The profile of the proposed antenna shown in Figure 4 is printed on a plexiglass substrate with relative
permittivity of 2.5, loss tangent of 0.02, and thickness of 4mm for IEEE 802.11 MIMO application [14].
The overall dimensions are L = 36mm and W = 36mm for 2.45GHz.

It was found that the antenna resonates in the desired frequency band as shown in Figure 5(a).
Indeed, for |S11| < −10 dB, we have band ranges from 1.5 to 3.5GHz with a resonant frequency 2.45GHz.
The bandwidth is 105MHz which is used for WLANs based on IEEE 802.11 applications.

The desired sectors have variable width of the main beam of 70◦, 40◦ and 5◦. This is what can be
seen in Figures 6(a), (b) and (c) an area with a main lobe (Region I) and another area with sidelobes
(Region II) which has a level less than −30 dB below the level of the main lobe. Generally, with this
method of synthesis, the desired radiation pattern requires an infinite number of coefficients that will
be represented exactly. In addition only a fixed finite number of coefficients in the Fourier series has a
corrugation in the desired response, known as Gibbs phenomenon [13].
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Figure 5. Simulation results of the proposed patch antenna. (a) Reflection coefficient of the proposed
antenna. (b) 3D Radiation pattern at 2.45GHz.

3. ARTIFICIAL NEURAL NETWORKS

The multi-layers networks consist of an input layer whose neurons code the information presented at the
network, a variable number of internal layers called “hidden” and an output layer (Figure 7) containing
as many neurons as the desired responses. The neurons of the same layer are not connected to each
other. The learning process of these networks is supervised.

The first layer is composed of input nodes.
An MLP network is a feed forward neural network with one hidden layer, with a Multilayer

Perceptron MLP node function at each hidden node. The number of nodes, L, is equal to the dimension
of input vector [15–17].

• j is the index of the input layer with j = 1, 2, . . . , L.
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(a) (b)

(c)

Figure 6. Radiation pattern for 16-antenna linear array with Fourier method. (a) ∆θ = 70◦. (b)
∆θ = 40◦. (c) ∆θ = 5◦.
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Figure 7. The neural beamformer architecture.

• i is the index of the hidden layer with i = 1, 2, . . . , N .

• k is the index of the output layer with k = 1, 2, . . . ,M .

The interconnection weights are determined based on the requirement of minimum error between
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the neural model output yk and the training data dk. The purpose of the training process is to adjust
the network interconnection weights wij and wki in order to minimize the error function E(p), defined
by

E (p) =
1

2

M∑
k=1

N∑
i=1

L∑
j=1

[yk (xj , wij , wki)− dk]
2 (13)

where p = 1, 2, . . . , P is the index of the training set. This is an iterative process using the back-
propagation algorithm described in [12]. The weights wij and wki are updated for each iteration by

∆wm = −η ∂E
∂wm

(14)

The training-set examples included sector-width intervals of 10◦, SLL intervals of −30 dB. The
performance of the mean square error for MLP Network is shown in the above Figure 8.
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Figure 8. Neural network training procedure.

One of the major advantages of neural networks is their ability to generalize. This means that
a trained network could classify data from the same class as the learning data that it has never seen
before. In real world applications developers normally have only a small part of all possible patterns for
the generation of a neural net. To reach the best generalization, the dataset should be split into three
parts:

• The training set is used to train a neural network: The error of this dataset is minimized during
training.

• The validation set is used to determine the performance of a neural network on patterns that are
not trained during learning.

• A test set for finally checking the overall performance of a neural network.

We have two steps:

I. Network designing

1. Form the input vectors {xp, p = 1, 2, . . . , 16}.
2. Generate input/output pairs {xp, φq}, where q = 1, 2, . . . , 18.
3. Design the Neural networks.

II. Network testing (Generalization)

1. Form the vectors x′p for the testing input samples.
2. Present input vectors x′p to the neural networks.
3. Get the output of the network.

The choice of the number of hidden neurons is strongly related to the nature of nonlinearity to
model. In our case in Table 2, 30 hidden neurons allowed a good convergence of the algorithm and
a good precision of the formed neuronal model. The neuron used in this network is the continuous
nonlinear neuron whose function of activation is a tan sigmoid function (Table 3).

To investigate the ideas presented in the previous section, the first step is dividing the space in to
18 sectors; repeat every 10 degrees in the interval from (5) degrees to (+175) degrees inclusively. More
accurate space division sectors can be reached by increasing the number of element arrays. The input
vector to the entry of neural network is in the form of a 18 bit binary code (one bit for each sector).
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Table 2. Typical values of parameters use in Back-Propagation algorithm.

Parameters Symbol Value

Neuron in the input layer n 18

Neuron in the output layer m 16

Neuron in the hidden layer h 30

Coefficient of training η 0.02

Table 3. Activation function.

Parameters Symbol Function

The activation function at the hidden nodes f1 Sigmoid tan

The activation function at the output nodes f2 Sigmoid tan
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Figure 9. Neural networks results. (a) Performance. (b) Performance plot of the neural network
training. (c) Training state of the network created during training.



Progress In Electromagnetics Research B, Vol. 67, 2016 53

A bin input of (+1) indicates a source exactly on (main lobe) in the sector. Convergence may then be
achieved more rapidly.

The proposed scheme (Figure 8) has been tested with excellent results, as shown in the following
examples. A 16-element antenna array with centers separated is now used for synthesis purposes
considering voltages with constant amplitude and variable phase [17–20].

The expected simulation results must show radiation patterns with sidelobe level SLL (at −30 dB),
while maintaining main lobes in the direction of useful signal for the reference antenna (16 elements
antennas array).

In our application, the desired radiation pattern is specified at +10◦ to +170◦, the database contains
a whole of data(input/output) obtained by simulation with the Fourier method.

Figures 9(a), (b) and (c) represents the training, validation, performance and testing data of the
proposed neural networks structure. Figure 9(c) illustrates the graphical output provided by regression.
The network outputs are plotted versus the targets as open circles. The best linear fit is indicated by a
dashed line. The perfect fit (output equal to targets) is indicated by the solid line. In this application,
it is difficult to distinguish between the best linear fit line and the perfect fit line, because the fit is so
good.

To illustrate the performance of the method described in the previous section for steering single
beams in desired direction by controlling the phase excitation of each array element, 17 desired direction
of uniform excited linear array with N = 16 half wavelength spaced isotropic elements were performed.
Numerical results in Figure 10 show the excellent phase control capability for beam pattern synthesis
by using Neural Networks with Fourier technique in different sectors.

The synthesis excitation weights with neural networks are shown in Table 4 (part1) and Table 5
(part2).

At the end of the neural network training phase, it is necessary to test it on a different data base
from those used for learning. This test makes it possible both to assess the performance of the neural
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(c) (d)

(e) (f)

Figure 11. Cartesian representation of radiation pattern with 16 elements using Neural Network-
Fourier method at 2.45GHz. (a) At angle 60◦. (b) At angle 70◦. (c) At angle 80◦. (d) At angle 90◦.
(e) At angle 100◦. (b) At angle 110◦.

Table 4. Neural network-Fourier excitation for linear array (M = 16 and d = 0.5λ) (part1).

Neural network excitations (M = 16 and d = 0.5λ)

Number of Phase (deg.)

elements m 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

1 −115.56 −176.24 −95.31 130.22 −35.53 132.43 −80.02 53.53 −179.99

2 67.84 15.25 - 70.60 07.13 −150.80 42.77 −141.35 22.39 −179.99

3 −108.75 −153.24 134.10 35.49 −86.06 133.11 157.31 −08.74 −179.99

4 74.65 38.25 −21.18 −101.86 158.67 43.45 −84.01 140.11 0.00

5 −101.93 −130.24 −176.48 120.77 43.41 −46.19 −145.34 108.98 0.00

6 81.47 61.25 28.22 −16.59 −71.84 −135.85 153.32 77.84 0.00

7 −95.11 −107.24 −127.24 −153.95 172.89 134.48 91.99 46.70 0.00

8 88.29 84.25 77.64 68.68 57.63 44.82 30.66 15.56 0.00

9 −88.29 −84.25 −77.64 −68.68 −57.63 −44.82 −30.66 −15.56 0.00

10 95.11 107.24 127.24 153.95 −172.89 −134.48 −91.99 −46.70 0.00

11 −81.47 −61.25 −28.22 16.59 71.84 135.85 −153.32 −77.84 0.00

12 101.93 130.24 176.48 −120.77 −43.41 46.19 145.34 −108.98 0.00

13 −74.65 −38.25 21.18 101.86 −158.67 −43.45 84.01 −140.11 0.00

14 108.75 153.24 −134.10 −35.49 86.06 −133.11 −157.31 08.74 179.99

15 −67.84 −15.25 70.60 −07.13 150.80 −42.77 141.35 −22.39 179.99

16 115.56 176.24 95.31 −130.22 35.53 −132.43 80.02 −53.53 179.99



Progress In Electromagnetics Research B, Vol. 67, 2016 55

system and to detect the type of data that is problematic. If performance is not satisfactory, it will
either change the network architecture or modify the learning base (discriminating characteristics or
representativeness of each data class).

In order to evaluate the proposed approach for the synthesis of linear arrays, many examples of
simulations are investigated. The inter-element distances are d = 0.5λ. A simple patch antenna as
shown in Figure 4 is employed and the working frequency of all the antenna arrays synthesised in this
paper is 2.45GHz.

Using CST Microwave Studio (Figure 11), different simulation results with cartesian representation
of radiation pattern for 16 antennas using Neural Network-Fourier method at 2.45GHz (Figures 11(a),
(b), (c), (d), (e) and (f)), it is clear that the criteria of −30 dB for sidelobe levels is fulfilled.

Simulated results for 3D antenna radiation pattern synthesis of the developed MIMO antenna array
system with 16 elements using Neural Network-Fourier method at 2.45GHz are shown in Figure 12 and
Figure 13. All these simulations are carried out using CST Microwave Studio simulator.

Table 5. Neural network-Fourier excitation for linear array (M = 16 and d = 0.5λ) (part2).

Neural network excitations (M = 16 and d = 0.5λ)

Number of Phase (deg.)

elements m 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦

1 −53.53 80.02 −132.43 35.53 −130.22 95.31 176.24 115.56

2 −22.39 141.35 −42.77 150.80 −07.13 70.60 −15.25 −67.84

3 08.74 −157.31 −133.11 86.06 −35.49 −134.10 153.24 108.75

4 −140.11 84.01 −43.45 −158.67 101.86 21.18 −38.25 −74.65

5 −108.98 145.34 46.19 −43.41 −120.77 176.48 130.24 101.93

6 −77.84 −153.32 135.85 71.84 16.59 −28.22 −61.25 −81.47

7 −46.70 −91.99 −134.48 −172.89 153.95 127.06 107.24 95.11

8 −15.56 −30.66 −44.82 −57.63 −68.68 −77.64 −84.25 −88.29

9 15.56 30.66 44.82 57.63 68.68 77.64 84.25 88.29

10 46.70 91.99 134.48 172.89 −153.95 −127.06 −107.24 −95.11

11 77.84 153.32 −135.85 −71.84 −16.59 28.22 61.25 81.47

12 108.98 −145.34 −46.19 43.41 120.77 −176.48 −130.24 −101.93

13 140.11 −84.01 43.45 158.67 −101.86 −21.18 38.25 74.65

14 −08.74 157.31 133.11 −86.06 35.49 134.10 −153.24 −108.75

15 22.39 −141.35 42.77 −150.80 07.13 −70.60 15.25 67.84

16 53.53 −80.02 132.43 −35.53 130.22 −95.31 −176.24 −115.56

(a) (b)
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(c) (d)

(e) (f)

Figure 12. Simulated results for 3D antenna radiation pattern with 16 elements using Neural Network-
Fourier method at 2.45GHz (part1). (a) At angle 40◦. (b) At angle 50◦. (c) At angle 60◦. (d) At angle
70◦. (e) At angle 80◦. (f) At angle 90◦.

(c) (d)

(a) (b)



Progress In Electromagnetics Research B, Vol. 67, 2016 57

(e) (f)

Figure 13. Simulated results for 3D antenna radiation pattern with 16 elements using Neural Network-
Fourier method at 2.45GHz (part2). (a) At angle 100◦. (b) At angle 110◦. (c) At angle 120◦. (d) At
angle 130◦. (e) At angle 140◦. (f) At angle 150◦.

In this paper, we use the non-linear neural representation to develop a new synthesis tool, and this
radiation to meet the desired specifications. The validity of this model has been supported by various
cases of simulation. Results clearly show a very good agreement between the desired and synthesized
specifications.

4. CONCLUSION

In this paper, a hybrid synthesis method is proposed to design linear antenna array for the given optimal
radiation pattern using Neural Networks. To have a good optimization results in linear arrays, the
parameters that should be controlled are the excitations of antennas. This paper deals about finding the
parameters of radiation pattern of given uniform linear antenna array. Initially, the network is trained
with a set of input-output data pairs based on Fourier synthesis phases. We studied the possibilities of
modeling and optimization of the synthesis problem for the antenna arrays with the Fourier method and
neuronal approach. Results show that there is an agreement between the desired specifications and the
synthesized one. This demonstrates the effectiveness of the proposed procedure. The Neural-Networks
have better learning ability, generalization, parallel processing and error endurance attributes that lead
to perfect solutions in applications where one needs to model the nonlinear mapping of complex data.
This approach makes use of Neural Network that can be trained for any number of elements, spacing
and excitation. Once the network is trained, it can find the parameters with respect to the input.
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