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The Forward Transmission Matrix (FTM) Method
for S-Parameter Analysis of Microwave Circuits

and Their Metamaterial Counterparts

Omar F. Siddiqui1, 2, *

Abstract—In classical Electromagnetics textbooks, microwave circuits such as circulators, couplers,
and filters are solved by non-systematic approaches such as even-odd mode analysis. Hence an electrical
engineering student coming from the conventional circuit theory background encounters difficulties in
understanding and solving microwave circuits. In this paper, we propose a modified node voltage analysis
method in which the circuit branches are represented by their forward transmission matrices so that
the electromagnetic wave propagation is taken care of. The Kirchhoff’s current rule, tailored for high
frequencies, is applied to formulate the simultaneous node voltage equations which are subsequently
solved by matrix inversion. The proposed forward transmission matrix (FTM) method is applied to
evaluate the S-parameters of some well-known microwave devices including the recently-developed
metamaterial-based circuits. The FTM node analysis is a natural extension of the classical node
analysis which is taught in the early stages of an Electrical Engineering program. Hence we anticipate
that the proposed method will ease up the conceptual transition of electrical engineering students and
academicians from the low-frequency alternating current circuits to high frequency RF and microwave
circuits.

1. INTRODUCTION

The node voltage analysis is a widely used method to solve alternating or direct current (ac or dc)
electrical circuits [1, 2]. However, it breaks down when tried to be used with circuits dimensionally
comparable to the wavelength of the source voltage [3, 4]. Fig. 1 illustrates the difference of current
flow between two nodes in a conventional ac circuit and a high frequency (microwave) circuit. In
the conventional ac circuit (the long-wavelength regime), one global ground reference can be defined
to which all the node voltages can be referred to (Fig. 1(a)). Hence the inter-nodal current can be
simply calculated by dividing the difference of the adjacent node voltages by the total impedance seen
by the current. In the microwave circuit (the short wave-length regime), one global ground cannot
be defined because the fact that the electric field is non-conservative. In other words, there is a
time lapse between the state of first node to affect the state of another spatially separated node,
as predicted by the telegrapher’s equations [3–6]. To account for the time lapse between the states of
the nodes, a local ground node can be defined to each circuit node to which the node voltage can be
referred [3]. Following this approach, the network characterization of port-based was performed and a
locally-referenced (M +1)×(M +1) admittance matrix equation was generated for an M-port microwave
circuit. The port voltages and currents could then be found by any numerical method [3]. Although quite
suitable for commercial circuit analysis tools and harmonic balance simulators, the method does not
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follow the systematic approach of the conventional nodal analysis procedure in which simultaneous nodal
equations are deduced by the Kirchhoff’s circuital laws. Therefore, it has not been adopted by popular
textbooks to analyze the microwave devices such as directional couplers, power dividers, circulators and
filters [5, 6]. The classical microwave textbooks usually resort to less methodical approaches such as
the even-odd analysis [5] or the Π-T network representation for the S-parameter solution. Therefore,
the engineering students transitioning from the classical to the high-frequency circuits are not able to
connect the basic circuit courses with the advanced level electromagnetic and microwave courses.

In this paper, we aim to bridge this transition by providing the students an analysis method
which is rooted in the basic electrical engineering methods of nodal analysis and Kirchhoff’s circuit
rules. The paper also serves as an introduction to the design and operation of the metamaterials-
based devices [7–24] which will be analyzed using the proposed method along with their conventional
equivalents. We develop a systematic nodal analysis approach based on the Kirchhoff’s current rule
which is tailored to the high frequency networks by ABCD matrix representation of the circuit branches.
Similar methodology has been earlier applied to analyze 2D periodic structures [22]. In the proposed
technique, which will be further referred to as the FTM method, the circuit branches are represented by
their forward transmission matrices, also known as the ABCD matrices [5, 6]. Since the ABCD matrix
inherently takes into account the underlying electromagnetic wave propagation, the proposed method
can be utilized for a very wide frequency spectrum. The paper is organized as follows. The modified
Kirchhoff’s current law is developed for the locally referenced nodes in Section 2. Section 3 serves two
purposes. Firstly, a metamaterial unit cell is designed by applying the theory of periodic structures.
Secondly, it introduces the FTM nodal method to analyze the metamaterial unit cell and operation
of a metamaterial unit cell. The s-parameters are calculated by first inverting the F-matrix which is
generated from the nodal equations. Section 4 presents the generalized rules to write F-matrix for an
arbitrary microwave circuit. In Section 5, S-parameter calculations are performed using FTM analysis
for several conventional microwave devices and their metamaterial counterparts. Finally, Section 6 is
dedicated for the concluding remarks.
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Figure 1. The difference between the conventional node analysis and the high frequency node analysis.

2. THE KIRCHHOFF’S CURRENT LAW FOR THE NETWORKS REPRESENTED
BY ABCD MATRICES

In Fig. 1(b), consider the spatial extension between node 1 and node 2 modeled as two transmission
line segments with characteristic impedances of Z0 and lengths of d/2 connected through a lumped
impedance Z. The combined ABCD matrix can be written as follows:
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where β = 2πf/c is the phase constant and βd the phase incurred in the interconnecting transmission
line segments between the two adjacent nodes. The voltages and currents at the nodes 1 and 2 can be
written in terms of the combined ABCD matrix in the following way:(

V2

−I2

)
=
(

A B
C D

)(
V1

−I1

)
(3)

Hence the current flowing out of node 1 towards node 2 can be written as follows:

I1 =
AV1 − V2

B
(4)

Note that in the long wavelength range (low frequencies) βd ≈ 0 and A and B parameters in the matrix
Equation (2) can be approximated to 1 and Z, respectively. The above nodal equation in this case
reduces to:

I1 =
V1 − V2

Z
(5)

The outgoing current (4) obtained by the locally referenced ABCD matrix equation very closely
resembles to the familiar current Equation (5) obtained during the conventional ac nodal analysis.

3. THE METAMATERIAL UNIT CELL DESIGN AND ITS NODAL ANALYSIS

Metamaterials have stirred up exciting new dimensions in the fields of Electromagnetics and Physics in
the past decade [7–24]. Here we focus on metamaterial transmission lines (TL) also known as left-handed
transmission lines [9, 10, 13–24]. On account of their unique dispersion characteristics, metamaterial-
TLs have been employed in building compact microwave devices, filters, compact phase shifters, and
miniaturized [14–20] antennas. In the modern communication system design, these lines have attracted
widespread interest on account of their tuneable frequency response which can be arbitrarily designed
to occupy certain bands that are not harmonically related [14, 15]. They can also be designed to
reject harmonically occurring frequency bands that cause unnecessary interference and power spill-
over resulting in power losses [20]. The cleared bands can then be used for other applications. A
metamaterial-TL can be designed by periodically repeating either of the two unit cells depicted in
Fig. 2. A unit cell of Fig. 2(a) is composed of a host line segment of length d and impedance ZU

loaded in series with capacitor and in shunt with an inductor Lsh. An extra capacitive shunt is added
in Fig. 2(b) to achieve design compactness and better bandwidth control of the rejection band [20].
The metamaterial design presented here will be subsequently used in Section 4 to analyze microwave
devices.
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Figure 2. Unit cell of a capacitor-loaded TL-metamaterial The extra shunt capacitor provides
controllable bandpass characteristics.
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3.1. Metamaterial Unit Cell Design

Consider a metamaterial-TL design having a Bloch impedance of 50 Ω and 22.5◦ Bloch phase shift
(shift per unit cell) and a rejection band between 1.2 GHz and 2.5 GHz. The component values for
Fig. 2(a) unit cell can be calculated by following the design approach outlined in Appendix A [20].
To verify the correctness of the design procedure, the Brillouin diagram is depicted in Fig. 3 which is
drawn for the design parameters provided in the inset. The design frequency of 0.9 GHz lies within the
lowest fundamental band (i.e., 1.2 GHz). Note that the electromagnetic wave in this band takes place
as a backward-wave mode which is identified by the negative slope of the Brillouin diagram and is the
hallmark of left-handed metamaterial-TLs [7, 8, 16]. The design criteria of 0.125π phase shift at 0.9 GHz
and the stop band between 1.2 and 2.5 GHz are indeed satisfied. In the second passband, which is the
region above 2.5 GHz, the usual forward-wave propagation takes place.
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Figure 3. The Brillouin Diagram showing the relation between frequency and unit cell phase shift
(Bloch phase shift) of a metamaterial line.

3.2. The FTM Nodal Analysis of the Metamaterial Unit Cell

Consider a 3-node metamaterial unit cell connected to a sinusoidal source and a load depicted in Fig. 4
and its low-frequency equivalent in Fig. 5. Referring each node voltage to its local reference node, the
application of the KCL results in the following three nodal equations:

ACx1V1 − V2

BCx1
+

V1 − VS

RS
= 0 (6)

ACx1V2 − V1

BCx1
+

ALy1V2

BLy1
+

ACx2V2 − V3

BCx2
= 0 (7)

ARy1V3

BRy1
+

ACx2V3 − V2

BCx2
= 0 (8)

The forward transmission matrix elements used in Equations (6)–(8) can be obtained by multiplying
the respective lumped element matrices with the transmission line matrix, as given in Fig. 4(a). The
above system of linear equations can be rearranged to give the solution of the unknown voltages:

V = F−1VS (9)

where F-matrix consists of the A and B elements of the forward transmission matrix constituting the
branches of the microwave circuit, given by:

F̄ =

⎛
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Figure 4. A left-handed transmission line (metamaterial) unit cell as seen at microwave frequencies
(Forward Transmission Matrix model).
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Figure 5. Low frequency (long-wavelength) view of an the metamaterial unit cell (conventional model).

V and Vs are the node voltage and source voltage arrays given by:

V̄ = (V1 V2 V3)
T and V̄S = (Vs/Rs 0 0)T (11)

For comparison, see the associated nodal equations for the low-frequency model shown in the
inset of Fig. 5. These equations can also be obtained from Equations (6)–(8) by assuming the long-
wavelength limit (βd ≈ 0). The F-matrix Equation (9) along with low-frequency nodal equations are
solved numerically for a frequency range 0 to 10 GHz, and the results are depicted in Fig. 6. The
microwave circuit is also simulated using the commercially available high frequency circuit simulator
Agilent-ADS, and the results are superimposed in Fig. 6 plots. As shown, the numerically generated
results using the FTM model are in full agreement with the ones generated by ADS. Towards the
dc frequency range where the transmission line segments are much shorter than the wavelength, the
lumped component behavior is dominant, and the conventional ac model and the FTM model give similar
results. At 900 MHz frequency, the matching conditions are met as the designed Bloch impedance of the
metamaterial-TL becomes equal to the load impedance. Consequently, the load voltage V3 predicted
by the microwave model becomes maximum. With the increase of frequency, there is a decrease in the
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Figure 6. The low and high frequency node voltage solution for the metamaterial unit cell given in
Figs. 4 and 5.

capacitive reactance (1/jωC) and an increase in the inductive reactance (jωL). Beyond approximately
2GHz, the shunt inductor and series capacitor can be respectively approximated as an open and a
short circuits, and the output voltage V3 across the resistor Ry1 in the conventional model assumes a
steady 0.5 V and an approximate phase angle of ∠0◦. At these frequencies, the FTM model predicts a
different behavior of the node voltages due to the distributed transmission line impedances seen by the
propagating wave. These impedance mismatches result in the magnitude fluctuations and phase changes
that are not captured by the conventional node analysis. In particular, consider the difference between
the phase propagation of the fundamental backward-wave mode and the second-harmonic forward-wave
mode propagation observed in the Brillouin dispersion diagram of Fig. 3. The difference can be well
demonstrated by knowing the phase difference between nodes 1 and 3 obtained from the FTM model
in the two frequency bands. At 900 MHz, which lies in the fundamental band (see Fig. 3), the phase is
accumulated at node 3 as the wave propagates from input towards the load. Hence the node voltage
V3 (0.51∠23◦) leads the node voltage V1 (0.49 ∠1.4◦) by 21.6◦ indicating a backward-wave propagation.
On the other hand, at 6GHz, the transmission phase depreciates with wave propagation. Therefore,
the voltage at node 3 (0.28∠ − 70.5◦) lags node 1 voltage (0.187∠ − 43◦ by 27.5◦) which indicates a
forward-wave propagation.
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4. THE F-MATRIX GENERATION RULES

The F-matrix consists of coefficients of the node voltage equations comprising the elements of ABCD
matrices representing the branches of a high frequency electrical network. For example, the F-matrix
of the set of Equations (6)–(8) for the metamaterial unit cell is given by Equation (10). For an N-node
network, a N × N matrix is needed to be solved. The general configuration of the F-Matrix is given
below.

F̄ =

⎛
⎜⎜⎜⎜⎜⎝

F11 F12 F13 • • F1N

F21 F22 F23 • • F2N

F31 F32 F33 • • F3N

• • • • • •
• • • • • •

FN1 FN2 FN3 • • FNN

⎞
⎟⎟⎟⎟⎟⎠ (12)

Looking at the high frequency circuit of Fig. 4 and its F-matrix in Equation (10), the correspondence
between the voltage nodes and the elements of the matrix can be readily established. If m = n, Fmn

are given by:

Fmn =
N∑

n=1

Xmn
Amn

Bmn
, m = 1, 2, ...N (13)

For matrix entries m �= n,

Fmn = −Xmn
1

Bmn
, m = 1, 2, . . . N (14)

where Amn and Bmn are the forward transmission elements of the branch connecting the nodes m and
n, as shown in Fig. 7. Xmn is the connection indicator which, if Xmn = 1, indicates the presence of
connection between nodes m and n and indicates a lack thereof when Xmn = 0.

m
n

mnmn

mnmn

CC

BA

mnmn

mnmn

CC

BA

Connected 

Not
Connected 

( )

( )

( )

Figure 7. The generation of F-matrix by examining the connection between the nodes and its forward
transmission matrix.

5. MICROWAVE NODAL ANALYSIS OF MICROWAVE DEVICES

5.1. The Quadrature Hybrid

The quadrature hybrid is a directional coupler extensively used in microwave engineering for power
division, impedance matching, and isolation purposes. Consider the conventional quadrature-hybrid
directional coupler depicted in Fig. 8(a) and its metamaterial equivalent in Fig. 8(b). The coupler
consists of four transmission-line sections extending a quarter-wave length transmission line sections.
The input power is equally divided between through port 2 and coupled port 3, and the two ports are
90◦ out of phase with respect to each other. In this section, the S-parameters of the conventional and
metamaterial couplers are compared by the FTM method formulated in the previous sections.

5.1.1. The Quadrature Hybrid F-matrix

Looking at Fig. 8 and short circuiting the voltage source, it can be observed that all the nodes are
connected to one x-, one y-directed branch and a resistor Zo:

F11 = F22 = F33 = F44 =
Ax

Bx
+

Ay

By
+

AZ

BZ
(15)



130 Siddiqui

1

2
,90 00 Z

0
0 ,90 Z

1

2
,

4
0Zλ

0V 0V

0,
4

Z
λ

xx

xx

DC

BA

xx

xx

DC

BA

yy

yy

DC

BA

yy

yy

DC

BA

2
,

4
0Zλ

0,
4

Z
λ

yy

yy

D

BA

yy

yy

DC

BA
0

0 ,90 Z

2
,90 00 Z

xx

xx

DC

BA

xx

xx

DC

BA

One Unit Cell 

0Z

0Z
34

0Z

0Z2
0Z

0Z2

0Z
34

0Z

(a) Conventional Quadrature Hybrid (b) Metamaterial Quadrature Hybrid 

( )

( )

( )

( )

( )

( ) ( )

( )

Figure 8. (a) The conventional quadrature hybrid directional coupler. (b) The metamaterial
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where AZ/BZ = 1/Zo represents the port impedance Zo. Furthermore, nodes 1 with 2 and nodes 3
with 4 are connected by x-directed segments which can be translated to the following matrix:

F12 = F21 = F34 = F43 = − 1
Bx

(16)

F23 = F32 = F14 = F41 = − 1
By

(17)

Since no connection exists between nodes 1-3 and 2-4, the corresponding matrix entries are zero:

F13 = F31 = F24 = F42 = 0 (18)
Therefore, the F-matrix can be written by combining Equations (15)–(18), as follows:

F̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ax

Bx
+

Ay

By
+

AZ

BZ
− 1

Bx
0 − 1

By

− 1
Bx

Ax

Bx
+

Ay

By
+

AZ

BZ
− 1

By
0

0 − 1
By

Ax

Bx
+

Ay

By
+

AZ

BZ
− 1

Bx

− 1
By

0 − 1
Bx

Ax

Bx
+

Ay

By
+

AZ

BZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

where AZ/BZ = 1/Zo represents the port impedance Zo. The node voltages are given by applying
Equation (9) where V and V s assuming a source voltage of 1V are given by:

V̄ = (V1 V2 V3 V4)
T and V̄S = (1/Z0 0 0 0)T (20)

The 4 × 4 F-matrix can be obtained from the set of simultaneous Equations (12)–(15):

5.1.2. The S-Parameter Solution of a Conventional Quadrature Hybrid at the Design Frequency of
900 MHz

The forward transmission line matrices for x- and y-directed transmission line segments for the
conventional hybrid are given by:(

Ak Bk

Ck Dk

)
=
(

cos βLk jZ0n sin βLk

jY0k sin βLk cos βLk

)
(21)

where k = x or y and Lk is the length of the transmission line segments between the nodes. Assuming
system impedance Z0 = 50 Ω, section impedances are given by Z0x = 50 Ω and Z0y = 35.35 Ω. At the
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design frequency of 0.90 GHz, length Lk becomes equal to λ/4 so that the phase shift βLk attains a
value of π/2, and the elements of the above ABCD matrix are simplified to Ak = Dk = 0, Bk = jZok

and Ck = jYok. The F-matrix and its inverse are then given by:

F̄ =
1
Z0

⎛
⎜⎜⎝

1 j
√

2 0 j
j
√

2 1 j 0
0 j 1 j

√
2

j 0 j
√

2 1

⎞
⎟⎟⎠, F̄−1 = − Z0

2
√

2

⎛
⎜⎜⎝
√

2 j 1 0
j

√
2 0 1

1 0
√

2 j
0 1 j

√
2

⎞
⎟⎟⎠ (22)

The node voltages are found by multiplying the F−1 by the source array in Equation (20)⎡
⎢⎣

V1

V2

V3

V4

⎤
⎥⎦ = − Z0

2
√

2

⎛
⎜⎜⎝
−√

2 j 1 0
j −√

2 0 1
1 0 −√

2 j
0 1 j −√

2

⎞
⎟⎟⎠
⎡
⎢⎣

1/Z0

0
0
0

⎤
⎥⎦ =

⎡
⎢⎢⎣

1/2
−j/2

√
2

−1/2
√

2
0

⎤
⎥⎥⎦ (23)

The S-parameters can be extracted by the following transformation:⎡
⎢⎣

S11

S21

S31

S41

⎤
⎥⎦ =

⎡
⎢⎣
2V1 − 1

2V2

2V3

2V4

⎤
⎥⎦ =

⎡
⎢⎢⎣

0
−j/

√
2

−1/
√

2
0

⎤
⎥⎥⎦ (24)

The device is reciprocal and symmetric, hence Snm = Smn and the 4 × 4 scattering matrix can be
written as follows:

S̄ = − 1√
2

⎛
⎜⎝

0 j 1 0
j 0 0 1
1 0 0 j
0 1 j 0

⎞
⎟⎠ (25)

Eq. (25) is the common device representation followed by the microwave textbooks such as [5]. It shows
good matching (S11 = 0) and isolation (S41 = 0) at the design frequency of 900 MHz. The power
entering node 1 is equally divided between node 2 (the through port) and node 3 (the coupled port)
with a 90◦ phase shift as indicated by S21 and S31 values.

5.1.3. The Frequency-Domain S-Parameter Plots

To observe the device behavior at other frequencies, the S-parameters are plotted as functions of
frequency by solving the original F-matrix given in Eqs. (19) and (9). The results are depicted in
Fig. 9. At the design frequency, the equal power division and good isolation and reflection properties can
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Figure 9. The simulation results for the conventional quadrature hybrid of Fig. 5(a). (a) The
transmission coefficient of the through (S21) and coupled (S31) ports show equal power division at
the fundamental frequency 0.75 GHz and the first harmonic 2.7 GHz. (b) The reflection coefficient (S11)
and the isolation (S41) show good isolation and matching.
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be seen. Since the transmission-line phase is a periodically repeatable phenomenon, the transmission
characteristics of the coupler are also repeated at three times of the fundamental frequency, i.e., at
2.7 GHz the lengths of the transmission lines become 3λ/2.

5.1.4. The S-Parameter Analysis of a Metamaterial Quadrature Hybrid

To suppress the higher order harmonics, the quarter-wavelength lines of the conventional quadrature
hybrid are replaced by the metamaterial-TL segments designed to exhibit Bloch impedances of 50 and
35.35 Ω with shifts of 90◦, as shown in Fig. 8(b). Assuming Bloch phase shift of 22.5◦ per unit cell and a
stop band between 1.2 and 3 GHz, the parameters of Fig. 2(b) metamaterial unit cell are calculated by
the design procedure illustrated in Appendix A and summarized in Table 1. The forward transmission
matrix for the K-cell metamaterial-TL segment between the two coupler nodes can be obtained by first
combining the forward matrices of the TL segments and lumped components of Fig. 2(b) unit call, and
then repeating the combined matrix N times i.e.:(

Ak Bk

Ck Dk

)
= ([TL]k [ZS] [TL]k [YSh] [TL]k [ZS ] [TL]k)

K (26)

where k = x or y, K (here K = 4 is assumed), and the matrices are given by:

[TL]k =

⎛
⎜⎝ cos

βdk

4
jZUk sin

βdk

4
jYUk sin

βdk

4
cos

βdk

4

⎞
⎟⎠ (27)

[Zsh] =
(

1 Zs

0 1

)
, [Ysh] =

(
1 0

Ysh 1

)
(28)

where Zs = jωCs and Ysh = jωCsh + 1/jωLsh.

Table 1. The unit cell design of the metamaterial coupler.

n ZBk (0.9 GHz) θBk (0.9 GHz) ZUn dn Cs Csh Lsh

x 50 Ω π/8 20.9 Ω 0.49 cm 8.2 pF 1 pF 9.8 nH
y 35.35 Ω π/8 21.5 Ω 0.34 cm 12.5 pF 2 pF 7 nH

At the design frequency of 900 MHz, the F matrix and its inverse attain the following form:

F̄ =
1
Z0

⎛
⎜⎜⎝

1 −j
√

2 0 −j
−j

√
2 1 −j 0

0 −j 1 −j
√

2
−j 0 −j

√
2 1

⎞
⎟⎟⎠, F̄−1 =

Z0

2
√

2

⎛
⎜⎜⎝
√

2 j −1 0
j

√
2 0 −1

−1 0
√

2 j
0 −1 j

√
2

⎞
⎟⎟⎠ (29)

and the node voltages can be written as:⎡
⎢⎣

V1

V2

V3

V4

⎤
⎥⎦ =

Z0

2
√

2

⎛
⎜⎜⎝
√

2 j −1 0
j

√
2 0 −1

−1 0
√

2 j
0 −1 j

√
2

⎞
⎟⎟⎠
⎡
⎢⎣

1/Z0

0
0
0

⎤
⎥⎦ =

⎡
⎢⎢⎣

1/2
j/2

√
2

−1/2
√

2
0

⎤
⎥⎥⎦ (30)

which can be converted to the S-matrix by applying the transformation of Eq. (24) and using symmetry
and reciprocity arguments:

S̄ = − 1√
2

⎛
⎜⎝

0 −j 1 0
1 0 0 1
−j 0 0 −j
0 1 −j 0

⎞
⎟⎠ (31)



Progress In Electromagnetics Research B, Vol. 66, 2016 133

The transmission, reflection, and isolation parameters can also be calculated at other frequencies by
applying the full solution using Eqs. (9), (19) and (20). As depicted in Fig. 10, the coupler demonstrates
the equal power division at the designed frequency of 0.9 GHz. Comparing Figs. 9 and 10, it can be
observed that the 2.7 GHz harmonic mode is well suppressed for the metamaterial coupler. The difference
between the transmission power levels at the third harmonic frequency is more than 20 dB. As shown
in Fig. 10(b), the S11 dip of −40 dB at the designed frequency shows good matching at the input port.
Moreover, excellent isolation of more than 20 dB is obtained on port 4 of the coupler.
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Figure 10. The simulation results for the metamaterial quadrature hybrid of Fig. 8(b). (a) The
transmission coefficient of the through (S21) and coupled (S31) ports show equal power division at the
fundamental frequency 0.9 GHz and harmonic suppression of 2.7 GHz mode. The Reflection coefficient
(S11) and the isolation (S41) show good isolation and matching at the design frequency.

5.2. The 180◦ Ring Hybrid Coupler

A schematic diagram of a four-port ring hybrid and its metamaterial counterpart are given in Fig. 11.
The ring hybrid is a powerful microwave device and can be used in several applications including power
division, multiplexers, and demultiplexers [5, 6, 23]. An input power applied at port 1 is divided equally
between ports 2 and 3 having a zero phase difference and an isolated port 4. The power applied at
port 4 results in a power split at ports 2 and 3 with a 180◦ phase difference and an isolated port 1. If
simultaneous signals are applied at ports 2 and 3, they are added at port 1 and subtracted at port 4.
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Figure 11. (a) The conventional 180◦ hybrid and (b) its metamaterial counterpart.

5.2.1. The F-Matrix and S-Parameter Solution at Design Frequency

The F-matrix can be generated by applying the generalized rules outlined in Section 4. Assuming that
the short segments (λ/4) in Fig. 11 are represented by ABCD matrix elements (A1, B1) and the long
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segment (3λ/4) by (A2, B2), the F-matrix can be written as:

F̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
A1

B1
+

AZ

BZ
− 1

B1
− 1

B1
0

− 1
B1

A1

B1
+

A2

B2
+

AZ

BZ
0 − 1

B2

− 1
B1

0 2
A1

B1
+

AZ

BZ
− 1

B1

0 − 1
B2

− 1
B1

A1

B1
+

A2

B2
+

AZ

BZ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(32)

where k = 1 and 2 for the respective shorter and longer transmission lines. The ABCD matrix elements
Ak and Bk are given by jZok cos βLk and jYok sin βLk, respectively. Elements AZ and BZ are given by 1
and Zo, , respectively. For the conventional ring hybrid, the characteristics impedances of the two types
of transmission line segments are given by Zo1 = Zo2 = 1.414Zo. For the metamaterial ring hybrid, the
90◦ and 270◦ segments are composed of four and twelve unit cells, respectively, with a Bloch shift of
22.5◦ per cell and the lumped components given in Table 2. At the design frequency of 900 MHz, the
F-matrix and its inverse are simplified to:

F̄ =
1
Z0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ± j√
2

± j√
2

0

± j√
2

1 0 ∓ j√
2

± j√
2

0 1 ± j√
2

0 ∓ j√
2

± j√
2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F̄−1 =
Z0

2
√

2

⎛
⎜⎜⎜⎝
√

2 ∓j ∓j 0
∓j

√
2 0 ±j

∓j 0
√

2 ∓j

0 ±j ∓j
√

2

⎞
⎟⎟⎟⎠ (33)

where the upper sign indicates the conventional hybrid solution, and the lower sign denotes the
metamaterial solution. Assuming the input at port 1, the port voltages for both the hybrids can
be obtained as follows:⎡

⎢⎢⎣
V1

V2

V3

V4

⎤
⎥⎥⎦ =

Z0

2
√

2

⎛
⎜⎜⎜⎝
√

2 ∓j ∓j 0
∓j

√
2 0 ±j

∓j 0
√

2 ∓j

0 ±j ∓j
√

2

⎞
⎟⎟⎟⎠
⎡
⎢⎣
1/Z0

0
0
0

⎤
⎥⎦ =

⎡
⎢⎢⎣

1/2
∓j/2

√
2

∓j/2
√

2
0

⎤
⎥⎥⎦ (34)

The S-parameters can be obtained by using the voltage to S-parameter transformation in Eq. (24),⎡
⎢⎢⎣

S14

S24

S34

S44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2V1 − 1
2V2

2V3

2V4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
∓j/

√
2

∓j/
√

2
0

⎤
⎥⎥⎦ (35)

If the input is applied at port 4, the resulting voltages can be found by:⎡
⎢⎢⎣
V1

V2

V3

V4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

S14/2
S24/2
S34/2

S44/2 + 1/2

⎤
⎥⎥⎦ =

Z0

2
√

2

⎛
⎜⎜⎜⎝
√

2 ∓j ∓j 0
∓j

√
2 0 ±j

∓j 0
√

2 ∓j

0 ±j ∓j
√

2

⎞
⎟⎟⎟⎠
⎡
⎢⎣

0
0
0

1/Z0

⎤
⎥⎦ =

⎡
⎢⎢⎣

0
±j/2

√
2

∓j/2
√

2
1/2

⎤
⎥⎥⎦ (36)

The combined S-matrix can therefore be written as:

S̄ = ∓ j√
2

⎛
⎜⎝

0 1 1 0
1 0 0 −1
1 0 0 1
0 −1 1 0

⎞
⎟⎠ (37)
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Table 2. The unit cell design of the metamaterial ring hybrid.

n ZBk (0.9GHz) θBk (0.9 GHz) ZUn dn Cs Csh Lsh

1, 2 70.7 Ω π/8 41.7 Ω 0.35 cm 5.8 pF 1 pF 13.7 nH

5.2.2. The Frequency-Dependent S-Parameter Plots

The frequency-dependent S-parameters can be calculated by inverting the generalized F-matrix in Eq.
(32) to demonstrate the spectral behavior of the ring hybrid. The transmission coefficients for the
conventional and metamaterial ring hybrids, depicted in Fig. 12, show an equal power division at the
design frequency between ports 2 and 3. The metamaterial hybrid suppresses the 2.7 GHz mode by
approximately 17 dB. Excellent reflection and isolation characteristics are observed for both hybrids as
given in Fig. 13.
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Figure 12. The Transmission coefficients observed at ports 2 and 3 of (a) a conventional ring hybrid
and (b) a metamaterial ring hybrid.
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Figure 13. The reflection and isolation coefficients observed at ports 1 and 4 of (a) a conventional ring
hybrid and (b) a metamaterial ring hybrid.

5.3. The Wilkinson Power Divider

The Wilkinson power divider is a passive 3-port microwave device which provides an equal power
split at output with zero phase difference and a very good isolation [5, 6, 24]. Schematic diagrams of
the conventional and metamaterial devices are shown in Fig. 14. The metamaterial power divider is
obtained by replacing the λ/2 transmission line segments by four metamaterial unit-cells (Fig. 2(b))
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Figure 14. The schematic diagram of (a) conventional Wilkinson power divider and (b) a metamaterial
Wilkinson power divider.

whose parameters are given in Table 2. The application of the F-matrix generation rules results in:

F̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
A

B
+

AZ

BZ
− 1

B
− 1

B

− 1
B

A

B
+

3AZ

2BZ
− 1

2Z0

− 1
B

− 1
2Z0

A

B
+

3AZ

2BZ

⎞
⎟⎟⎟⎟⎟⎟⎠

(38)

At the design frequency, the F-matrix and its inverse for the conventional and the metamaterial device
are given by:

F̄ =
1
Z0

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ± j√
2

± j√
2

± j√
2

3
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3
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, F̄−1 =
Z0

2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ∓ j√
2

∓ j√
2

∓ j√
2

1 0

∓ j√
2

0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(39)

where all the top-placed signs indicate the conventional power divider parameters. Assuming the input
at nodes 1 and 2, respectively, the following two solutions of S-parameters are obtained:

[
V1

V2

V3

]
=

[
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2
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2
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⎞
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⎡
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1
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∓ j
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√
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(40)

[
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V3

]
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⎡
⎣ S12
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⎞
⎠ =

⎡
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∓ j

2
√

2
1/2
0

⎤
⎥⎥⎦ (41)

The transmission S32 between ports 2 and 3 is zero which indicates that the two ports are fully
isolated at the design frequency. Combining the results of Eqs. (40) and (41) and invoking reciprocity,
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Table 3. Summary of node analysis results for various microwave devices.

Microwave
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Circuit Diagram Z0F̄ -Matrix S̄-Matrix
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the S-matrix of the power divider is obtained:

S̄ = ∓ 1√
2

(0 j j
j 0 0
j 0 0

)
(42)

The S-parameter spectra for the two power dividers, obtained by solving the simultaneous set of
Equations (39)–(41), are shown in Fig. 15. An equal power division and excellent isolation and reflection
properties are observed at the design frequency. The third harmonic mode at 2.7 GHz is well suppressed
by about 10 dB in the metamaterial power divider.
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Figure 15. The S-parameters including transmission, reflection, and isolation coefficients for (a) a
conventional Wilkinson power divider and (b) a metamaterial Wilkinson power divider.

5.4. Summary of the Microwave Device Node Analyses

Table 3 provides a summary of the node analyses of the three microwave devices that have been studied
in the previous sub-sections. The F-matrix represents the coefficients of the node equations. The nth
column of the S-matrix is obtained by assuming the source at the nth node and multiplying the F−1-
matrix with the source array [Eq. (9)]. Note that the F and S matrices of the metamaterial device
can be obtained from that of its conventional counterpart by substituting j with −j, indicating the
backward wave propagation.

6. CONCLUSION

In this paper, we present a node analysis technique based on forward transmission matrix (FTM) which
incorporates the electromagnetic traveling wave. Hence it can be used to solve electric circuits and
networks at the microwave and higher frequency spectra in which the traditional node analysis does
not work. In the proposed method, the node voltage equations are written by the modified Kirchhoff’s
circuit laws, and then the resulting F-matrix is solved by matrix inversion. The FTM method is used to
compare wave propagation in some traditional microwave circuits and their metamaterial equivalents.
The S-matrix for all configurations is determined by a systematic approach with methods rooted in
circuit theory which are otherwise solved by theoretically challenging methods such as even-odd analysis
methods in the contemporary textbooks. The proposed FTM method is a natural extension to the
low-frequency traditional node analysis. Consequently, it offers a smooth transition for an electrical
engineering student coming from low-frequency electronics to microwave circuits.
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APPENDIX A. DESIGN OF THE METAMATERIAL UNIT CELL

The design approach is outlined in [20] and [24]. Here it is given for completeness. Considering the unit
cell of Fig. 2, the Bloch phase shift ‘kd’ (phase shift per unit cell) can be written in the form of the
following dispersion equation [21]:

cosh kd = cos βd

[
1 +

YshZs

4

]
+

j

2
sin βd [ZsYo + YshZU ] +

YshZs

4
(A1)

where ZU and β are the intrinsic characteristic impedance and phase constant of the underlying host
transmission line. Zs and Ysh are the series impedance and shunt impedance loading elements in the
unit cell. For small phase shifts, the Bloch phase (θB) and Bloch impedance (ZB) can be approximated
as [15, 21]:

θ2
B = L′C ′ (ω2

1 − ω2)(ω2
2 − ω2)

ω2
(A2)

Z2
B =

L′

C ′
(ω2

1 − ω2)
(ω2

2 − ω2)
(A3)

Here L′ = L0d. C ′ = C0d for the traditional metamaterial (Fig. 2(a)) and C ′ = C0d + Csh for the
capacitor-loaded metamaterial-TL (Fig. 2(b)). L0 and C0 are the distributed inductance and capacitance
of the host transmission line and are given below in terms of the phase velocity (u) of the medium:

Lo = ZU/u and Co = 1/ZUu (A4)

The radian frequencies ω1 and ω2 identify the cutoff frequencies of the first and second fundamental
harmonics and will be explained later in this section. These cutoff frequencies are expressed in terms
of the already defined inductances and capacitances as follows:

ω2 =
1

LshC ′ and ω1 =
1

L′Cs
(A5)

To obtain the unit-cell elements (Cs, Lsh, Csh, and d), we have to identify the design frequency ω.
The distributed inductance per unit-cell length is then given by multiplying Eqs. (A2) and (A3):

L′ =
θBZBω

ω2
1 − ω2

(A6)

Dividing Eq. (A2) by Eq. (A3) and rearranging results in,

C ′ =
θBω

ZB(ω2
2 − ω2)

(A7)

Cs and Lsh can then be evaluated from Eq. (A5). For the conventional metamaterial design, the
characteristic impedance Z0 and periodicity d can be found by applying the following formulas:

d =
L′

L0
and Z0 =

√
L′

C ′ (A8)

Note that before finding the periodicity d, the distributed inductance and capacitance are calculated
from relations (A4). On the other hand, for the capacitor loaded metamaterial-TL, the distributed
capacitance can be found by first assuming an appropriate value for Csh < C ′ and then applying
C0d=C ′ − Csh. Finally, the characteristic impedance and the periodicity of the host line can be found
by:

Z0 =
√

L′

C0d
and d =

C0d

C0
(A9)
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