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DOA and Power Estimation by Controlling the Roots
of the Antenna Array Polynomial

Mohammad J. Mismar1 and Taiseer H. Ismail2, *

Abstract—A new direction-of-arrival (DOA) and power estimation method of unknown number of
source signals is proposed. The direction and power of coherent and/or noncoherent signals are estimated
by controlling the roots of the array polynomial on the unit circle. The genetic algorithm is used to find
the phases of the array polynomial roots that minimize the array output power. The pseudo-spectrum
is obtained by phase rotation of the estimated roots, and the real power spectrum is derived from the
pseudo-spectrum and the array factor. The results indicate that the direction of arrivals, power of the
signals, and number of source signals are estimated from the real power spectrum.

1. INTRODUCTION

Direction-Of-Arrival (DOA) estimation is still considered a challenging research problem in wireless
communication applications. Some of the applications in wireless communication include interference
suppression, target tracking, navigation, and mobile communication. Practically, DOA estimation using
antenna array processing is a very efficient technique that has been used for a long time. Many methods
have been proposed to estimate the DOA such as traditional maximum entropy and maximum likelihood
methods or eigen-structure methods which utilize orthogonality between signal subspace and noise
subspace [1–5]. From the various methods that have been proposed, eigen-structure methods have
received wide attention because of their relatively high resolution [1]. However, all eigen-structure
algorithms need an exact number of sources to separate signal subspace and noise subspace. In most
practical applications, the exact number of sources is unknown and must be estimated by any estimation
method [6]. Therefore, it is recommended to develop the DOA estimation method without estimating
the source number. Generally, beamforming techniques can avoid estimating the number of sources, but
these methods cannot provide high resolution estimation. Also, the minimum variance distortionless
response (MVDR) beamformer can estimate the DOA of source signals without knowing the number
of source signals. However, the MVDR method does not have good resolution compared with other
methods [1].

An interesting method applied to the DOA problem without estimating the number of sources is
by combining the Pisarenko algorithm with the ASPECT method [7]. The drawback of this method
is that it works only when the number of source signals is at most equal to half the number of array
sensors. MUSIC-like method has been proposed to estimate the DOA without using the subspace
decomposition, and the number of sources is not required for direction finding [8]. A method similar to
SSMUSIC (Signal Subspace Scaled MUSIC) is used to estimate the DOA without knowing the number
of sources [9]. In this method, a special spectrum is constructed using all information of the eigenvalues
and eigenvectors of the array correlation matrix in low SNR.

Recently, adaptive smart antennas are used for increasing the capacity of the cellular system [10–
12]. In practice, many transmitters are operating simultaneously and with each transmitter creating
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many multipath components at the receiver. Therefore, it is required that the receiver must suppress
the interfering signals which can be coherent and/or incoherent and also with an unknown number of
sources [13, 14].

It is known that the genetic algorithms (GA) form a major group of nonlinear search algorithms
which can be used to solve multiple parameter problems easily and search for all the parameter
optimizers at the same time. Therefore, as the DOA estimation using adaptive arrays is a nonlinear
problem, the GA can be used directly or with other methods to estimate the DOA of the signals [15, 16].

The proposed method of DOA estimation relies on the array polynomial representation of the array
output power. With M + 1 array elements, the array output power is represented as product of M
roots. When a root of the polynomial is rotated to coincide with the angular location of a signal, the
signal output power will be reduced by the power of that signal. If I signals are impinging on the
array at the directions θi, i = 1, . . . , I, then controlling I roots of the polynomial to coincide with the
I angular locations of the received signals will reduce the output power to the noise power level. In
this paper, the GA is used to estimate the roots of the array polynomial to coincide with the direction
of the source signals. Generally, the solution space of each parameter in GA is usually unknown, and
this will yield a larger number of iterations to find the optimal solution in this large solution space.
However, the proposed method has a known solution space since the roots of array polynomial are on
the unit circle, hence a fast convergence is expected. The pseudospectrum is obtained from the solution
of the GA, and then the real power spectrum is derived using the steering vectors at the directions of
the root locations. The results show that the DOA, power of the source signals, and number of signals
are estimated accurately by controlling the roots of the array polynomial.

2. PROBLEM FORMULATION USING THE ROOTS OF ARRAY POLYNOMIAL
FOR DOA ESTIMATION

Consider an equispaced linear array of M + 1 isotropic elements with inter-element spacing of d, which
lies on x-axis with the first element at the origin. When I signals arrive from I directions, each element
receives I signals plus additive white Gaussian noise (AWGN), i.e., the received signal of the mth
element is

xm(k) =
I∑

i=1

si(k)e−jm 2π
λ

d sin(θi) + nm(k), m = 0, . . . ,M (1)

where si(k) represents the kth sample of the ith signal, and nm(k) represents the kth noise sample of
the mth element of zero mean and σ2 variance. Denoting z = e−j 2π

λ
d sin(θ), then the above equation can

be written as

xm(k) =
I∑

i=1

si(k)zm
i + nm(k), m = 0, . . . ,M (2)

where zm
i = e−jm 2π

λ
d sin(θi). Let wm denotes the coefficient of the mth element, then the output of the

array is

y(k) =
M∑

m=0

wmxm(k) (3)

y(k) =
M∑

m=0

wm

(
I∑

i=1

si(k)zm
i + nm(k)

)
(4)

y(k) =
I∑

i=1

si(k)
M∑

m=0

wmzm
i +

M∑
m=0

wmnm(k) (5)

The polynomial with (M + 1) coefficients can also be expressed in terms of M multiplicative terms as
M∑

m=0

wmzm =
M∏

m=1

(z − zrm) (6)
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where zrm is the mth root of the array polynomial on the unit circle and wM = 1. Using the above
equation, the output of the array can be rewritten as

y(k) =
I∑

i=1

si(k)
M∏

m=1

(zi − zrm) +
M∑

m=0

wmnm(k) (7)

where
zi = e−j 2π

λ
d sin(θi) (8)

From Equation (7), if one root of the equation, zrq, is rotated on the unit circle to coincide with
the angular location of the pth signal, then the pth signal will be eliminated from the expression of
the output signal. Let ẑrq be the rotated qth root that coincides with the location of the pth signal
direction, θp, then the rotated root can be written as

ẑrq = e−jφ̂q = zp = e−j 2π
λ

d sin(θp) (9)

and hence the output signal can be expressed as

y(k) =
I∑

i=1
i�=p

si(k)
(
zi − e−j 2π

λ
d sin(θp)

) M∏
m=1
m�=q

(zi − zrm) +
M∑

m=0

wmnm(k) (10)

In practice, the output power is used as a meaningful measurable quantity. Therefore, assuming that
the signals are ergodic random processes, the array average output power can be calculated using a
time-averaged correlation of K snapshots as

Py =
1
K

K∑
k=1

y(k)yH(k) = wTRXXwH (11)

where

RXX =
1
K

K∑
k=1

x(k)x(k)H (12)

x(k) and w are the vectors which contain data samples and coefficients of M +1 elements, respectively.
Thus, when the rotated root, ẑrq, coincides with the location of the pth signal direction, the output

power will be reduced by the power of the pth signal, hence, the direction of the pth signal can be
calculated from the expression

θp = sin−1

(
λ

2π d
φ̂q

)
(13)

where φ̂q is the phase of the rotated root on the unit circle.
In general, when the number of signals, I, is less or equal to the number of roots, M , I roots of

the polynomial can be rotated on the unit circle to coincide with I directions of the signals. This will
reduce the output power to only the value of output noise power, i.e.,

Pn = w0RXXwH
0 = Py −

I∑
i=1

E
[
S2

i

]
(14)

where Py is the output power calculated by Equation (11), Pn the array output power due to noise only,
and w0 the coefficient vector which corresponds to the rotated roots on the unit circle that coincide with
the direction of I signals. Without loss of generality, let the first I roots be rotated to coincide with the
direction of I source signals, then the array coefficients can be expressed by the following relationship

M∑
m=0

w0,mzm =
I∏

i=1

(z − zi)
M∏

m=1+I

(z − zrm) (15)
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where zi is given by Equation (8). Therefore, from the locations of rotated roots that minimize the
output power, the array coefficients, w0, can be calculated by Equation (15). From the previous
discussion, the optimization problem can be formulated as follows:

Minimize
w

wRXXwH

Subject to
M∑

m=0

wmzm =
M∏

m=1

(
z − e−jφm

) (16)

where φm is the angle of the mth root on the unit circle. The solution is obtained when I roots of the
polynomial will coincide with the direction of the I sources.

3. DOA ESTIMATION USING GENETIC ALGORITHM

In this paper the solution which minimizes the array output power is found using the genetic algorithm.
The procedure can be explained as follows:

1. Use GA to solve Equation (16). Let the calculated roots of the array polynomial be denoted as
e−jφ′

m (m = 1, 2, . . . ,M). In fact, these estimated roots of the polynomial will yield minimum
output power of the array. Then the corresponding new array coefficient, w0, can be calculated by
the following relationship

M∑
m=0

w0,mzm =
M∏

m=1

(
z − e−jφ′

m

)
(17)

2. Calculate the corresponding output power as

P0 = w0RXXwH
0 (18)

3. For m = 1, 2, . . . ,M , set φ′
m = φ′

m + π and calculate the corresponding coefficient vector wm and
the output power which is denoted as

P ′
m = wmRXXwH

m. (19)

4. The pseudospectrum is obtained by plotting P ′
m versus θ̂m, where

θ̂m = sin−1

(
λ

2πd
φ′

m

)
(20)

As the number of source signals is unknown, only I roots of the calculated array polynomial are in the
direction of the source signals. Therefore, to decide which roots of the estimated polynomial roots are
in the directions of the source signals, a simple procedure is performed as explained in Section 4.

4. POWER ESTIMATION USING THE POLYNOMIAL ROOT METHOD

This section deals with estimating the power of the source signals from the pseudospectrum and the
array factor at the directions of the root locations which yield the minimum power.

To obtain the power at the directions corresponding to the polynomial roots, assuming that the
signals and noise are uncorrelated, the output power is calculated as

Py = wRXXwH = wARssAHwH + σ2wwH (21)

where σ2 is the input noise power and A the N × M matrix of the steering vector. The matrix A is
represented as

A = [ a1 a2 . . . am . . . aM ] (22)

where am is the steering column vector in the direction of θ̂m, i.e.,

am =
[

1 e−j 2π
λ

d sin(θ̂m) . . . e−jm 2π
λ

d sin(θ̂m) . . . e−jM 2π
λ

d sin(θ̂m)
]T

(23)
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Assuming that I roots of the estimated roots coincide with the direction of the I source signals, then
the corresponding array factor with the weight vector w0 has nulls at the direction of signals, i.e.,

w0A = [ w0a1 w0a2 . . . w0am . . . w0aM ] = [ 0 0 . . . 0 . . . 0 ] (24)

Substituting Equation (24) in (21), the output power is

P0 = w0ARssAHwH
0 + σ2w0wH

0 = σ2w0wH
0 (25)

When the mth root, ẑrm = e−jφ̂m, is rotated on the unit circle by an angle of (π), i.e.,

ẑrm = e−jφ̂m ⇒ e−j(φ̂m+π)

then the output power of Equation (21) with the new array coefficients wm is expressed as

P ′
m = wmARssAHwH

m + σ2wmwH
m (26)

In fact, the array factor with weight vector wm increases at the direction corresponding to ϕ̂m and has
nulls at the direction of all other signals. Consequently, the array factor at the direction of the roots is

wmA = [ 0 0 . . . wmam . . . 0 ] (27)

Thus, substituting Equation (27) in Equation (26), the output power corresponding to this new weight
vector, wm, is

P ′
m = P̂mwmamaH

mwH
m + σ2wmwH

m (28)

where P̂m denotes the estimated power at the direction of the mth root. Consequently, the estimated
power is

P̂m =
Pm − σ2wmwH

m

wmamaH
mwH

m

(29)

Finally, combining Equations (25) and (29), the estimated power at the mth root direction on the unit
circle is

P̂m =
wmRXXwH

m − w0RXXwH
0

wmwH
m

w0wH
0

wmamaH
mwH

m

, m = 1, 2, . . . ,M (30)

where P ′
m = wmRXXwH

m and P0 = w0RXXwH
0 . From Equation (30), only the autocorrelation matrix

and the solution of Equation (16) are needed to compute the power at the direction of roots on the unit
circle.

The estimated real power spectrum is obtained by plotting P̂m versus θm found by the GA and
expressed in Equation (20). The power value larger than a certain small margin (ideally equal to zero)
is considered to be a real source signal. Consequently, the number of source signals can be determined
from the estimated real power spectrum.

5. COMPUTER SIMULATION AND RESULT DISCUSSIONS

The new method of controlling the roots of the array polynomial to estimate the DOA of the source
signals is demonstrated using six equispaced linear array elements of a half-wave inter-element spacing.
Therefore, five roots are used to estimate at most the DOA of five source signals. The GA is used
to search for the angles of arrival by minimizing the output received power. The angles of arrival are
estimated by Equation (20) while the power of the source signals is calculated by Equation (30).

To validate the proposed method using the polynomial representation, let two uncorrelated and
closely spaced signals impinging at angles 20◦ and 25◦ with 10.1 dBm and 6.1 dBm power levels,
respectively. Figure 1 shows the estimated angles and power of the two signals using the roots of array
polynomial method with 100 snapshots and 0 dBm input noise level (σ2). From the figure, the estimated
angles are 20.17◦ and 25.28◦, and the estimated power levels are 10.3 dBm and 5.5 dBm, respectively.
As a result, the proposed method using the roots of the array polynomial resolves the angles of the
two signals and estimates the power of the two signals accurately with no previous assumption about
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Figure 1. (a) The pseudospectrum and (b) the estimated real power spectrum at the direction of the
roots that yield minimum power when two uncorrelated signals are impinging at the angles 20◦ and 25◦
with 10.1 dBm and 6.1 dBm power levels. (No. of array elements = 6, σ2 = 0 dBm and 100 snapshots).
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Figure 2. The power pseudospectrum of the
MUSIC algorithm when two uncorrelated signals
are impinging at the angles 20◦ and 25◦ with
10.1 dBm and 6.1 dBm power levels. (No. of array
elements = 6, σ2 = 0 dBm and 100 snapshots).
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Figure 3. The estimated real power spectrum
by controlling the roots of the array polynomial
when five uncorrelated signals are impinging at
the angles −50◦, −30◦, 0◦, 15◦, and 30◦ with
power level around 10 dBm for each signal. (No.
of array elements = 6, σ2 = 0 dBm and 100
snapshots).

the number of source signals. For comparison purpose, Figure 2 shows the pseudo-spectrum using the
MUSIC algorithm when the same two signals are assumed. The two signals are not resolved with the
MUSIC algorithm as the figure shows only one peak.

Let five uncorrelated source signals impinging at the array with angles −50◦, −30◦, 0◦, 15◦, and
30◦ when the signal-to-noise ratio (SNR) is around 10 dB for each of the five signals. Figure 3 shows
the estimated angles and power of the five signals by controlling the roots of the array polynomial
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Table 1. The estimated angles, θ̂i, and the estimated power level, P̂i, by controlling the roots of
the array polynomial for five uncorrelated signals. (No. of array elements = 6, σ2 = 0dBm and 100
snapshots).

θi Pi (dBm) θ̂i P̂i (dBm)
−50◦ 9.54 −50.40◦ 9.39
−30◦ 9.71 −30.16◦ 9.80
0◦ 10.20 0.23◦ 10.30
15◦ 10.53 15.63◦ 10.49
30◦ 9.51 30.41◦ 9.23
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Figure 4. The power pseudospectrum of the MUSIC algorithm when five uncorrelated signals are
impinging at the angles −50◦, −30◦, 0◦, 15◦, and 30◦ with power level around 10 dBm for each signal.
(No. of array elements = 6, σ2 = 0 dBm and 100 snapshots).

method with only 100 snapshots, and Table 1 gives the estimated angles of arrival and the estimated
power levels for the five sources. On the other hand, Figure 4 shows the pseudospectrum for the same
five uncorrelated signals impinging at the same angles of Figure 3 using the MUSIC algorithm with
100 snapshots. Comparing the power spectrum results shown by Figures 3 and 4, the estimated angles
using the proposed method are more accurate than the estimated angles using the MUSIC algorithm.
Moreover, the estimated values of the power signals are almost as accurate as shown in Figure 3 and
given in Table 1.

To examine estimating coherent signals, let two coherent source signals impinging at the angles
20◦ and 40◦ with 10 dB SNR for each signal. Figure 5 shows the power spectrum of the two coherent
signals using the proposed method with 100 snapshots. From the figure, the estimated angles of the two
coherent signals are 19.90◦ and 40.52◦, and the estimated power levels of the two coherent signals are
9.83 dBm and 9.87 dBm. The MUSIC algorithm failed to estimate the angle of coherent source signals.

To find the effect of the signal-to-noise ratio (SNR) on the performance of estimating the DOA
and the power level by controlling the roots of the array polynomial, one source signal impinging at
30◦ is simulated. Table 2 gives the estimated angle, θ̂1, and the estimated power level, P̂1, for different
SNRs with 100 snapshots. From the table, the estimated DOA of the signal is nearly insensitive to SNR
variation, and the estimated power level of the signal, P̂1, is less accurate when the SNR value is low.
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Figure 5. (a) The pseudospectrum and (b) the estimated real power spectrum at the direction of the
roots that yield minimum power when two coherent signals are impinging at the angles 20◦ and 40◦ with
power level of 10 dBm for each signal. (No. of array elements = 6, σ2 = 0dBm and 100 snapshots).

Table 2. The estimated angle, θ̂1, and the estimated power level of the signal source, P̂1, against
different SNR values, when only one signal is impinging at the angle 30◦. (No. of array elements = 6,
σ2 = 0dBm and 100 snapshots).

SNR (dB) θ̂i P̂i (dBm)
10.27 30.15◦ 10.33
8.60 30.40◦ 8.68
6.23 30.00◦ 6.31
2.94 30.50◦ 2.76
1.14 29.93◦ 0.99
−2.38 30.19◦ −2.12

6. CONCLUSIONS

In this work, the DOA and power of the source signals are estimated using the array polynomial
representation. On the unit circle, the roots of array polynomial are rotated to coincide with the
direction of the signals so that the output power is reduced to the value of noise power only. The real
power spectrum is derived using the pseudospectrum, the steering vectors at the directions of the root
locations which yield the minimum power, and the minimum power value. From the estimated real
power spectrum, number of source signals, direction of arrivals, and power of the signals are estimated
when the number of source signals is less than the number of array elements. The results indicate that
the proposed method accurately estimates both the angle of arrivals and the power of the source signals
even when the source signals are coherent.
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