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Visualization of Eddy Current Distributions for Arbitrarily Shaped
Coils Parallel to a Moving Conductor Slab

Toshiya Itaya1, *, Koichi Ishida2, Yasuo Kubota3, Akio Tanaka4, and Nobuo Takehira2

Abstract—To visualize eddy current distribution (ECD) of an arbitrarily shaped coil arranged parallel
to a moving conductor slab, an exact theoretical solution is derived using an analytical method based
on the double Fourier transform method. The arbitrarily shaped coil is regarded as a plane coil of a
single turn, and both DC and AC excitation currents can be applied. Furthermore, ECD charts are
obtained when the conductor slab is moving. We calculate some examples with respect to a circular
coil, rectangular coil, and triangular coil and show the effect of coil excitation frequency and speed of
the conductor on ECDs. Results show that the eddy current generated in the moving conductor slab is
composed of current induced by the excitation frequency and conductor speed.

1. INTRODUCTION

Eddy current applications have produced various industry technologies, e.g., eddy current testing,
induction heating and eddy current sensors. Eddy current testing is used to detect defects in
structural materials such as steel, aluminum, titanium and carbon-fiber-reinforced plastic [1]. Induction
heating is used in commercial cooking and heat treatment. Eddy current sensors are widely used for
displacement [2], conductivity [3] and thickness measurements [4]. These measurements use the change
in eddy currents magnitude to measure the physical quantity of interest. However, because the eddy
current cannot be measured directly, it is difficult to determine the eddy current distribution (ECD).
Furthermore, when a conductor is moved, the behavior of the eddy current becomes complicated.
Therefore, theoretical analysis to clarify the ECD is strongly desired. The behavior of an eddy current
strongly depends on factors such as coil shape, excitation frequency, conductor speed and conductor
properties [5]. These complex dependencies have thus far prevented the development of a precise
theoretical analysis of ECD.

Dodd and Deeds presented an analytical solution for the eddy current density induced by the
circular coil arranged parallel to a conductor slab using the integral of the Bessel function [6]. Thus, the
basic phenomenon of the relationship between eddy current density and skin depth has been described.
Panas and Papayiannakis represented the magnetic vector potential by a filamentous elliptical coil in
a Cartesian coordinate system; the solution of partial differential equations is obtained in the form of
a 2D Fourier transform, which then allows the inverse Fourier transform of the magnetic flux density
and eddy current density to be calculated [7]. Analytical expressions are also given for the ECD of a
circular coil arranged perpendicular [8] or tilted [9] to the conductor slab. Theodoulidis and Kriezis
obtained an analytical solution for ECD of a rectangular coil by introducing a concept called secondary
vector potential [10]. When ECD is considered for conductors in motion, the skin effect due to velocity
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is affected is known. When a DC excitation coil is moved, using the second vector potential in place of
the magnetic vector potential, the analytical solution can be shown in Fourier space by a 2D Fourier
transform [11]. Panas and Kriezis represented an analytical solution for the case when the DC excitation
filamentary rectangular coil is moved by a 3D Fourier transform with respect to time and space; these
results are numerically computed by a fast Fourier algorithm from the inverse Fourier transform [12].
When both the AC excitation coil and conductor slab are moved, the eddy current generated by them
should be considered. An analytical method have been already proposed based on the double Fourier
transform method that considers the case of the conductor slab moving in relation to the rectangular
coil [13].

In the present study, a new technique to visualize the ECD in a conductor slab due to an arbitrarily
shaped coil is proposed. The arbitrarily shaped coil is regarded as a plane coil of a single turn, and
both DC and AC excitation current can be applied. Furthermore, ECD charts were visualized when
the conductor slab is moving. Some examples with respect to a circular coil, rectangular coil and
triangular coil were calculated and the effect of coil excitation frequency and the speed of the conductor
on visualized ECDs were shown.

2. THEORETICAL ANALYSIS

Figure 1 shows the geometry of the analytical model. The surface of the conductor is matched to the
z = 0 plane. The distance between the coil and slab is z0. To facilitate magnetic field analysis, the
following assumptions are made. The moving conductor is isotropic and infinitely wide. The coil is
a one-turn coil and carries current I with a known effective rms value and angular frequency ω. The
coil wire is assumed to be infinitely thin. The conductivity σ, permeability μ and conductor speed
v̄ = (vx, vy, 0) are constant. In the quasi-steady state, the displacement current is negligible and the
following equations are obtained:

∇× H̄ = J̄ (1)

∇× Ē = −∂B̄

∂t
(2)

∇ · B̄ = 0 (3)

where
∇ · J̄ = 0 (4)

Since conductor speed v̄ = (vx, vy, 0) is very small in comparison with light velocity, the next

x

y0

z

d

vx

σ,μ

vy

v

I
z0

Figure 1. Geometry of analytical model which comprises arbitrarily shaped coil and moving conductor
slab.
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equations are obtained:

J̄ = σ(Ē + v̄ × B̄) (5)
B̄ = μH̄ (6)

To solve Maxwell’s equation, a double Fourier transform and its inverse are introduced as follows

b(ξ, η, z) =
∫ ∞

−∞

∫ ∞

−∞
B(x, y, z)ej(xξ+yη)dxdy (7)

B(x, y, z) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
b(ξ, η, z)e−j(xξ+yη)dξdη (8)

2.1. Magnetic Flux Densities Produced by an Arbitrarily Shaped Planar Coil

According to Appendix A, the x-, y- and z-components of the magnetic flux density B̄ in the conductor
slab are given by

Bx =
μ0μrI

8π2

∫ ∞

−∞

∫ ∞

−∞

ξ

η (1 − e2γd)

[{
− (1 + λ0) e2γd + ν0

× e

(
γ−

√
ξ2+η2

)
d
}

eγz +
{

1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
}

e−γz

]

× e−z0

√
ξ2+η2

S (ξ, η) e−j(xξ+yη)dξdη (9)

By =
μ0μrI

8π2

∫ ∞

−∞

∫ ∞

−∞

1
1 − e2γd

[{
− (1 + λ0) e2γd + ν0

× e

(
γ−

√
ξ2+η2

)
d
}

eγz +
{

1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
}

e−γz

]

× e−z0

√
ξ2+η2

S (ξ, η) e−j(xξ+yη)dξdη (10)

Bz = j
μ0μrI

8π2

∫ ∞

−∞

∫ ∞

−∞

ξ2 + η2

ηγ (1 − e2γd)

[{
− (1 + λ0) e2γd + ν0

× e

(
γ−

√
ξ2+η2

)
d
}

eγz −
{

1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
}

e−γz

]

× e−z0

√
ξ2+η2

S (ξ, η) e−j(xξ+yη)dξdη (11)

Here, S(ξ, η) is called the shape function [14] and defined as

S (ξ, η) =
n∑

i=1

∫ x′
i

x′
i−1

ej{x′ξ+fi(x′)η}dx′ (12)

where μr = μ/μ0 and

γ =
√

ξ2 + η2 − jσμ0μr (vxξ + vyη) + jωσμ0μr (13)

λ0 =

{
γ2 − μr

2
(
ξ2 + η2

)} (
1 − e−2γd

)
(
γ + μr

√
ξ2 + η2

)2 −
(
γ − μr

√
ξ2 + η2

)2
e−2γd

(14)

ν0 =
4μrγ

√
ξ2 + η2e(

√
ξ2+η2−γ)d

(γ + μr

√
ξ2 + η2)

2 − (γ − μr

√
ξ2 + η2)

2
e−2γd

(15)

Quantities ξ and η are integration variables of the Fourier transform; furthermore, λ0 and ν0 depend
on the angular frequency of the excitation current, the conductor thickness, materials and speed.
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2.2. Eddy Current Densities Produced by an Arbitrarily Shaped Planar Coil

The x- and y-components of eddy current density J̄ produced in the conductor slab by the arbitrarily
shaped planar coil can be described as

Jx =
1

μ0μr

(
∂Bz

∂y
− ∂By

∂z

)
(16)

Jy =
1

μ0μr

(
∂Bx

∂z
− ∂Bz

∂x

)
(17)

which can be solved as follows

Jx = − I

8π2

∫ ∞

−∞

∫ ∞

−∞

γ2 − ξ2 − η2

γ (1 − e2γd)

[{
− (1 + λ0) e2γd + ν0

× e
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γ−

√
ξ2+η2

)
d
}
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{
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(
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)
d
}

e−γz

]
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√
ξ2+η2

S (ξ, η) e−j(xξ+yη)dξdη (18)

Jy =
I

8π2

∫ ∞

−∞

∫ ∞

−∞

ξ
(
γ2 − ξ2 − η2

)
ηγ (1 − e2γd)

[{
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× e

(
γ−

√
ξ2+η2

)
d
}
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{

1 + λ0 − ν0e

(
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√
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S (ξ, η) e−j(xξ+yη)dξdη (19)

2.3. Stream Function

The eddy current density obtained above in conjunction with the stream function is used to visualize
ECD. The eddy current streamline in the xy plane is described by

dy

dx
=

Re (Jy)
Re (Jx)

(20)

Therefore, we have
Re (Jy) dx − Re (Jx) dy = 0 (21)

where operator Re( ) returns the real part of the arguments and provides the instantaneous value of
eddy current density. Stream function U(x, y) in the xy plane is given by

U (x, y, z) = Re
(∫

Jydx

)
= k = constant (22)

or

U (x, y, z) = Re
(∫

−Jxdy

)
= k = constant (23)

Equation (21) may be used in either Equation (22) or (23). This paper uses Equation (22) in
Equation (21). Since the eddy current in a conductor slab changes over time, it is a function of time t.
Therefore, stream function U(x, y, z, t) is given by

U (x, y, z, t) = Re
(∫

Jydx
√

2ejωt

)
=

√
2

{
Re

(∫
Jydx

)
cos ωt − Im

(∫
Jydx

)
sin ωt

}
= k (24)

where operator Im( ) returns the imaginary part of the arguments and provides the instantaneous value
of eddy current density. In the above equations, constant k is obtained by substituting point (x, y) with
the curve connecting point (x, y) having the equivalent value k. Thus, the distribution diagram of the
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eddy current at time t on z plane is obtained. In addition, the integral in Equation (24) may be written
as ∫

Jydx = j
I

8π2

∫ ∞

−∞

∫ ∞

−∞

−jσμ0μr (vxξ + vyη) + jωσμ0μr

η

× Te−z0

√
ξ2+η2

S (ξ, η) e−j(xξ+yη)dξdη (25)

T =
1

γ (1 − e2γd)

[{
− (1 + λ0) e2γd + ν0e

(
γ−

√
ξ2+η2

)
d
}

eγz

−
{

1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
}

e−γz

]
(26)

2.4. Shape Function

The shape function depends on the coil shape. When the coil is divided into three pieces of closed curve,
each closed curve carries the same current, as shown in Figure 2. If they are described as y′ = f1(x′),
f2(x′) and f3(x′), the shape function is obtained as follows by integrating counter clockwise

S (ξ, η) =
∫ x′

1

x′
0

ej{x′ξ+f1(x′)η}dx′ +
∫ x′

2

x′
1

ej{x′ξ+f2(x′)η}dx′ +
∫ x′

3

x′
2

ej{x′ξ+f3(x′)η}dx′ (27)

Next, the shape functions for a circular coil, rectangular coil and triangular coil using Equation (27)
are derived. The center of the coils is the centroid of the shape.

2.4.1. Circular coil (Figure 3)

The functions for regions 1 and 2 are expressed as⎧⎪⎨
⎪⎩

y′ = f1 (x′) = −
√

a2 − (x′)2

y′ = f2 (x′) =
√

a2 − (x′)2
(28)

Therefore, from Equation (27), shape function S(ξ, η) is given as

S (ξ, η) =
∫ a

−a
ej{x′ξ+f1(x′)η}dx′ +

∫ −a

a
ej{x′ξ+f2(x′)η}dx′ = −j

2πaη√
ξ2 + η2

J1

(
a
√

ξ2 + η2
)

(29)

where J1( ) is a Bessel function.
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Figure 2. Arbitrarily shaped planar coil which is
divided into three pieces of closed curve.
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Figure 3. Circular coil with radius a.
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2.4.2. Rectangular coil (Figure 4)

The functions for regions 1 and 2 are expressed as{
y′ = f1 (x′) = −b
y′ = f2 (x′) = b

(30)

Therefore, from Equation (27), shape function S(ξ, η) is given as

S (ξ, η) =
∫ a

−a
ej{x′ξ+f1(x′)η}dx′ +

∫ −a

a
ej{x′ξ+f2(x′)η}dx′ = −j

4
ξ

sin (aξ) sin (bη) (31)

2.4.3. Triangular coil (Figure 5)

The functions for lines 1, 2 and 3 are expressed as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′ = f1 (x′) = − b

3

y′ = f2 (x′) = − b

a
x′ +

2
3
b

y′ = f3 (x′) =
b

a
x′ +

2
3
b

(32)

Therefore, from Equation (27), shape function S(ξ, η) is given as

S (ξ, η) =
∫ a

−a
ej{x′ξ+f1(x′)η}dx′ +

∫ 0

a
ej{x′ξ+f2(x′)η}dx′ +

∫ −a

0
ej{x′ξ+f3(x′)η}dx′

= e−j b
3
η

[
2
ξ

sin (aξ) +
2a

a2ξ2 − b2η2
{bη sin (bη) − aξ sin (aξ)}

+j
2abη

a2ξ2 − b2η2
{cos (aξ) − cos (bη)}

]
(33)

y'

x'

b

−a a

Region 2
y' = b

Region 1

y' = −b

x1'x0'
x2'

−b

Figure 4. Rectangular coil with length 2a and
width 2b.
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Figure 5. Triangular coil with base length 2a
and height b.

3. RESULTS AND DISCUSSION

From Equation (24), the visualized ECD as a function of excitation frequency and conductor speed are
obtained. The y (x)-direction corresponds to the horizontal (vertical) axis. ECD is given for z = 0
and t = 0. In the expression for ECD, k is a relative value related to the density and size of the eddy
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Table 1. Specifications of coils.

Circular coil Rectangular coil Triangular coil
a = 25 mm a = 50 mm a = 25 mm

b = 25 mm b = 75 mm

Table 2. Specifications of conducting slab.

Aluminum
σ = 3 × 107 S/m

d = 10 mm
μr = 1
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Figure 6. ECDs for a circular coil when excitation frequency and conductor speed change. (a) DC,
v = 10 m/s, (b) DC, v = 20 m/s, (c) f = 100 Hz, v = 10 m/s, (d) f = 100 Hz, v = 20 m/s, (e)
f = 1000 Hz, v = 10 m/s and (f) f = 1000 Hz, v = 20 m/s.

current. The thick line represents the coil line (i.e., Figures 6–8). The distance between the coil and
the conducting slab is z0 = 10 mm. The coil was excited by a 1 A current. The excitation frequency
was set to 0 (DC), 100 and 1000 Hz. Table 1 shows the specifications of the coils and Table 2 shows
the specifications of the conducting slab. The conductor speed was set to vy = v = 10 and 20 m/s. The
conductor slab was allowed to move only in the y-direction (vx = 0). A positive value represents the
magnitude of the eddy current in the opposite direction to the direction of the coil current, whereas
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a negative value represents the magnitude of the eddy currents in the same direction relative to the
direction of the coil current.

Figure 6 shows ECD for a circular coil. At DC and v = 10 m/s or 20 m/s, two current vortexes
with different polarities were generated in the y-direction. At f = 100 Hz and v = 10 m/s, two current
vortexes with similar polarities were generated in the y-direction. At v = 20 m/s, their polarities became
opposite. At v = 20 m/s, their polarities became opposite. At f = 1000 Hz, only a single vortex was
generated. At this frequency, the size of the eddy current increased, but the speed did not affect the
ECD.

Figure 7 shows ECD for a rectangular coil. At DC and v = 10 m/s or 20 m/s, two current vortexes
with different polarities were generated in the y-direction. At f = 100 Hz and v = 10 m/s, two current
vortexes with similar polarities were generated in the y-direction. At v = 20 m/s, their polarities became
opposite. At f = 1000 Hz, only a single vortex was generated. At this frequency, the size of the eddy
current increased, but the speed did not affect the ECD. The single vortex had a smooth shape with
rounded corners of the coil.
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Figure 7. ECDs for a rectangular coil when excitation frequency and conductor speed change. (a)
DC, v = 10 m/s, (b) DC, v = 20 m/s, (c) f = 100 Hz, v = 10 m/s, (d) f = 100 Hz, v = 20 m/s, (e)
f = 1000 Hz, v = 10 m/s and (f) f = 1000 Hz, v = 20 m/s.
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Figure 8. ECDs for a triangular coil when excitation frequency and conductor speed change. (a)
DC, v = 10 m/s, (b) DC, v = 20 m/s, (c) f = 100 Hz, v = 10 m/s, (d) f = 100 Hz, v = 20 m/s, (e)
f = 1000 Hz, v = 10 m/s and (f) f = 1000 Hz, v = 20 m/s.

Figure 8 shows ECD for a triangular coil. At DC and v = 10 m/s or 20 m/s, two current vortexes
with different polarities were generated in the y-direction. At f = 100 Hz and v = 10 m/s, the current
vortex was greatly distorted in the y-direction. At v = 20 m/s, two current vortexes with opposite
polarities were generated in the y-direction. At f = 1000 Hz, the size of the eddy current increased,
but the speed did not affect the ECD. At this frequency, only a single vortex was generated and had a
smooth shape with rounded corners of the coil.

Consequently, it is considered that the eddy current generated in the moving conductor slab is
composed of current induced by the excitation frequency and conductor speed. When the eddy current
generated by the conductor speed is dominant (e.g., at f = 100 Hz and 20 m/s), one current vortex
is produced in the region of the conductor slab close to the coil. It is generated in the direction that
reduces magnetic flux from the coil. The other current vortex is produced in the region of the conductor
slab away from the coil, and it is generated in the direction that increases magnetic flux from the coil.
Similar results were obtained with the DC excitation current. When the eddy current generated by the
excitation frequency is dominant (e.g., at f = 1000 Hz and 10 m/s or 20 m/s), the impact of moving
speed is reduced and largely negligible.
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4. CONCLUSION

In this study, we derive an exact theoretical solution that visualizes ECD for an arbitrarily shaped coil
arranged parallel to a conductor slab, a problem that heretofore remains unsolved. We determine that
the eddy current flow in the conductor depends on the excitation frequency and speed of the conductor
slab relative to the coil. The visualized ECD in the conductor, which is necessary to advance eddy
current testing, induction heating and eddy current sensing, can be obtained from this new analysis.

APPENDIX A.

From Equations (1)–(3), (5) and (6), the magnetic density B̄ in the moving conductor slab (this region
is defined by −d < z < 0 and coincides with the conductor itself) is obtained as follows [13]

∇2B̄ − σμvx
∂B̄

∂x
− σμvy

∂B̄

∂y
− jωσμB̄ = 0̄ (A1)

Using Equation (7), Fourier transform of Equation (A1) gives

∂2b̄

∂z2
− (

ξ2 + η2 − jσμvxξ − jσμvyη + jωσμ
)
b̄ = 0̄ (A2)

Solving the above equation, the x-, y- and z-components of the magnetic flux density b̄ in the
conductor slab are given by [13]

bx = Cxeγz + Dxe−γz (A3)
by = Cye

γz + Dye
−γz (A4)

bz = Cze
γz + Dze

−γz (A5)

where
γ =

√
ξ2 + η2 − jσμ (vxξ + vyη) + jωσμ (A6)

The coefficients Cx, Cy, Cz, Dx, Dy and Dz in Equations (A3)–(A5) are obtained as follows [13]

Cx =
μr

1 − e2γd

{
− (1 + λ0) e2γd + ν0e

(
γ−

√
ξ2+η2

)
d
}

Cix (A7)

Cy =
μr

1 − e2γd

{
− (1 + λ0) e2γd + ν0e

(
γ−

√
ξ2+η2

)
d
}

Ciy (A8)

Cz =
μr

1 − e2γd

{
− (1 + λ0) e2γd + ν0e

(
γ−

√
ξ2+η2

)
d
} √

ξ2 + η2

γ
Ciz (A9)

Dx =
μr

1 − e2γd

{
1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
}

Cix (A10)

Dy =
μr

1 − e2γd

{
1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
}

Ciy (A11)

Dz = − μr

1 − e2γd

{
1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
} √

ξ2 + η2

γ
Ciz (A12)

where μr = μ/μ0. The coefficients Cix, Ciy and Ciz are determined by the coil geometry.
Equations (A7)–(A12) are determined from boundary conditions.

As shown in Figure 1, when an arbitrarily shaped coil, which is positioned at z = z0 and carrying
current I, the x-, y- and z-components of magnetic flux density b̄i(ξ, η, z) at z < z0 are described as
follows [14]

bix =
μ0Iξ

2η
e(z−z0)

√
ξ2+η2

n∑
i=1

∫ xi

xi−1

ej{xξ+fi(x)η}dx = Cixez
√

ξ2+η2
(A13)
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biy =
μ0I

2
e(z−z0)

√
ξ2+η2

n∑
i=1

∫ xi

xi−1

ej{xξ+fi(x)η}dx = Ciye
z
√

ξ2+η2
(A14)

biz = j
μ0I

√
ξ2 + η2

2η
e(z−z0)

√
ξ2η+η2

n∑
i=1

∫ xi

xi−1

ej{xξ+fi(x)η}dx = Cize
z
√

ξ2+η2
(A15)

Therefore, using shape function S(ξ, η) yields

Cix =
μ0Iξ

2η
e−z0

√
ξ2+η2

S (ξ, η) (A16)

Ciy =
μ0I

2
e−z0

√
ξ2+η2

S (ξ, η) (A17)

Ciz = j
μ0I

√
ξ2 + η2

2η
e−z0

√
ξ2+η2

S (ξ, η) (A18)

From Equations (A3)–(A5) and (A7)–(A12), the x-, y- and z-components of magnetic flux density
b̄(ξ, η, z) at the moving conductor slab are described as follows

bx =
μr

1−e2γd

[{
− (1+λ0) e2γd+ν0 e

(
γ−

√
ξ2+η2

)
d
}

eγz +
{

1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
}

e−γz

]
Cix (A19)

by =
μr

1−e2γd

[{
− (1+λ0) e2γd+ν0 e

(
γ−

√
ξ2+η2

)
d
}

eγz +
{

1 + λ0 − ν0e

(
γ−

√
ξ2+η2

)
d
}

e−γz

]
Ciy (A20)

bz =
μr

1−e2γd

[{
−(1+λ0)e2γd+ν0e

(
γ−

√
ξ2+η2

)
d
}

eγz−
{
1+λ0−ν0e

(
γ−

√
ξ2+η2

)
d
}

e−γz

]√
ξ2+η2

γ
Ciz (A21)

By using Equations (A16)–(A18) and (8), the inverse Fourier transform of Equations (A19)–(A21)
gives Equations (9)–(11).
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