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Novel Multi-Target Tracking Algorithm for Automotive Radar
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Abstract—Tracking multiple maneuvering targets for automotive radar is a vital issue. To this end,
a novel DS-UKGMPHD algorithm which combines diagraph switching (DS), unscented Kalman (UK)
filter and Gaussian mixture probability hypothesis density (GMPHD) filter is proposed in this paper.
The algorithm is capable of tracking a varying number of target cars detected by automotive radar with
nonlinear measurement models in a cluttered environment. In addition, variable structure is used to
accommodate various target motions in real world. Simulation results demonstrate the superiority of
the presented algorithm to IMM-UKGMPHD filter in terms of estimation accuracy of both number and
states.

1. INTRODUCTION

Accuracy and timeliness constitute two significant factors for automotive radar. Accordingly, the main
goal of this paper is to track multiple targets detected by automotive radar, in other words, to estimate
the number and positions of the detected vehicles reliably and timely and thereby reducing false alarm
rate and reaction time in cluttered road environment.

To this end, two kinds of algorithms are introduced by relevant documental materials. Classic
solution [1, 2] to multi-target tracking for automotive radar involves data association, track management
and single-target Bayesian filtering. However, data association algorithms suffer from intensive
computation burden, especially when the number of targets gets large. Another solution to multi-
target tracking for automotive radar is based on Random Finite Set (RFS) theory, namely the popular
probability hypothesis density (PHD) filter [3], with both Gaussian mixture PHD (GMPHD) filter [4]
and Sequential Monte Carlo PHD (SMC PHD) filter [5–7] as implementations, and cardinalized PHD
(CPHD) filter [8], tracks targets with a varying number without data association or target management.
Considering the timeliness, the GMPHD filter is a suboptimal but computationally tractable alternative.
It recursively propagates the first-order moment of the multi-target posterior [9]. Whereas problems exist
in this filter: firstly, automotive radar tracks the targets in polar coordinates, which makes measurement
equations nonlinear in Cartesian coordinates. Secondly, one single model can hardly describe real-
world maneuvering targets. In view of these demerits, the IMM-GMUKPHD filter was proposed [10].
However, only two models are used in [10]. When more models are taken into account, the IMM
algorithm featuring a fixed model set structure can lead to a dilemma: On one hand, a large model set
may cover various behaviors of the cars. On the other hand, for a certain motion, a large set of models
leads to heavy computation load and accuracy reduction.

To overcome the contradiction, a hybrid algorithm, whose framework is based on graph-theoretic
MM approach, is proposed in this paper. Combining unscented probability hypothesis density filter with
diagraph switching (DS) [11], a variable structure multiple model algorithm, the presented algorithm
determines certain subset of the total model-set in real time before IMM-UKGMPHD algorithm is
implemented.
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The layout of this paper is as follows. In Section 2, the problem of multi-target tracking for
automotive radar is formulated. Section 3 describes the DS-UKGMPHD filter in detail. Simulation and
discussion are given in Section 4. Finally, concluding remarks are presented in Section 5.

2. PROBLEM FORMULATION

In the application of an anti-collision system, target vehicles in front of the radar carrying vehicle are
detected. Generally, the motion of the ith target in the xy-plane can be described as

xi
k = F i

k,m(xi
k−1) + Γkw

i
k,m (1)
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state vector of the target at time kT (k is the time index and T is the sampling interval). The variables
(x, y), (ẋ, ẏ) and (ẍ, ÿ) in the state vector xi

k represent the target position, velocity and acceleration in
the x and y directions respectively. The process noise wi
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The matrix F l
k,ϕ(·) denotes the Constant Turn (CT) model. We choose ϕ = 1, 2, 3, 4 with different

turning rates ω = −1 rad/s, −0.05 rad/s, 0.05 rad/s, 1 rad/s respectively to describe the motions of
lane-changing. F i

k,5, the Constant Acceleration (CA) model, describes linear motion with a uniform
acceleration and constant speed.

The noisy measurement vector zi
k, which includes the bearing θi

k and range measurements ri
k of the

ith target at time kT , is defined as
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where the measurement noise [vi
θ,k, v

i
r,k]

T is a 2 × 1 zero-mean Gaussian noise vector with covariance
matrix R.

3. PROPOSED DS-UKGMPHD FILTER

In the proposed filter, an adaptive time-varying set of submodels is used [9]. Incorporating Diagram
Switching approach with IMM-UKGMPHD filter, the procedure of the DS-UKGMPHD filter is as
follows:
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Step 1: Initialize a diagraph set.
Here Φ is chosen to be the total diagraph and Φ(l){βl−1, βl, βl+1} is the stochastic sub-diagraph.
l is the model index. Markov chain with transition probability matrix is πpq. Φ(0) is considered
as the default sub-diagraph. Here the graphic presentation Φ for automotive radar is as shown in
Fig. 1.

Figure 1. Diagraph Φ for targets detected by automotive radar.

Step 2: Set up an effective logic to instruct the transition of models.
Suppose that the sub-graph is Φ(k−1) at sampling time k − 1, the decision rule is

Φ(k) =

⎧⎪⎪⎨
⎪⎪⎩

Φ
(l−1)

, if μ
(l−1)
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Φ
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, if μ
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Φ
(l)

, otherwise

(5)

where τDS is a threshold probability for mode transition, and μ
(l±1)
k−1 denotes the probability of

β(l±1) at sampling time k − 1.
Step 3: Initialization and mixing for certain sub-diagraph.

For k = 0, initiate each state target X̂q
0 , the covariance matrix P̂ q

0 and model probability μq
0 = 1/M .

M is the number of the models in the model-subset, here we choose M = 3 as Fig. 1 indicates.
The current model index is q(q = 1, . . . ,M).
(1) For k = k + 1, k > 0

μ
(i)
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where
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μ
(i)
k−1,p is the occurrence probability of the ith target using model p. The initial mixed PHD function

Dk−1,q (x) =
M∑

p=1
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The mixed weight, state, and covariance matrix are respectively as follows.
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ς
(i)
k−1,pq = X̂

(i)
k−1,p − X̃

(i)
k−1,q (12)

Step 4: Run the UKGMPHD filter for each model.
ω

(i)
k−1,q, X̃

(i)
k−1,q and P

(i)
k−1,q above-mentioned are inputs of the UKGMPHD filter. The steps include

prediction, updating, pruning and merging [12]. Unscented transition is used in prediction and
updating steps. The estimation results are ω

(i)
k,q, X̃

(i)
k,q and P

(i)
k,q.

Step 5: Update of the model probabilities.
The likelihood and probability of the ith Gaussian component based on model q at the sampling
time k are respectively as follows.
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Step 6: Combined estimation.
The combined PHD function is
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where Jk is the number of the Gaussian components.
The combined weight, state, and covariance matrix are respectively as follows.
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The flow diagram for DS-UKGMPHD filter is presented in Fig. 2.

4. SIMULATION AND DISCUSSION

4.1. Simulation Scenario and Parameter Setting

In this section, a Cartesian two-dimensional scenario is presented. Both DS-GMUKPHD filter and
IMM-GMUKPHD filter are then used to track these targets for comparison. The sample interval is
0.1 s, and the total simulation time is 10 s. Assuming that the maximum measurement range of the
radar is 120 m, the test scenario is constructed as follows:

1) The scenario simulates a cluttered 4-lane dual carriageway [150m, 150m]2. The host vehicle with
radar is located at (40, 0) m and keeps linear motion with a constant speed of 25 m/s all the time.
This car constitutes relatively stationary and y positions described in this paper are relative to
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Figure 2. Flow diagram for DS-UKGMPHD filter.

Table 1. Simulation parameters.

Simulation Parameters parametric meanings Value
τDS threshold for sub-graph transition 0.65
Ps targets’ survival probability 0.95
PD targets’ detection probability 0.99
τ pruning threshold 10−5

Umerge merging threshold 4
Jmax maximum number of Gaussian components 100

r Poisson means 4
Q process noise covariance diag([5, 2, 5, 2, 0.5, 0.5])
R measurement noise covariance diag([0.01, 0.01])

this car. Target 1 keeps linear motion with the initial state x1
0 = [62, 0, 120,−0.2, 0,−0.2]T during

[0.1, 1.2] s, and keeps linear motion with a uniform acceleration of 0.08 m/s2 during [1.3, 4] s. After
that, it keeps linear motion at a constant speed; Target 2 changes lanes for two times: it turns right
with initial state x2

0 = [70,−2.8, 106,−2.7, 0, 0]T and a turn-rate of ω = −0.1 rad/s during [2.1, 3.6] s,
and then changes back to the lane with a turn-rate of ω = −0.04 rad/s. Target 3 has an initial
state of x3

0 = [22, 0, 3, 1.7, 0, 0.5]T during [3.1, 4.5] s and then keeps linear motion with a uniform
acceleration of −0.02 m/s2; target car 4 is detected with initial state x4

0 = [18, 0, 3, 2.5, 0, 0]T since 6 s
and start to change the lane 0.8 s later. The turning rates are 0.05 rad/s, −0.05 rad/s respectively.
During the simulation steps [9.3, 10] s, the car moves with a constant velocity of 27.5 m/s.

2) For automotive radar tracking, no spawning is considered. The clutter is modelled as a Poisson
RFS with the mean r and uniform density over the measurement space. Five models are used to
describe multiple maneuvering cars, as is stated in Section 2. The transition probability matrix of



40 Gong, Xiao, and Xu

sub-models is set by πpq =

[ 0.75 0.125 0.125
0.125 0.75 0.125
0.125 0.125 0.75

]
, simulation parameters are listed in Table 1.

4.2. Simulation Results and Discussion

Figure 3 shows the true trajectories of four targets detected by automotive radar and the measurements
which originate from either targets or clutter. In Fig. 4 and Fig. 5, tracking results based on the DS-
UKGMPHD filter and IMM-UKGMPHD filter against the true tracks are shown. The automotive radar
is located at the pentagram marker, and each trajectory starts at the circle markers. The individual
x and y coordinates of real tracks and estimations for each time step are shown in Figs. 6 and 7. The
estimated number of targets based on the two algorithms against true values is plotted in Fig. 8 and
the optimal sub-pattern assignment (OSPA) distance (p = 2, c = 8) at each time step is illustrated in
Fig. 9 for further evaluation.

First, it can be found that the estimated positions based on DS-UKGMPHD filter are close to the
true tracks in Fig. 4 and Fig. 6, whereas the estimated positions based on IMM-UKGMPHD filter are
comparatively undesirable, which can be illustrated by two obviously incorrect positions at 2.1 s and
7.4 s in Fig. 7. Second, in Fig. 8, the IMM-UKGMPHD filter estimates the target number wrongly

Figure 3. Measurements of the detected cars in the clutter.

Figure 4. Multi-target tracking for automotive
radar using DS-UKGMPHD.

Figure 5. Multi-target tracking for automotive
radar using IMM-UKGMPHD.
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Figure 6. Targets’ positions within the
measurement time using DS-UKGMPHD.

Figure 7. Targets’ positions within the
measurement time using IMM-UKGMPHD.

Figure 8. Targets’ number estimated by DS-
UKGMPHD and IMM-UKGMPHD.

Figure 9. OSPA distance based on DS-
UKGMPHD and IMM-UKGMPHD.

for five times (at 2.1 s, 3.2 s, 3.3 s, 6.1 s and 7.4 s), while DS-UKGMPHD filter misestimates for once.
Third, Fig. 9 shows that the OSPA values of two filters peak correspondingly at the instances where
the estimated number is incorrect. When the estimated number of targets is correct, the OSPA miss-
distance of the DS-UKGMPHD filter proves smaller than IMM-UKGMPHD filter.

5. CONCLUSION

In this paper, a new DS-UKGMPHD filter is presented and applied to automotive radar. With the road
environment cluttered and measurement equations nonlinear, the proposed filter is capable of tracking
maneuvering and time-varying number of targets owning to the use of UK filter and GMPHD filter, as
shown in Section 4. What’s more, compared with IMM-UKGMPHD filter, the proposed approach uses a
switchable subset of a predefined diagram which covers more motions. Performance of DS-UKGMPHD
algorithm improves on both estimated number and positions. In the future work, the algorithm validated
in MATLAB environment in this paper may be applied to practice.
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