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The Cherenkov Emission in Regular and Random Photonic Crystals

Gennadiy Burlak* and Erika Mart́ınez-Sánchez

Abstract—We systematically study the Cherenkov optical emission by a nonrelativistic charge
uniformly moving in parallel to surface of a photonic crystal by FDTD simulations. It is found that a
near-static structure of field oscillations produced by a discontinuity of dielectric permittivity in surface
of photonic lattice is generated. Such oscillations have large amplitude in Cherenkov group cone and
generate a number of well defined spectral resonances corresponding to eigenmodes of the photonic grid.
The dynamics and field properties in photonic lattice with random vacancies are investigated too. It is
found that even at medium level of a random perturbation the field shape shows the structural stability
of the Cherenkov emission field in a photonic crystal.

1. INTRODUCTION

Photonic nanostructures, which can manipulate the light waves or photons in all dimensions, represent
a significant rise to the next-generation nanophotonic technology [1]. Such nanostructures allow perfect
integration with currently using optical-electronic materials and devices with various extension of the
Cherenkov effect [1–21]. Recently extensive efforts have been devoted to fabricating the photonic
nanostructures with controlled symmetry, size and defects on a large scale [1–5]. A very recent
experiment [21] registers soliton induced Cherenkov radiation that allows coherence over a spectral
bandwidth (phase-stabilize to the sub-Hertz level) in a photonic chip.

The Cherenkov emission occurs when a charged particle propagates inside a dielectric medium
with a velocity larger than the electromagnetic wave phase velocity of the medium [6]. A particle with
velocity exceeding such a threshold gives rise to a conical wave front (see, e.g., [7, 8]).

In the case of a long photonic crystal (long-range periodicity) one can use periodic boundary
conditions. The latter allows decomposition of electromagnetic waves to series of Bloch waves that
finally generate the frequencies spectrum with allowed bandgap structure [1]. The study of Cherenkov
emission for such a situation can be done by the use of standard technique [2]. However, if a photonic
crystal is not long (such that the long-range symmetry is broken), the periodic boundary conditions
cannot be applied. In this case, the electromagnetic waves (generated by the Cherenkov emission) are
not longer than the exact Bloch waves because the group velocity is not given by the dispersion of the
frequency the Bloch wavevectors. Furthermore, in the photonic crystals with randomly valued depth
of holes, even a short-range order becomes not valid. The question then arises about the structural
stability of the optical modes in photonic crystals with randomness of lattice. Nowadays such systems
are of considerable practical interest. Moreover, in such disorder environments it is possible to observe
the fundamental optical phenomena as the optical Anderson localization [22]. Such a setup in disordered
environments may lead to lasing (random laser) [23, 24].

For this situation, the use of numerical methods (FDTD) [9, 26] is highly desired to explore the
dynamics of optical waves (associated with the Cherenkov emission) in the photonic crystal. However,
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such a 3D problem is too complicated for an analytical consideration. The numeric FDTD simulation
of field spatial dynamics with the use of absorbing boundary conditions in a photonic lattice (x; y) has
to be applied.

In this paper, we study the Cherenkov optical emission by a nonrelativistic charge uniformly moving
in parallel to surface of a photonic crystal (PCr). To do that, we perform FDTD simulations in 3D
perforated slab and study a dynamics of near-static field produced by the discontinuity of dielectric
permittivity in the photonic structure. We use the fact that some fraction of the incident radiation
is transmitted through the discontinuity of the dielectric permittivity of PCr lattice and generates a
near-field interference pattern of the transmitted light. Such an interference picture gives important
information on the field phase distribution. We have found that such dynamics produces a number of
well-defined spectral peaks in the frequency domain. The dynamics for a disordered PCr, where the
holes in slab deviate randomly (lattice vacancy), is studied too. In the latter case, the short-range order
is not valid, so the particular holes can affect the total properties of optical modes in the photonic
crystal.

2. BASIC EQUATIONS

The Maxwell equations read ∇×E = −μ0
∂H
∂t , ∇×H = ε0ε

∂E
∂t + qv0f(r, t), where ε = ε(r) is a

dielectric permittivity of the dielectric PCr structure [7]. We consider the charge particle (charge q)
moving with a uniform velocity v0 closely to (x, y surface) parallel to y direction: v0 ‖ êy and the density
of particles (bunch) is defined by the Gaussian as f(r, t) = W−3 exp{−[x2+(y−v0t)

2+z2]/W 2}, where
W is the width; at W → 0 such a distribution is simplified to the isotropic point-source distribution

f(r, t) → (π)3/2 δ(x)δ(y − v0t)δ(z). In the following simulations, we use dimensionless variables, where
for renormalization are used: the vacuum light velocity c = (ε0μ0)

−0.5 and the typical spatial scale for
nanooptics objects l0 = 500nm . The electric and magnetic fields are renormalized with the electrical
scale E0 = ql0ε0 and magnetic scale H0 = (ε0/μ0)

0.5E0, respectively.

3. NUMERICS

3.1. Regular Lattice

A typical structure of the considered PCr is shown in Figure 1.

Figure 1. A free no-magnetic slab with dielectric permittivity εS is assumed as a platform for PCr
perforated lattice.

A free-standing (no magnetic) PCr slab structure is assumed as a platform for a PCr lattice. We
perform FDTD simulations to study a structure of field in such the photonic system. The normalized
numerical velocity of the propagating field in 3D homogeneous numerical grid is dl/dt =

√
3dx/dt (with

dx = dy = dz) [9]. In what follows, we use renormalized variables dx/dt → 3dx/dt = (
√
3)dl/dt = cn ≡
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(a) (b)

Figure 2. (Color on line) The average dielectric permittivity of a photonic crystal ε(x, y) where the
dielectric slab (εS = 12.25) is perforated by holes (εh = 1) with (a) regular lattice, and (b) random
lattice with control parameter p = 0.5, see more details in Section 3.2.

1.732 that is the “vacuum light velocity” in the numerical grid, such that cn > v0. Another important
velocity is ccr = cn/ |n| corresponding to the critical velocity of bunch v0 when the Cherenkov radiation
appears in a dispersiveless dielectric with refraction index n, and the time step is dt = 0.00088. In our
study, we use the approach [12] which we have extended and adopted for our purposes.

Figure 2 displays the average dielectric permittivity of a photonic crystal ε(x, y) for (a) regular
lattice and (b) random lattice.

An important property of the considered PCr is that the standard boundary conditions for the
normal components of the electric displacement Dn [7] in the holes wells εhEhn = εSESn (here
Ehn, ESn are normal components of the electric fields in the boundary hole and slab respectively)
produce discontinuity of the normal Ex,y field components, which leads to discontinuity of local field
generated by moving particle in area of periodic holes.

We apply the FDTD technique to study the emission field dynamics in such an advanced medium.
Our results are shown in Figures 3–10. In our FDTD simulation, we used a sufficiently large horizontal
computational domain L2 = (16l0 × 16l0), where l0 = 500 nm and ∓L/2 indicate the input and output
points, respectively. The optical loss of the resonant mode is closely related to the in-plane field
distributions.

First for reference purposes we simulate the Cherenkov radiations in a dispersiveless dielectric for
homogeneous case εS = εh = 1.44 for cn > v0 = 1.5 > ccr = 1.2 at the time when the particle touches
the output boundary. In Figure 3(a), we observe the standard Cherenkov wave cone with the angle of
emission θc relative to the velocity of particle as cos(θc) = c/nv0, see Chap. 13 in [7], Chap. 2 in [8].

More interesting is the case when the dielectric permittivity of the slab and holes have distinct
values εS �= εh. Figure 3 displays snapshots of field Ex(x, y) distribution in plane (x, y) for particle
moving with overcritical velocity v0 = 1.5 and different 2D photonic crystals with slab perforated by
holes: (a) homogeneous case εS = εh = 1.44; (b) εS = 1.44, εh = 1; (c) εS = 5, εh = 1; (d) εS = 12.25,
εh = 1. From Figures 3(b)–(d) cases one can see significantly inhomogeneous field oscillations within
the Cherenkov cone. Since the spatial period of PCr is comparable with the field wavelength l0/λ ≤ 1
such a 2D system acts as a distributed 2D plane resonator having a special eigenfrequency spectrum.

In this case, we deal with highly dispersive media where the field intensity is peaked on the surface
of a group cone (see [25] and references therein) that is neither orthogonal to the phase nor to the group
velocity of the emitted light and is much narrower than the Cherenkov wave cone.

From Figures 3(b)–(d) we observe that for such a geometry the field within the Cherenkov cone
acquires highly inhomogeneous structure relating the structure of holes in PCr due to the discontinuity
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Figure 3. (Color on line) Snapshots the field Ex(x, y) in plane (x, y) for particle moving with overcritical
velocity v0 = 1.5 and different εS of 2D photonic crystals slab perforated by holes εh = 1, (a)
homogeneous case εS = εh = 1.44; (b) εS = 1.44, εh = 1; (c) εS = 5, εh = 1; (d) εS = 12.25,
εh = 1. Incoming arrows show the enter points of the particle.

(a) (b)

(c) (d)

Figure 4. (Color on line) The same as in Figure 3 but for magnetic component Hy(x, y), (a)
homogeneous case εS = εh = 1.44; (b) εS = 1.44, εh = 1; (c) εS = 5, εh = 1; (d) εS = 12.25,
εh = 1. Incoming arrows show the enter points of the particle.
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of the dielectric permittivity ε(x, y). Moreover, Figures 3(b)–(d) show that the amplitude of the field
oscillations Ex(x, y) have maximal values in the narrow group cone [25] closely to the path of the charged
particle. In the considered case εh < εS so the field is localized in the holes area and exponentially
decays beyond the holes [7]. For such a reason, the amplitudes of near-static oscillations decay slowly
even after the particle has leaved the system (for t > L/v0).

A simple physical interpretation of the group cone can be put forward in terms of group velocity
considering that for each direction around the charge velocity, the burst of Cherenkov light is emitted
into a group of modes while the peak of the pulse moves in space with a velocity equal to the group
velocity vg experiencing an almost negligible absorption [25].

Figure 4 displays the magnetic field Hy(x, y) for the parameters used in Figure 3, respectively.
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Figure 5. (Color on line) The time dependence of electric and magnetic field components in various
points along the charge path at X±1/4,Xc at x = ±L/4, 0 for field shown in Figures 3(d): (a) Ex(t),
(b) Ey(t), (c) Hy(t), (d) Hz(t).
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Figure 6. (Color on line) The frequency (FFT) spectrum of electromagnetic oscillations shown in
Figure 5 for various points along the charge path at X±1/4,Xc at x = ±L/4, 0 having highest spectral
peaks. Such oscillations correspond to optical eigenmodes of PCr excited by the moving charged particle:
(a) Ex(f), (b) Ey(f), (c) Hy(f), (d) Hz(f). Here and in follows y-axis exhibits the amplitude of FFT.



82 Burlak and Mart́ınez-Sánchez

Since we consider the no-magnetic PC slab, there is no magnetic inhomogeneity in the system. The
magnetic field is defined from equation ∂H

∂t = −(1/μ0)∇×E, and thus it is small (see Figure 4).
It is instructive to study the field dynamics (associated with the Cherenkov emission) along the

path of the moving particle. To do that we explore the time dependence of Ex in various points along
the charge path (group cone), shown in Figure 3(d).

Figure 5 shows the time dependence of field at a long-time (t > L/v0) simulation. From Figures 5(c),
(d) we observe that the expected field Hy,z(x, y) has smoother shape with a regular spatial structure.

From Figure 5(a) we observe that Ex,y amplitudes have oscillating shape shifted with a pedestal
defined by a point position. Figures 5(c), (d) show that Hy,z oscillates in vicinity of zero, which is
natural due to the continuity of magnetic field in the system. It is interesting to study from Figure 5
which of such oscillations correspond to eigenmode in a gap zone of PCr. Such a spectrum is shown
in Figure 6 for some highest spectral peaks corresponding to long-live modes in PCr. We notice the
existence of near-static, nonradiating field artificial peak around f = 0 in Figure 6(a) (see discussion
in [2]). The value of such a resonance can be evaluated from a simple dimension relation f = c/λ

√
εp,

where εp is a weighted dielectric permittivity of PCr εp = (εS(VS − Vc) − εhVc)/(VS + Vc) and VS the
volume of slab reduced by the volume of all holes Vc. In our dimensionless case V c = 338πR2h = 65.0,
VS = 432, λ = 1, c = 1.732, h = 0.5, εh = 1 that gives f0 = 0.58 and corresponds to resonances in a
range f0 ∼ 0.6 shown in Figure 6.

3.2. Photonic Crystal with Random Vacancies in a Lattice

In real situation, the depth of holes (or high of cylinders in the contrast configuration) can have a random
deviation. The latter leads to spatial variations of the average dielectric permittivity that acquires the
randomly perturbed structure. In what follows we consider a photonic random system where in the
reference lattice the nodes can have a lattice vacancy that allows being zero of the depths of some holes.
The average dielectric permittivity of such a system is displayed in Figure 2, panel (b). We represent
such a system by a number of vacancies Nv with a control parameter p = Nv/N0, where N0 is the total
number of holes. In a periodic photonic crystal Nv = 0, so p = 0.

We simulate the random vacancies as following. We characterize the photonic structure by random
factor mγ so that mγ = 0 (γ < p), and mγ = 1 (γ ≥ p), where γ is the uniform distributed random

(a) (b)

(c) (d)

Figure 7. (Color on line) The spatial (x, y) shape of field components: (a) Ex(x, y), (b) Ey(x, y), (c)
Hy(x, y), (d) Hz(x, y) for a random PCr with p = 0.5.
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numbers in [0, 1) and p the control parameter that characterize the level of randomness in the lattice.
(In first part of the paper it is considered the regular lattice with p = 0 that gives mγ = 1.) We define
the actual depth hi,j of a lattice hole in node (i, j) as hi,j = mγh (for fixed p), where h is a reference
hole depth. This allows simulating the random PCr for the case when some of the holes are vacant (or
have zero depths). Corresponding dielectric permittivity ε = ε(x, y) is displayed in Figure 2, panel (b)
for p = 0.5.

We calculate the spectrum of electromagnetic field oscillations for various levels of randomness
defined by control parameter p. Figure 7 shows the spatial structure of the field at a randomly prepared
structure with control parameter p = 0.5 at long-time simulation for t ∼= L/v0. From Figure 7(a) we
observe that already for a medium random perturbation level with p = 0.5 the electric field Ex(x, y)
has rather similar shape to that in Figures 3(c), (d). The amplitudes of magnetic field in Figures 7(c),
(d) remain small and have an irregular structure. From the comparison between Figure 3 and Figure 7,
we observe a close similarity of the field radiated by charged particle in PCr for periodic and randomly
perturbed field shapes even for medium perturbation level p = 0.5. This again exhibits the structural
stability of the longitude field Ex distribution in PCr due to discontinuity of field in the boundary of
holes.

Figure 8 shows such a spectrum for Ez in the group cone along the charge path at X−1/4,Xc at
x = ±L/4, 0 and random PCr for (a) p = 0; (b) p = 0.2; (c) p = 0.5; (d) p = 0.62. From Figure 8(a), we
observe that the resonance at f = 0.59 splits in narrower peaks at the increase of parameter p. However,
the resonant zone is concentrated closely to f ∼ 0.6. This again indicates the structural stability of
field modes associated with Cherenkov emission.

It is instructive to study the time dependencies of field’s amplitudes for the random and periodic
PCr cases in the path of particle. Figure 9 shows such dependencies for PCr with p = 0.5 in points close
to x = 0. From Figure 10 one can see the spectral peak for component Ey at point x = 0 near f = 0.6
in such random PCr with p = 0.5. Similar spectral resonance is also observed for field component Ez

in Figure 8. Thus our numerical calculations indicate the structural stability of the resonances at the
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Figure 8. (Color on line) The spectrum of highest resonances of field oscillations Ez in the group cone
at X−1/4,Xc at x = −L/4, 0 and random PCr and various values parameter p: (a) p = 0; (b) p = 0.2;
(c) p = 0.5; (d) p = 0.62.
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Figure 9. (Color on line) The time dependence of electromagnetic fields in various points in the group
cone along the charge path at X±1/4,Xc at x = ±L/4, 0 respectively for random PCr with control
parameter p = 0.5: (a) Ex(t), (b) Ey(t), (c) Hy(t), (d) Hz(t).
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Figure 10. (Color on line) The frequency (FFT) spectrum of electromagnetic oscillations for various
points along the charge path. It is shown the oscillations in position at X±1/4,Xc at x = ±L/4, 0 having
highest spectral peaks. Such oscillations correspond to optical eigenmodes of PCr excited by the moving
charged particle for random PCr with p = 0.5, (a) Ex(f), (b) Ey(f), (c) Hy(f), (d) Hz(f).

change of the randomness level photonic crystals. Such resonances respond to generation of a remanent
near-static field oscillations in photonic crystals by the charged particle. Due to structural stability such
an effect can find applications in modern nanotechnology. As far as in a photonic crystal it is possible
to create characteristic radiation patterns without a particle velocity threshold.
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4. CONCLUSION

We study Cherenkov optical emission by a nonrelativistic charge uniformly moving parallel to surface
of a 2D photonic crystal. It is found that a near-static structure of field oscillations produced by a
contrast of dielectric permittivity in the surface of photonic lattice is generated. Such oscillations have
large amplitude in the Cherenkov group cone and produce a number of well defined spectral resonances
corresponding to eigenmodes of the photonic grid. The dynamics and field properties of a randomly
perturbed photonic lattice indicate that even at medium level of a randomness, the field shape has
structural stability of the Cherenkov emission in a photonic crystal.
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