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Analytical Model on Real Geometries of Magnet Bars of Surface
Permanent Magnet Slotless Machine

Youcef Boutora1, *, Noureddine Takorabet2, and Rachid Ibtiouen3

Abstract—We present in this paper an analytical model for the calculation of the electromagnetic
field in a slotless surface mounted permanent magnet machines. This model takes into account the
two essential directions of magnetization of the magnets, namely tangential magnetization and radial
magnetization. It especially accounts for the parallel form of the magnetization direction. The model
uses equivalent currents on the surfaces of the magnets, and in an original way, it uses currents in all
volume of the magnet. The model is validated by numerical results obtained with a free software of
calculation of the electromagnetic fields (FEMM: Finite Element Method Magnetics) which uses the
finite elements method and by an existing experimental structure. The model is extended to the magnets
segmented in bars and separated. It is then extended to the shape of magnets close to parallepiped
forms which are really used in large machines.

1. INTRODUCTION

The analytical field calculation has a large part in literature [1–24]. It provides exact results in fast time
without numerical errors, like numerical methods. This is especially true when parameterized solutions
have to be done requiring changes in machine dimension.

Since the availability of high energy product rare-earth permanent magnets, such as Samarium
Cobalt (SmCo) in the 1970s and Neodymium Iron Boron (NdFeB) in the 1980s [3], the analytical
calculation of the magnetic field in permanent-magnet-excited machines has received real interest
in recent literature, and some methods were developed. One of these analytical methods is called
the “subdomain” method and consists in solving directly the Maxwell’s equations in the different
subdomains, i.e., air-gap, stator slots and magnets, by the variables separation method [6, 7].

In magnetic field calculation of electrical permanent magnet machines, most authors consider a real
direction of magnetization (parallel) [6–9, 24–28]. They consider only one permanent magnet by pole.

To optimize magnets on surface mounted machines to reduce cogging torque for example, many
studies have been achieved to skewed magnets or slots, to consider magnet shifts and other solutions [4].
The influence of the type of magnetization (radial, radial parallel, shifted and Halbach magnets) is also
taken into account in these models [3, 11, 12, 18, 19].

Boules [6] is one of the first authors who consider parallel magnetization in analytical field
calculation for slotless surfaced mounted permanent magnet machines. He formulates a two-dimensional
(2-D) model in polar coordinates that utilizes the concept of equivalent current-carrying coils to
determine the airgap flux density distribution.

In [26], parallel magnets are given for surface mounted permanent magnet machines. The authors
note that the model presented takes into account the interaction of the stator and rotor fields on drivers
and thus determine the value of back electromotive forces (EMF).
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In [27], an experimental study is achieved on BDLC with two types of magnetizations: radial and
parallel magnetization. The authors compare the performance of a BLDC machine with radial magnet
and parallel magnets. He note that the parallel magnetization induces a lower cogging torque but
greater hysteresis loss.

Authors of [28] consider that the parallel magnetization is easier to obtain for the radial
magnetization tiles. More they note that the parallel magnetization induces iron losses slightly larger
than the radial magnetization. However, they also note that the total power required for radial
magnetized machine is slightly greater than for the parallel machine with the same operating torque
and speed. The authors conclude that for the choice of the type of magnetization, it is more advisable
and easier to adopt the parallel magnetization process when the magnets are subjected to the action
before the magnetization introduction in the motor, as it is verified in a wide number of applications.

We can see that parallel magnetization has many advantages compared to radial magnetization:
easier to perform, less cogging torque, and comparable efficiency for radial magnetization machines.

An analytical model of parallel permanent and radial magnets in slotted stator machines is
presented in [8]. We can consider this work as a result of a previous work given in [7]. The magnetization
is supposed constant in all permanent magnets. Variable separation method is used to solve the partial
differential equation in all domains. Algebraic linear equations are taken to find some constants related
to magnetic field.

This method is also applied in some papers [11–18] for slotted stator in permanent magnet machine
(surface mounted permanent magnet machines, inset permanent magnet machines. . .).

In [21], to perform optimum magnet pole shape design for the reduction of torque ripple, authors
consider the special geometrical form of magnets.

In the design, generally, a set of magnet bars is used under one pole. Each magnet bar has its
parallel direction of magnetization. It is hard to optimize these machines in terms of number of magnet
bars, under mechanical considerations.

In this paper, we present a complete model of permanent magnet bars with parallel magnetization.
We not only use surface equivalent currents for modeling permanent magnets, but also introduce volume
currents in the case of parallel magnetization. The presented model permits to directly determine the
fundamental of spatial magnetic field distribution and all harmonics, and their variations versus number
of magnet bars. It is then possible to perform the design of structures if we consider air gap flux density
as reference.

On the other hand, in addition to previous works, we are also interest in tangential and parallel
tangential permanent magnet structures. These types of magnetization (in [29], we have tangential
magnetization component which exists in practice in a multipole impulse magnetized isotropic ring
PM) are present in combined magnetization segment bars, as shifted and Halbach structures.

The model, which is applied at first (in all this study) to a slotless structure, is extended to
segmented permanent magnet bars and separate segmented PMs. An equivalent model to parallelepiped
magnet bars in both magnetizations (radial parallel and tangential parallel) is also given in this paper.

The obtained model is applied to a laboratory slotless surface permanent machine. Experimental
results are presented [22, 23] and compared with analytical model. For validation of the presented
model in other cases, we replace, for the same structure, the magnets with considering both radial and
tangential magnetization in parallel and axial directions.

2. PERMANENT MAGNET MACHINE MODEL

2.1. Model Assumptions

At first, we consider 2-D model in polar coordinates. Then we consider only (r, θ) components. We
suppose then an invariance of flux density in z coordinate.

Stator and rotor laminations are supposed to have infinite permeability (μs ≈ ∞). It is possible if
we consider that iron steel used in stator and rotor have a permeability which is largely most important
than airgap and magnet permeabilities. The relative permeability of the magnets is supposed to be
equal to 1 as for the air-gap. It is available for advanced permanent magnets such as Nd-Fe-B and
Sm-Co (μr ≈ 1.015 to 1.2).
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Figure 1. Structure of surface mounted permanent magnet machine with slotless stator.

Another assumption concerns permanent magnet used in this study and shown in Fig. 1. We can
see that there are two parts: iron part and air part.

The air part consists of mechanical air gap (zone I) and permanent magnet zone (zone II). This
part is also called magnetic air gap.

Permanent magnets are mounted on rotor in zone II. They are surrounded by two types of surfaces:
external and frontal surfaces. Normal vectors are represented on magnets (Fig. 1).

�ns for external surfaces
�nf for frontal surfaces

The inner radius of the rotor is given by ri and its outer radius given by ro. Inner radius of the
stator is designed by ra. The machine has 2p poles.

The electrical shift of permanent magnets is 2 × θo. This shift includes all segmented bars of the
permanent magnet. We consider nb bars for each permanent magnet.

2.2. One Bar Permanent Magnet Model

The proposed model of the magnets consists of a magnetic polarization vector which varies according
to its radius:

M = μ0M0
rm

r
(1)

With rm = ro−ri
2 .

M0 is the given magnetization value of permanent magnet.
Classical models (radial and tangential) and parallel models of permanent magnets are represented

in Fig. 2.
In classical cases, we have only surface currents: external surface currents for tangential

magnetization and frontal surface currents for radial magnetization.
Magnetization vector is written by Eq. (2) for tangential case, by Eq. (3) for radial case, by Eq.

(4) for tangential parallel case and by Eq. (5) for radial parallel case
−→
Mt = 0−→ur + M · −→uθ (2)
−→
Mr = M−→ur + 0 · −→uθ (3)
−−→
Mtp = M · sin θ−→ur + M · cos θ−→uθ (4)
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(a) (b) (c) (d)

Figure 2. Models of permanents magnets models in magnetization. (a) Tangential. (b) Radial. (c)
Tangential parallel. (d) Radial parallel.

−−→
Mrp = M · cos θ−→ur − M · sin θ−→uθ (5)

Equivalent currents are alternative and can be expressed by a development of Fourier series.

2.3. Equivalent Currents for Model Magnets in Fourier Series

1. Surface currents:
Adopting Amperian equivalent model, we can estimate equivalent currents in all the volume of

permanent magnet with its surfaces.
For surface currents, we have:

−→
Js = �M × �ns.

We have then, respectively for Eqs. (2), (3), (4) and (5):
−→
Jst = M · �k (6)
−→
Jsr = 0 (7)
−−→
Jstp = ±M cos θ�k (8)
−−→
Jsrp = ±M sin θ�k (9)

We note that the surface currents in the case of a radial magnetization are zero.
For frontal surface currents, we have:

−→
Jf = �M × �nf and then respectively for Eqs. (2), (3), (4)

and (5). In these cases, we consider frontal equivalent currents localized in points at θ0 and θ0. We can
then use the Dirac function. −→

Jft = 0 (10)
−−→
Jfr =

M

r
· �k (11)

−−→
Jftp = ±M

r
sin θ0

�k (12)

−−→
Jfrp = ±M

r
cos θ0

�k (13)

2. Volume currents
Originality of this work consists in introducing volume currents. The surface currents model is

insufficient to represent the complete model of permanent magnets. These currents are obtained with
the expression:

−→
Jv =

−−→
curl �M .

We have then volume currents obtained in Eqs. (14), (15), (16) and (17) for magnetization given
in Eqs. (2), (3), (4) and (6).

−→
Jvt = 0 (14)
−→
Jvr = 0 (15)
−−→
Jvtp =

M

r
cos θ�k (16)
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−−→
Jvrp =

M

r
sin θ�k (17)

For classical models (tangential and radial), volume currents are equal to zero, contrary to parallel
magnetization.

2.4. Fourier Series Currents

The sum of all currents (surface Js, frontal Jf and volume Jv) gives all source currents to Amperian
model for each magnetization type.

Then we have, respectively for tangential, radial, tangential parallel and radial parallel
Equations (18), (19), (20) and (21)

−→
Jt = M · �k (18)
−→
Jr = ±M

r
δθ0 · �k (19)

−→
Jtp =

(
±M cos θ +

M

r
(± sin θ0δθ0 + cos θ)

)
�k (20)

−→
Jrp =

(
±M sin θ +

M

r
(± cos θ0δθ0 + sin θ)

)
�k (21)

In Fourier series, equivalent current of the models expressed in Eqs. (2), (3), (4) and (5) are given
respectively by Eqs. (22), (23), (24) and (25).

Jt(θ) = ±M
4p
π

∑
k

sin (nθ0) cos (nθ) (22)

Jr(θ) = −M

r

4p
π

∑
k

sin (nθ0) sin (nθ) (23)

Jtp(θ) = M
∑

k

(
Stk +

4p
π

1
r

sin θ0 cos (nθ0) +
1
r
Stk

)
cos (nθ) (24)

Jrp(θ) = M
∑

k

(
Srk +

4p
π

1
r

cos θ0 sin (nθ0) +
1
r
Srk

)
sin (nθ) (25)

With n = (2k + 1)p

Stk =

⎧⎪⎪⎨
⎪⎪⎩

1
π

(2θ0 + sin (2θ0)) n = 1

2p
π

(
sin (n − 1) θ0

(n − 1)
+

sin (n + 1) θ0

(n + 1)

)
n �= 1

(26)

And

Srk
=

⎧⎪⎪⎨
⎪⎪⎩

1
π

(2θ0 − sin (2θ0)) n = 1

2p
π

(
sin (n − 1) θ0

(n − 1)
− sin (n + 1) θ0

(n + 1)

)
n �= 1

(27)

3. SEGMENTED MAGNET BARS MODEL

The developed model is now applied to the segmented magnets. Each tile consists of nb bars whose
magnetizing is located according to the axis of each of these bars. It is supposed that all bars are
identical under each pole (even angle shift, even thickness, even value of magnetization).

Each ith bar is located at the angle θi as this:
θi = −θ0 + (2i − 1) θb (28)

θb =
θ0

nb
(29)



36 Boutora, Takorabet, and Ibtiouen
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(a) (b)
θ θ θ θ1 2 0i

Figure 3. Permanent magnet structured in bars.

The magnetization vector is given by Eq. (30) for segmented radial parallel tiles and by Eq. (31)
for segmented tangential parallel tiles.

−→
Mi = M · cos (θ − θi)−→ur − M · sin (θ − θi)−→uθ (30)
−→
Mi = M · sin (θ − θi)−→ur + M · cos (θ − θi)−→uθ (31)

For surface currents, we have Eq. (32) for segmented radial parallel tiles and Eq. (33) for segmented
tangential parallel tiles.

μ0Js =

(
nb∑
i=1

μ0Skri

)
sin nθ (32)

μ0Js(θ) =

(∑
k

nb∑
i=1

μ0Skti

)
cos nθ (33)

For frontal surface currents, we have Eq. (34) for segmented radial parallel tiles and Eq. (35) for
segmented tangential parallel tiles.

μ0Jr = μ0�kr sin nθ (34)

μ0Jr = μ0

∑
k

�kt cos nθ (35)

For volume surface currents, we have Eq. (36) for segmented radial parallel tiles and Eq. (37) for
segmented tangential parallel tiles.

μ0Jv =
μ0

r

∑
k

Skri
sin nθ (36)

μ0Jv(r, θ) = μ0

∑
k

nb∑
i=1

Skti

r
cos(2k + 1)pθ (37)

With

μ0Skti =

⎧⎪⎨
⎪⎩

M0
rm

πr
cos θi (2θb − sin (2θb)) n = 1

M0
rm

πr
2p cos (nθi)

(
sin (n − 1) θb

(n − 1)
− sin (n + 1) θb

(n + 1)

)
n �= 1

(38)

μ0Skti =

⎧⎪⎨
⎪⎩

M0
rm

πr
cos θi (2θb + sin (2θb)) n = 1

M0
rm

πr
2p cos (nθi)

(
sin (n − 1) θb

(n − 1)
+

sin (n + 1) θb

(n + 1)

)
n �= 1

(39)

μ0�kr = 4p
M · rm

πr2
sin nθ0 cos θb (40)

μ0�kt = 4p
M · rm

πr2
sin θb cos nθ0

nb∑
i=1

cos nθi (41)
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4. SEGMENTED PARALLELEPIPED BARS

In practice, the magnet bars are parallepipedic. The presented model takes account of magnets in a
tile form. We propose an analytical model that takes into account equivalent appearance parallelepiped
magnets.

As shown in Fig. 4, the parallepiped magnet is defined with two angles:

- Maximum angle which is on the iron core; its value is done by 2 × θb.
- Equivalent angle which is given by 2 × α × θb (Fig. 4).

α is calculated as following:

α =
1
θb

arctan

⎛
⎝2

ri sin θb(
r2
o − r2

i sin2 θb

) 1
2 + ri cos θb

⎞
⎠ (42)

α depends, for the studied structure, on p (number of pair poles) and number of segmented bars
by pôle.

A
B

C

(a) (b)

2θ

2αθ
b

b

2θb

2αθb

Figure 4. Equivalent model of real magnet segmented bars. (a) Pseudo-parallepiped magnets. (b)
Tile magnets.

Figure 5. Variations of α versus θb.

2θ

2αθ
b

b

2θ0

r

θ θ θ θ1 2 i n... ...

Figure 6. Analytical model of separated parallel
magnet bars.
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Figure 5 shows α variations versus θb angle of magnets.
If we consider that magnet bars have a half open angle less than 30◦ (in mechanical degrees), then

α coefficient varies between 0.927 and 0.932. For all suitable study, α coefficient is calculated for each
configuration.

In this model, we consider the parallel magnet bars as separated with 2θb angular shift, but for
parallepipedic magnets, they have a reduced angular shift of 2αθb (see Fig. 6). We consider two types
of magnetization: radial parallel and tangential parallel.
1. Radial parallel magnetization

a. Internal external Surface currents

μ0Js(θ) =

(∑
k

nb∑
i=1

μ0Ski

)
sin nθ (43)

Ski
=

⎧⎪⎨
⎪⎩

M0
rm

πr
cos θi (2αθb − sin (2αθb)) n = 1

M0
rm

πr
2p cos (nθi)

(
sin (n − 1) αθb

(n − 1)
− sin (n + 1) αθb

(n + 1)

)
n �= 1

(44)

b. Frontal surface currents

μ0Jr = μ0

∑
k

�k sinnθ (45)

�k = 4p
M · rm

πr2
cos (αθb)

nb∑
i=1

sin (n (θi − αθb)) (46)

with θi = (−nb + 2i − 1)θb.
c. Volume currents:

μ0Jv(r, θ) = μ0

∑
k

nb∑
i=1

Ski

r
sinnθ (47)

2.Tangential parallel magnetization

For internal and external surface, the equivalent current is:

μ0Js(θ)

(∑
k

nb∑
i=1

μ0Ski

)
cos nθ (48)

Ski
=

⎧⎪⎨
⎪⎩

M0
rm

πr
cos θi (2αθb + sin (2αθb)) n = 1

M0
rm

πr
2p cos (nθi)

(
sin (n − 1)αθb

(n − 1)
+

sin (n + 1)αθb

(n + 1)

)
n �= 1

(49)

For the frontal surfaces, the equivalent current is:

μ0Jr = μ0

∑
k

�k cos nθ (50)

�k = 4p
M · rm

πr2
sin (αθb) cos (nαθb)

nb∑
i=1

cos nθi (51)

Inside the magnets, we have volume currents:

μ0Jv(r, θ) = μ0

∑
k

nb∑
i=1

Ski

r
cos nθ (52)
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5. POTENTIAL MAGNETIC VECTOR

We solve a partial differential equation in polar coordinates (r, θ) in potential vector formulation only
in magnetic air gap. The potential vector A (the scalar value of the z-component of magnetic potential
vector) is calculated separately for each component of equivalent currents of permanent magnets
(external current surfaces, frontal current surfaces and volume currents). All calculated potentials
are added to obtain final result.

For external currents surface, we solve Poisson’s equation in all magnetic air gaps and consider
Equation (53):

ΔA =
∂2

∂r2
A +

1
r

∂

∂θ
A +

∂2

∂θ2
A = 0 (53)

For frontal currents surface and volume currents, we solve Laplace’s equation and consider
Equation (54):

ΔA =
∂2

∂r2
A +

1
r

∂

∂θ
A +

∂2

∂θ2
A = μoJ (54)

J is the total equivalent current of permanent magnet.
Polar components of flux density vector B are given by:

�B =
−−→
curl �A =

1
r

∂A

∂θ
�ur − ∂A

∂r
�uθ = Br�ur + Bθ�uθ (55)

We consider the separate variables method to solve the partial differential equations. Then, we
consider potential magnetic A as the product of two functions:

A(r, θ) = R(r) · Θ(θ) (56)

R(r) is a function that depends only on r, and Θ(θ) is a function that depends only on θ.

6. APPLICATION ON A REAL STRUCTURE

We take the structure described in Table 1 [22, 23] and Fig. 7. It is a machine prototype developed by
the Laboratory LEEI Toulouse (France). It is a machine with six poles (p = 3). Each pole is occupied
by two radial parallel magnets (nb = 2). A search coil is inserted in the air gap of the machine driven
by a gear motor with low variable speed. Experimental results concerning normal flux density in the air
gap are given in Fig. 8(a). Analytical and FEMM results are given in Fig. 8(b). A good correlation is
observed among all these results. We can conclude that for this structure the proposed model is valid.

Table 1. Characteristics of studied slotless permanent machine.

External radius (mm) 125.5
Inner radius of rotor ri (mm) 69
Outer radius of rotor ro (mm) 79
Inner radius of stator ra (mm) 87

Magnetization M(T ) 0.9
Mechanical airgap (mm) 3

Number of bars nb 2
Number of poles 2p 6

1. Radial parallel permanent magnet bars
We use finite elements results to provide a freeware tool, which is FEMM 4.2 (finite elements method

magnetics) [30]. The numerical model solves magnetostatic equation in a Cartesian coordinates. With
a compiled Lua program, we compute the geometric structures with real forms (in linear case) at no
load. We fixed permanent magnet relative permeability at 1 and iron (stator and rotor) permeability
at 1000.
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Figure 7. Real structure for experiments. 1. Permanent magnets. 2. Stator yoke. 3. Rotor yoke. 4.
Airgap. 5. Search coil. 6. Stator windings.
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Figure 8. Finite element model (– – –) and analytical model (——) comparison of tangential component
of flux density and potential. (a) Experiments [21]. (b) Numerical (– – –) and model calculation (——).
(c) Tangential component of flux density. (d) Potential.
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Figure 9. Finite element model (– – –) and analytical model (——) comparison of radial component
of flux density for parallel tangential magnetization.
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Figure 10. Bipolar machine with total shift of permanent magnets θ0 = 90◦ (—— analytical model)
and (– – – finite elements model).

Analytical calculation of tangential component of flux density is also given with FEMM calculation
in Fig. 8(a). A very good correlation is also noticed in this case. The developed model is then correct
for this structure. In Fig. 8(b), we can see potential results for both analytical and FEMM results.

For tangential parallel magnetization, we suppose the same structure studied for radial parallel
magnetization and change only the type of magnetization of magnet bars.

Then we have both analytical and FEMM results for normal and tangential components of flux
density in air gap, and the potential values (see Fig. 9).

In Fig. 10, we can see a normal flux density component for a complete shifting of permanent
magnets (θ0 = 90◦). Each permanent magnet covers the whole pole of the machine. The normal flux
density is a perfect sine wave in this case. This result is confirmed by many researches in literature. We
can see that developed model results are the same as FEMM.

In this case, equivalent frontal currents equal zero, and other currents (surface and volume) are
in only the first term of Series Fourier transform. Equations (12) and (16) for tangential parallel
magnetization and (13) and (17) for radial parallel magnetization will be respectively Eqs. (57) and (58).

Jtp(θ) = M

(
1 +

1
r

)
cos(θ) (57)

Jrp(θ) = M

(
1 +

1
r

)
sin(θ) (58)

In Fig. 11(a), the 2-pole structure is studied with approached 2/3 shift permanent magnet
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(θ0 = 60◦). Also in this case, analytical and FEMM results are the same. We have decomposed
normal components of flux density with the contributions of all types of currents modeled permanent
magnets. In this case, we can see that the contributions of volume currents and frontal surface currents
are the same (in maximum value). It is a particular case.

Internal and external surface currents have a little contribution, and their principal effects are at
the ends of magnets. It has a negative effect. It is opposed to the other types of currents. In the middle
of the magnets, internal-external currents has a small contribution.

In Fig. 11(b), we can see related contribution of all type of equivalent currents in the maximum
value of normal flux density. Total normal flux density is related to 100%.

As we can see, volume currents contribution are increased when the length of permanent magnets

(a) (b)

Figure 11. Bipolar machine with 2/3 shift of permanent magnets θ0 = 60◦ (nb = 1). (a) Contribution
for a 60◦ electrical degree half shift (—— analytical model) and (– – – finite elements model), — - —
- — volume currents contribution, — - - — - - frontal surface currents contribution, - - - - - - internal-
external currents surface contribution. (b) 2-pole machine with variable shift of permanent magnets:
related value of contributed flux densities induced by all types of equivalent currents.
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Figure 12. Bipolar machine permanent magnets 60◦ shift for tangential parallel permanent magnets
(—— analytical model) and (– – – finite elements model). (a) Normal flux density component (— - —
for classical model). (b) Tangential flux density component.
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is increased, opposite to frontal surface currents contribution. They have same values for a 60◦ electrical
shifted permanent magnet (θ0 = 60◦). It is important to notice that volume currents contributions are
small for small magnet bars. Their contribution is less than 1% for θ0 = 9◦.

For internal-external surface currents, the contribution is about 6% for θ0 > 19◦ and less than 1%
for θ0 < 2◦.

For segmented permanent magnets, we note that classical model give practically the same results as
the proposed model for θ0 < 5◦ (with 2% maximum difference in maximal value of normal flux density).
The classical model is then available for segmented permanent magnets with thin bars.

In Fig. 12 we can see other analytical-FEMM comparison for tangential parallel magnetized
permanent magnets in the structure of 60◦ half shift. A good correlation is noted between these results.
We can see that classical model is very insufficient for this type of permanent magnet and needs to take
into account the volume currents.

This type of magnetization cannot be applied alone on surface mounted permanent magnet
machines. It can be used, for example, in Halbach structures.

7. MODEL VALIDATION

The proposed model is valid for the studied structure. But, is it also valid for other structures (with
different radius ro and ri)? If ratios ri/ra and ro/ra are respected, the measurement value of ra does
not affect magnetic results (such flux densities) of structures. In the following, we consider structures
with constant radius ra, but we change two parameters:

• h: permanent magnets height: h = (ro − ri).
• a: mechanical air gap: a = (ra − ro).
• nb = 2 (there are two bars under each pole).

In Fig. 13, we can see the maximum value of normal component of flux density Bnmax for different
structures. Results are obtained with both methods: analytical and FEMM.

Figure 13. Maximal value of normal component of flux density in the middle of mechanical air gap
for different values of air gap and permanent magnets height.

The two methods gave similar results for all these structures. We can then conclude that the
proposed model of segmented parallel permanent magnets is verified.

In Fig. 14, we can see radial and tangential components of flux densities obtained for the two extreme
structures chosen for this validation. The first structure cr1 has a thin magnetic air gap (h = 1 mm,
a = 1 mm), and the second structure cr2 has a large magnetic airgap (h = 20 mm, a = 25 mm).
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Figure 14. Analytical (—) and FEMM (����) flux density distribution for thin (cr1) and large (cr2)
magnetic air gap. (a) Normal component. (b) Tangential component.

8. HARMONIC ANALYSIS

The solutions of Equations (53) and (54) give a complete expression of the magnetic potential in the
mechanical air gap in the case of radial parallel magnet bars as follows:
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(59)

As we can see from Equation (59), the potential is the sum of harmonic terms in sin(nθ).

9. PARALLEPIPED BARS

In following, we can see results of the equivalent analytical model and the comparison with finite
elements results for the last proposed model: the parallepiped bars.
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Figure 15. Analytical and numerical results for real and equivalent models of radial parallel segmented
magnet bars. (a) Flux density lines. (b) Normal component of flux density.



Progress In Electromagnetics Research B, Vol. 66, 2016 45

(a) (b) (c)

Figure 16. Analytical and numerical results for real and equivalent models of tangential parallel
segmented magnet bars. (a) Flux density lines. (b) Normal component of flux density. (c) Tangential
component. – – – Numerical results for real structure (structure 1). —— Analytical results for equivalent
structure (structure 2).

In Fig. 15, we can see the two studied structures. For the real structure, we have numerical results,
and for the equivalent structure, we have both analytical and numerical results.

The model is applied to a six poles synchronous machine, with an angular shift of 80 electrical
degrees and four (04) magnets by pole.

The developed model is applied to tangential parallel magnetization parallepiped segmented bars.
In Fig. 16, we can see parallel magnetization potential contours for the two structures: true and
its equivalent model. Radial and tangential components are shown. These results (analytical and
numerical) conform, and we can deduce that the presented analytical model is as close as possible to
the real structure for slotless surface permanent magnets machines.

10. CONCLUSION

In this paper, we have presented a complete model of permanent magnets in real magnetization (in
parallel direction) for two types of polarizations: radial and tangential.

For complete surface currents models, we have completed classical models by introducing equivalent
volume currents. It is the originality of this work.

The model obtained is compared to free code finite element method (FEMM [30]) results, and a
good convergence is noted. Experimental results also validates our model in some special cases.

In all cases, the model is reliable and gives very good results compared to the numerical method.
We noted in our study the balance of volume currents in the case of large aperture magnets. These
currents begin to disappear in thin magnets, as we can see in Fig. 12. The classical model is valid for
parallel magnetization when the shift of magnets is less than 10 electrical degrees. This model can be
extended to rotating magnetization, and it is an ideal tool to design parallel magnet bars.

We have extended our model to segmented magnet bars and separated magnet bars. Results are
also excellent in both cases of parallel magnetization: radial and tangential.

We finally tried to approach the true geometry of the magnets giving them a parallelepiped, which
is done by considering tile magnets equivalent. Results obtained by this approach are satisfactory.
The model thus developed can be extended to the calculation of magnetization and rotating Halbach
structures.

In other way, the obtained expressions of potential magnetic are easy for calculate back EMF and
torque.
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