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Analysis of Guided and Leaky TM0n and TE0n Modes

in Circular Dielectric Waveguide

Siming Yang and Jiming Song*

Abstract—Guided and leaky modes for a circular dielectric rod are analyzed in detail in this paper.
By considering the field distributions, these modes are well defined and classified. Through this research
the relations for the mode solutions using different types of special functions and Riemann sheets are
understood. Further, completed forms of characteristic equations used to solve different modes are
presented explicitly. Asymptotic expansion method and Lambert W function are employed to derive
the initial guesses around cutoff frequency, low frequency limit and high frequency limit for both TM
and TE cases. The behaviors of complex transverse attenuation constants for proper and two types of
improper modes with different cases are presented with some modes not shown in other works.

1. INTRODUCTION

Geometrical configurations based on circular rod are very popular, such as coaxial lines and cavities;
these cylindrical structures maintain a uniform cross section along their length. However, due to
conductor loss, the metallic based structures are impractical in high frequency region. A better option
is to use a low-loss dielectric waveguide [1–3]. One of the well-known examples of this is optical fiber.
In 1966, Kao [4] published a paper on the theory and practice of optical fiber for communication
applications, which heralded the beginning of a new era in telecommunications. Investigation related
to the guide modes has been well established even earlier than 1966 [5, 6], whereas the leaky modes
below cutoff frequency have been scarcely investigated. Yet, the leaky wave is useful in many antenna
applications [7–10]. Until 1969, Arnbak [11] found the complex propagation constant below the cutoff
frequency by solving the asymptotic forms of the characteristic equation, thus, proving the existence
of leaky modes in the circular dielectric waveguide. Later on, Sammut and Snyder [12] presented the
characteristic of the leaky modes graphically for both lossless and lossy cases. However, these results
were obtained based on approximation method, which led to the results not accurate enough for further
applications.

Several decades later, Kim et al. studied the guided and leaky modes supported by the dielectric
circular rod [13, 14], and demonstrated several lower orders of the modes by using the Davidenko’s
complex root finding algorithm. In addition, Kim et al. also defined and explained the regimes of these
modes based on their physical meanings [15–18]. To solve the eigenvalue problems more efficiently,
asymptotic formulas have been derived before using the numerical solvers for planar and circular
multilayered structures [19–23]. The waveguides open to air or closed with perfect matching layer
(PML) were considered, and Lambert W function [24, 25] has been leveraged frequently to simplify
the asymptotic expressions. Solutions to dispersion equations with complex dielectric permittivity are
considered [26] for microwave transfer in tubular sliding-mode plasma waveguides.
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However, through investigating these articles and relevant textbooks [27, 28], we find that there are
still many ambiguous parts left unsolved. First of all, different special functions involved characteristic
equations have been employed in different articles [11, 13] or textbooks [27, 28] to solve these modes
problems. A same solution is achieved using different special functions for proper (guided) modes.
Nevertheless, due to t multiple-value issue in the special functions, confusion and difficulty emerge
for improper (leaky) modes. Secondly, it is also found that types of improper modes have not been
demonstrated completely for both TM and TE cases in the previous works. The ways of obtaining and
indexing these modes are unclear as well [13, 14].

Based on these considerations, this paper analyzes proper and improper modes by starting from
the perspective of special functions to find the solutions supported by the circular dielectric waveguide.
Accordingly, three kinds of special functions, Hankel function of the first kind ( H

(1)
m (·) ), Hankel function

of the second kind (H(2)
m (·)), and modified Bessel function (Km(·)), are analyzed in detail to find the

relationship of the solutions when any one of the special functions is involved. Then, a set of completed
forms of characteristic equations for different cases are explicitly exhibited.

Further, asymptotic expansion method [29] is employed to find the initial guess expressions for
proper and improper modes based on the characteristic equations of TM and TE cases. The initial
guess derivation of the hybrid (EH or HE) modes will not be discussed here, since the analysis will
made this paper to an unacceptable length. It is believed that the idea of deriving the initial guess for
both TM and TE cases can be further extended to derive the initial guess for the hybrid modes. In this
process, analysis for the modes problem of dielectric slab [30–34] has been referred.

For completeness, initial guess expressions are derived from high and low frequency limits, and
around cutoff frequency respectively. In this process, we leverage Lambert W function in some
expressions. These completed initial guess expressions provide simple and efficient way of indexing
these modes. Finally, Newton method is employed to determine the complex propagation constant of
both proper and improper modes for TM and TE cases. The numerical results are verified by comparing
with Kim’s results [13].

2. FORMULATIONS AND EQUATIONS

2.1. Characteristic Equation

Assuming the time factor with convention ejwt, by applying the continuity conditions of tangential fields
to an infinite long homogenous circular dielectric waveguide with radius a embedded in an infinitely
homogenous medium, the characteristic equation for TM and TE cases can be derived by imposing
m = 0 from [27, 28], which means that the modes are without variations along the circular angle. Under
this circumstance, the characteristic equation can be expressed as

κ

u

J1(u)
J0(u)

+
1
jv

H
(2)
1 (−jv)

H
(2)
0 (−jv)

= 0 (1)

By assigning κ = εr1/εr2 or κ = μr1/μr2, Eq. (1) represents TM or TE case, where εri and μri

are the dielectric and magnetic constants, respectively. The second subscript i = 1 represents the
region within the rod, and i = 2 represents the region outside the rod. For non-magnetic dielectric rod
μr1 = μr2 = 1, thus κ = 1. Jm(·) and H

(2)
m (·) are the m-th order Bessel function of the first kind and

Hankel function of the second kind. In Eq. (1), u and v are expressed as

u�k0a
√

μr1εr1 − δ2 (2a)

v�k0a
√

δ2 − μr2εr2 (2b)
where k0 is the wave number in free space. δ = kz/k0, and kz is the axial complex propagation constant.
Therefore, r is given by

r =
√

u2 + v2 = k0a
√

μr1εr1 − μr2εr2 (3)

For Eq. (1), either u, v, or δ can be treated as an unknown. It is well known that the Hankel
function of the second kind has a multiple-value property in a complex plane, and it is found that Eq.
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(1) is an even function of u and δ. These properties of Eq. (1) make v as a variable directly a better
choice. In this situation, the square root issue introduced by solving δ or u is directly avoided. Once
v is solved, u and δ are expressed in terms of v explicitly. Eq. (2b) indicates that v describes the
wave behavior along the radial direction outside the circular dielectric rod. By substituting v into the
leading transverse wave form of the Hankel function, we have evρ/a = e−Re(v)ρ/ae−jIm(v)ρ/a. It is clear
that v is normalized complex transverse attenuation constant with the imaginary part for propagation
constant. Accordingly, Table 1 presents the classification of different types of modes based on v, and
these definitions will be used in the following discussion.

Table 1. Classification of different kinds of modes.

Proper Modes
Improper Modes

Outging Incoming
Sign(Re(v)) (+) (−)
Sign(Im(v)) (+,−) (+) (−)

2.2. Relationship between Propagation Constants with Special Functions

Besides expressing Eq. (1) in terms of H
(2)
m (·), the characteristic equation can also be expressed in terms

of Km(·), and H
(1)
m (·) with different arguments

κ

u

J1(u)
J0(u)

+
1
v

K1(v)
K0(v)

= 0 (4)

κ

u

J1(u)
J0(u)

− 1
jv

H
(1)
1 (jv)

H
(1)
0 (jv)

= 0 (5)

With these relationships between different special functions [35], we can qualitatively conclude the
relationship between the solutions of Eqs. (4), (5), and (1): for the proper modes, v is in the first and
fourth quadrants. As all three equations with different special functions give the same solutions

vK
np = vH1

np = vH2
np (6)

The superscripts H2, K, and H1 mean the solution from Eqs. (1), (4), and(5), respectively. The
subscript stands for the n-th modes in the p-th Riemann sheet. For the outgoing improper mode, v is
in the second quadrant.

vK
np = vH1

n(p+1) = vH2
np (7)

Similarly, for the incoming improper mode, we have
vK
n(p+1) = vH1

n(p+1) = vH2
np (8)

2.3. Complex Conjugate Properties for Lossless Rod

To make this study more complete, the properties related to the relationship of solution and their
corresponding complex conjugate are presented. These conclusions, on one hand, give a better
understanding of this work, and on the other hand, they help us avoid some unnecessary trouble
through the numerical implementation.

From the complex conjugate relationship of special functions in their principal values [24], we have
the general complex conjugate relationships for special functions in different Riemann sheets as

Kmp(z∗) = K∗
m(−p)(z) (9)

H(1)
mp(z

∗) = H
(2)∗
m(−p)(z) (10)

H(2)
mp(z

∗) = H
(1)∗
m(−p)(z) (11)
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Equations (9)–(11) indicate that, for the principal value, namely p = 0, [vK
n ]∗, [vH1

n ]∗, and [vH2
n ]∗ are

the solutions as well for the lossless dielectric rod. For the p-th Riemann sheet, we have [vK
n ]∗ = vK

n(−p),

[vH1
n ]∗ = vH2

n(−p), and [vH2
n ]∗ = vH1

n(−p), respectively. From the above analysis, the relationship of the
complex conjugate solutions corresponding to different types of modes can be concluded as

[vK
np]

∗ = [vH1
np ]∗ = [vH2

np ]∗ = vK
n(−p) = vH2

n(−p) = vH1

n(−p) (12)

for the proper modes in the first and fourth quadrants, and

[vK
np]

∗ = [vH1

n(p+1)]
∗ = [vH2

np ]∗ = vK
n(−p) = vH2

n(−p−1) = vH1

n(−p) (13)

for the improper modes in the second quadrant, and

[vK
n(p+1)]

∗ = [vH1

n(p+1)]
∗ = [vH2

np ]∗ = vK
n(−p−1) = vH2

n(−p−1) = vH1

n(−p) (14)

for the improper modes in the second quadrant. Due to the relationship in the modes solved using
different special functions, the following sections will focus on the results solved based on H

(2)
m (·) as

shown in Equation (1).

3. INITIAL GUESSES

Among several iterative methods, due to the advantages of easy implementation, converging fast, and
requiring only one initial guess, Newton-Raphson method is employed to solve Equation (1) numerically.
Appropriate initial guess is crucial in finding right solutions with smaller number of iterations. In this
section, the initial guesses are derived using the asymptotic form on the p = 0 Riemann sheet. By
considering the behavior of u and v in different regions, Eq. (1) is expanded around cutoff frequency,
high frequency limit as well as the low frequency limit. From numerical solutions, it is found that from
none of the perspectives mentioned above we can solve three types of modes completely, due to the
different types of modes distributed in different regions. The incoming improper modes are further
categorized as ones stopping at the cutoff frequency and ones stopping at DC. In this asymptotic
expansion process, we will introduce the Lambert W function [24, 25] with different branches to find
accurate and simple forms of initial guesses for both TM and TE cases.

3.1. Around the Cutoff Frequency

In the circular dielectric rod, TM0n and TE0n modes share the same cut-off frequency. This can be
derived by imposing v = 0, which leads to J0(u = χ0n) = 0, where χ0n denotes the n-th root of zero
order Bessel function of the first kind. Thus, around the cut-off frequency we have r ≈ χ0n, 0 ≈ v � r,
and u ≈ r − v2/(2r). By expanding the Hankel function of the second kind with small argument, the
inverse of the second term in Equation (1) is approximated as

−jv
H

(2)
0 (−jv)

H
(2)
1 (−jv)

≈ v2 ln(veγ/2) (15)

where γ ≈ 0.577215664 is the Euler-Mascheroni constant. Similarly, we can expand Bessel function of
the first kind around r and get the inverse of the first term as

u

κ

J0(u)
J1(u)

= c1(r) +
v2

4κ
(16)

with c1(r) = −χ0n(r − χ0n). By combining Eqs. (15) and (16), Eq. (1) is simplified as

v2 ln(v2a2
1/4) = 2c1(r) (17)

with a1 = eγ−1/2κ. The solution corresponding to Eq. (17) is represented by Lambert W function
[24, 25] as

v = 2a−1
1 e

1
2
Wp(z(r)) (18)
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where subscript p represents different branches of W (z) and z(r) = a2
1c1/2. Sommerfeld derived

a form similar to Eq. (17) for waves over lossy wires [37] (p.183) using asymptotic representation
of Bessel functions, but Eq. (17) keeps more terms as shown in Eq. (16) by expanding the Bessel
functions around the cut-off. Sommefeld’s solution is in a form corrected step by step in the subsequent
approximations [37] (p.183), not the closed form solutions as shown in Eq. (18) using Lambert W
functions. The initial guess expression in Eq. (18) can predict different types of modes with appropriate
branches of Lambert W function, which are summarized as in Table 2.

Table 2. Corresponding branches to derive different types of modes.

Proper Modes
Improper Modes

Outging Incoming
p value −1 1

Sign(r − χ0n) (+) (−) (+)
Sign(z) (−) (+) (−)

The initial guesses given by Eq. (18) around cutoff frequency are very close to the true solutions
for different types of modes, which are illustrated in Fig. 1. These initial guesses are derived based on
the leading term expansion of Eq. (1), which takes into account both efficiency and accuracy [36].

(a) (b)

Figure 1. With κ = 4, the initial guesses are compared with the accurate numerical solutions around
the first cutoff frequency.

3.2. High Frequency Limit

3.2.1. Case with |v| � |u| � 1

In the high frequency region (r � 1), both u and v are large, namely v � 1 and u � 1. Also, in this
region δ = kz/k0 approaches

√
εr1μr1, which makes v � u. Under this circumstance, Jm(·) and H

(2)
m (·)

are expanded with large argument [24, 29] by considering the argument in different regions. When the
phase of argument is away from the negative real axis, Eq. (1) is approximated as

tan (u − π/4) = −u/(κv) (19)

For proper modes, the primary form of v0 can be derived from Eq. (2b) as v0 =
√

r2 − u2
0. By

substituting this v0 expression into Eq. (19), a set of more accurate initial guess expressions for proper
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modes are obtained as

u1 =
π

4
+ mπ − tan−1

(
1
κ

u0√
r2 − u2

0

)
(20a)

v1 =
√

r2 − u2
1, m = 0, 1, 2, ... (20b)

For the improper modes in the third quadrant, the primary form of v0 is written as v0 = −
√

r2 − u2
0.

Following the same steps, more accurate initial guess expressions for incoming improper modes are
written as

u1 =
π

4
+ mπ + tan−1

(
1
κ

u0√
r2 − u2

0

)
(21a)

v1 = −
√

r2 − u2
1, m = 0, 1, 2, ... (21b)

3.2.2. Case with |u| � |v| � 1

Equation (21) can be used to predict incoming improper modes for TM and TE cases for the high
frequency limit. Another type of solution at the high frequency is |u| � |v| � 1. From this we observe
that the argument z = −jv is in the second quadrant and close to the negative real axis. Using the
expansion of H

(2)
m (·) given in Eq. (A7), we have

tanh(v + jπ/4) = −1 − 3a(v)
3 − a(v)

(22)

where a(v) = κ
v

u

J1(u)
J0(u)

, thus the initial guess for the incoming improper modes is expressed as

v0 = − tanh−1(1/3) + j(m − 1/4)π, m = −1,−2,−3, ... (23a)

v1 = − tanh−1

(
1 − 3a(v0)
3 − a(v0)

)
+ j(m − 1/4)π (23b)

3.3. Low Frequency Limit

3.3.1. κ �= 1 (TM Case)

At low frequency range (r = 1), due to the solution for two types of improper modes located in different
regions, the corresponding special functions are expanded in different ways. At DC limit, right hand
side of Eq. (3) approaches zero, namely u2 +v2 = 0, and we have u ≈ −jv and v ≈ ju. For the improper
modes in the second quadrant, v is in the second quadrant and close to the positive imaginary axis,
thus u ≈ −jv is in the first quadrant and close to the positive real axis. This indicates that Eq. (19)
can still be employed to derive the initial guess for the outgoing improper modes. According to the
previous discussion, the primary forms of initial guess for the outgoing improper modes are expressed
as

u0 = π/4 + mπ + j tanh−1(1/κ), m = 0, 1, 2, ... (24a)

v0 = −
√

r2 − u2
0 ≈ j(π/4 + mπ) − tanh−1(1/κ) (24b)

However, for the incoming improper modes stopping at DC limit, variable v is around the negative
imaginary axis; therefore, u ≈ −jv is in the second quadrant and close to the negative real axis. In this
situation, both H

(2)
m (−jv) and Jm(u) have to be expanded around negative real axis, which are shown

in Eqs. (A3) and (A7). Correspondingly, Eq. (1) is in a new asymptotic form

tan(u + π/4) =
ju

v

1
κ

3 tan(u + π/4) − j

3 + j tan(u + π/4)
(25)
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For κ �= 1, it can be further reduced as

tan(u + π/4) =
1
κ

3 tan(u + π/4) − j

3 + j tan(u + π/4)
(26)

In this quadratic equation tan(u + π/4) is treated as a variable. After neglecting one solution which
contradicts the assumption, we have

tan(u + π/4) = jκ̃ (27)

where κ̃ =
[
3(κ − 1) +

√
9(κ − 1)2 + 4κ

]
/(2κ). Therefore, the initial guess for the incoming improper

modes stopping at DC limit is expressed as

u0 = π/4 + mπ + j tanh−1(1/κ̃), m = −1,−2,−3, ... (28a)

v0 = −
√

r2 − u2
0 ≈ j(π/4 + mπ) − tanh−1(1/κ̃) (28b)

3.3.2. κ = 1 (TE Case)

Equations (24) and (28) are only applicable for κ �= 1, as TM case. To generate the expressions for TE
case with κ = 1, we first examine the value of u at DC limit and find that u has a large value for the
imaginary part. As a matter of fact, we assume that u is in the form of

u = π/4 + mπ + juI , m = 0, 1, 2, . . . (29)

where subscript I represents the imaginary part of u. By substituting it into Eq. (19), according to
Eqs. (B1)–(B3), we have

uI = W−1(−r/2) (30)

Similarly, for the incoming improper modes stopping at DC limit, we still assume that u in Eq. (25) has
the same form of Eq. (29) but with m = −1,−2,−3, . . .. Following the same procedure, as shown in
Eq. (B4), uI is approximated as shown in Eq. (30) as well. Consequently, the initial guess of outgoing
improper modes and incoming improper modes stopping at DC limit for TE case are expressed as

u0 = π/4 + mπ + jW−1(−r/2) (31a)

v0 = −
√

r2 − u2
0 ≈ j(π/4 + mπ) − W−1(−r/2) (31b)

A similar expression is derived for kz for high-order leaky modes in [21, 22] using Lambert W function.

4. NUMERICAL RESULTS AND DISCUSSIONS

The guided and leaky modes of circular waveguide are solved numerically using the initial guesses derived
from last section around the cut-off frequency and the high or low frequency limits. The solutions using
the second kind of Hankel function on the principal plane are presented in this section. Using the
relationship from last section, the solutions using other special functions or in different Riemann sheets
can be found. For most examples, normalized complex transverse attenuation constant v is shown
because it defines different mode properties as listed in Table 1.

Several low-order proper and outgoing improper modes are shown in Fig. 2. For the proper modes,
there is no propagation in the transverse direction, and it has positive attenuation constant above the
cutoff frequency, which is exhibited in Fig. 2(a). For the convenience of visualization, the attenuation
constant v for the proper modes are normalized with k0a. These curves are generated either from the
cutoff frequency using initial guesses according to Section 3.1 or from the high frequency limit in Eq.
(20). Also from the analysis in the high frequency limit, the asymptotic value for the upper bound is√

μr1εr1 − μr2εr2. As the operating frequency decreases to the cutoff frequency, the proper modes will
vanish and finally convert into the outgoing improper modes. This set of outgoing improper modes can
be generated by using the initial guesses derived in Section 3.1 or using the initial guesses from the
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Figure 2. Complex transverse attenuation constants for several low orders proper and outgoing
improper modes with κ = 4. (a) Real parts. (b) Imaginary parts. The Improper2 in the legend
represents the outgoing improper modes in the second quadrant.
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Figure 3. Complex transverse attenuation constants for the low order incoming improper mode stop
at cutoff frequency with κ = 4. (a) Real parts. (b) Imaginary parts. The Improper3c in the legend
represents the incoming improper in the third quadrant stops at the cutoff frequency.

low frequency limit with Eq. (24). Further, they are well indexed from low to high order, according to
integer m in Eq. (24). Some discussions of the physical meaning on the outgoing improper modes have
been presented by Kim et al. in [14] and will not be duplicated here.

Compared to the outgoing improper modes, the incoming improper modes presented in Fig. 3
have the opposite sign for the attenuation constants. The magnitude for these two types of improper
modes increases in the direction away from the waveguide but propagating in the opposite directions
transversely. This set of incoming improper modes which stop at cutoff frequency can be predicted by
using the initial guess expressions in Eq. (18) with p = 1 around the each cutoff frequency or by using
the initial guess expressions in Eq. (21) at high frequency limit. From the high frequency limit, the
asymptotic lower bound is −√

μr1εr1 − μr2εr2.
However, for κ = 4, except the first three low-order modes, the index in Eq. (24) is not in a one-

to-one relationship with the order of modes stopping at cutoff frequency. For instance, the incoming
improper mode stopping at the fourth cutoff frequency is indexed with m = 7 from Eq. (21). The
reason is that Eq. (21) generates not only a set of incoming improper modes ending up at the cutoff
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frequency, but also another type of incoming modes stopping at DC, which have not been presented
before. For this type of incoming improper modes stopping at DC, they can be predicted from the DC
limit by using Eq. (28) or Eq. (21).

It is observed from Fig. 4 that the imaginary part of v is much larger than the real part for
the incoming improper modes at DC. This is similar for the outgoing improper modes shown in
Fig. 2, which implies that the imaginary part is dominant in deriving the initial guess at DC limit
for both the incoming improper modes and the outgoing improper modes. The corresponding values
are Im(v) = π/4+mπ for the outgoing case with m = 0, 1, 2 . . . and m = −1,−2,−3 . . . for the incoming
case. As the absolute value of index m increases, the initial guess will be more accurate than the true
value. In contrast, the real part of v is close to a relative small constant at DC limit for both the outgoing
and incoming cases. According to Eqs. (24b) and (28b), with κ = 4, the real parts are very close to
− tan−1(1/κ)≈−0.2554 and − tanh−1(1/κ̃)≈−0.4531 respectively. These values are well matched with
the numerical results shown in Fig. 2(a) and Fig. 4(a) at DC limit.
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Figure 4. Complex transverse attenuation constants for the low order incoming improper mode stop
at DC with κ = 4. (a) Real parts. (b) Imaginary parts. The Improper3L in the legend represents the
incoming improper in the third quadrant stops at the low frequency limit.
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modes with κ = 1. (a) Real parts. (b) Imaginary parts.



152 Yang and Song

The proper modes exhibited here are physical modes, which form a complete set and can generally
describe an arbitrary field [38]. Correspondingly, the incoming improper modes are nonphysical modes
[38], and the wave propagates and decays in region 1 and has an exponential growth in the transverse
direction in region 2 [39].

The way of deriving the complex transverse propagation constants for TE case is very similar to
TM case by using the initial guesses derived in Section 3, except for the set of initial guess expressions at
DC limit for two types of improper modes and the initial guess at high frequency limit for the incoming
improper modes. The transverse attenuation constants of several low-order proper modes and outgoing
improper modes for κ = 1 are shown in Fig. 5. From Fig. 2(a), it is found that the proper modes
are always well behaved from cutoff frequency to the high frequency limit. However, for the outgoing
improper modes, the real part of v will stop at DC limit with different values. Due to the different
values of κ, the real parts of v are close to −W−1(−r/2) for κ = 1, and tanh−1(1/κ) for κ�=1 at DC
limit. The behavior of the imaginary parts for κ = 1 case is very close to κ�=1 case, and it is not shown
here to save space.

Figure 6(a) plots the transverse attenuation constant for the low-order incoming improper mode
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Figure 6. Complex transverse attenuation constants for the low order incoming improper mode stop
at cutoff frequency with κ = 1. (a) Real part. (b) Imaginary part.
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first TE incoming improper mode (m = 1) with κ = 1. The Improper3S in the legend represents the
special case of incoming improper modes in the third quadrant.
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(a) (b)

Figure 8. The complex longitudinal propagation constants for low order proper, and two types of
improper modes. (a) Real part. (b) Imaginary part. The radius for the rod is a = 0.01 m, and the
dielectric constants inside and outside the rod are εr1 = 4 and εr2 = 1 respectively.

stopping at the cutoff frequency. Similarly, by comparing with Fig. 3, it is found that the dispersion
curves are smoother for the higher modes with κ = 1. However, for the incoming improper modes
ending up at the DC, the behavior for the TE case shown in Fig. 7 is different from the TM case.
Besides the different values at DC limit, v will approach a constant value through the whole range for
both the real and imaginary parts.

Our verifications are made by comparing our results with Kim’s results [13]. The expression of the
normalized longitudinal propagation constant δ = kz/k0 can be derived from Eq. (2b) with given v.
Both the real and imaginary parts for several low-order modes are illustrated in Fig. 8. An agreement
has been reached between our results and Kim’s results. For the other high-order incoming improper
modes, they are examined by substituting the numerical results into Eq. (1), and the relative error is
down to 10−10.

5. CONCLUSIONS

In this paper, three kinds of special functions are used to solve the characteristic equation for the modes
supported by circular dielectric waveguide. The corresponding solutions are well defined and classified
with the field distribution. Based on different special functions and Riemann sheets, their relationships
are concluded through Eqs. (6)–(8). The complete forms of characteristic equations to solve proper
and two types of improper modes are presented explicitly. In addition, the properties of the complex
conjugate of the corresponding solutions for lossless dielectric rod are presented to make this study more
complete.

The relative accurate initial guesses are derived to accelerate the convergence in finding the modes.
The asymptotic expansions for both Bessel and Hankel functions are derived for large argument near the
negative real axis. Around cutoff frequency, Lambert W functions at different branches are employed to
find the initial guesses for the proper modes, outgoing improper modes, and incoming improper modes
stopping at cutoff frequency. At the low frequency limit, we predict the whole set of outgoing improper
modes and incoming improper modes stopping at DC. Also, the initial guesses for the whole set of
proper and incoming improper modes from the high frequency limit are also derived. Further, we have
made the initial guesses applicable to both TM and TE cases by carefully testing different values of κ.
Finally, complex transverse attenuation constants for both TM and TE cases are presented with some
modes not shown in other works.
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APPENDIX A. THE ASYMPTOTIC APPROXIMATIONS FOR BESSEL AND
HANKEL FUNCTIONS IN DIFFERENT REGIONS

Bessel function of the first kind and Hankel function of the second kind expanded as [24]

Jm(z) ∼
√

2
πz

cos(z − mπ

2
− π

4
) (A1)

and

H(2)
m (z) ∼

√
2
πz

e−j(z−mπ
2

−π
4
) (A2)

when |argz| < π. By considering m = 0 and m = 1, we have J1(z)/J0(z) ≈ tan(z − π/4) and
H

(2)
1 (z)/H(2)

0 (z) ≈ j. After substituting these two expressions into Eq. (1), Eq. (19) is achieved. From
Section 3.2 we know that at high frequency range |v| � |u| � 1. When |argz| < π, Jm(·) is expanded
as

Jm(z) ∼ (−1)m
√

−2
πz

cos(z +
mπ

2
+

π

4
) (A3)

by using Jm(z) = (−1)mJm(−z).
Now, let us derive the asymptotic approximation of the Hankel function for argument z in the

second quadrant above the negative real axis and close to π. We know that H
(2)
m (z) = Jm(z)− jYm(z),

where Ym(z) is the Bessel function of the second kind. The phase angle of z is close to π, thus Jm(−z)
and H

(2)
m (−z) can be well approximated according to Eqs. (A1)–(A2). To express H

(2)
m (z) in terms of

Jm(−z) and H
(2)
m (−z), we can use

Ym(zejnπ) = e−jnmπYm(z) + 2j sin(nmπ) cot(mπ)Jm(z) (A4)

where m is the order of special function, and n is an integer. For n = −1, ze−jπ = −z is in the fourth
quadrant near the positive real axis, and the rotation from z to -z does not cross the branch cut.

Ym(z) = (−1)m [Ym(−z) + 2jJm(−z)] (A5)

By substituting Jm(z) = (−1)mJm(−z) and Eq. (A5) into the H
(2)
m (z) expression, we have

H(2)
m (z) = (−1)m

[
H(2)

m (−z) + 2Jm(−z)
]

(A6)

Further, substituting Eqs. (A2) and (A3) into Eq, (A6), we finally reach

H
(2)
0 (z) ∼

√
−2
πz

[
ej(z+π/4) + 2cos(z + π/4)

]
(A7a)

H
(2)
1 (z) ∼

√
−2
πz

[
−jej(z+π/4) + 2 sin(z + π/4)

]
(A7b)

From Eq. (A7), the second term of Eq. (1) is reduced to

1
jv

H
(2)
1 (−jv)

H
(2)
0 (−jv)

≈ 1
jv

3 tan(−jv + π/4) − j

3 + j tan(−jv + π/4)
(A8)

APPENDIX B. THE DERIVATION FOR THE IMAGINARY PART OF U IN LOW
FREQUENCY LIMIT TE CASE

As we discussed in Section 3.3 TE case, u has a large imaginary part. Therefore, substituting Eq. (29)
into Eq. (19) with κ = 1 yields

tanh uI = uI

/√
r2 + u2

I (B1)
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Further, Eq. (B1) is written as

(r2 − u2
I)(1 − e−2uI ) = u2

I(1 + e−2uI )2 (B2)

After neglecting the higher order terms, we have

4u2
Ie

−2uI ≈ r2 (B3)

which has a solution of uI = W−1(−r/2). Similarly, substituting Eq. (29) into Eq. (25) with κ = 1
yields

coth uI ≈ uI√
r2 + u2

I

3 coth uI − 1
3 − coth uI

(B4)

Eq. (B4) will be reduced to Eq. (B3) with similar approximations. Consequently, the imaginary part of
u is expressed as Eq. (30).
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