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Synthesis of Sparse or Thinned Linear and Planar Arrays

Generating Reconfigurable Multiple Real Patterns
by Iterative Linear Programming

Yanhui Liu1, Pengfei You1, Chunhui Zhu1, *, Xiaofeng Tan2, and Qing Huo Liu3

Abstract—It is shown in this paper that the problem of reducing the number of elements for multiple-
pattern arrays can be solved by a sequence of reweighted �1 optimizations under multiple linear
constraints. To do so, conjugate symmetric excitations are assumed so that the upper and lower bounds
for each pattern can be formulated as linear inequality constraints. In addition, we introduce an auxiliary
variable for each element to define the common upper bound of both the real and imaginary parts of
multiple excitations for different patterns, so that only linear inequality constraints are required. The
objective function minimizes the reweighted �1-norm of these auxiliary variables for all elements. Thus,
the proposed method can be efficiently implemented by the iterative linear programming. For multiple
desired patterns, the proposed method can select the common elements with multiple set of optimized
amplitudes and phases, consequently reducing the number of elements. The radiation characteristics
for each pattern, such as the mainlobe shape, response ripple, sidelobe level and nulling region, can
be accurately controlled. Several synthesis examples for linear array, rectangular/triangular-grid and
randomly spaced planar arrays are presented to validate the effectiveness of the proposed method in
the reduction of the number of elements.

1. INTRODUCTION

Reconfigurable arrays can radiate dual or more patterns by varying only element excitations, and
consequently reduce the number of antennas and the cost of the whole hardware system. These
arrays have been widely used in applications, such as multi-functional radars and communication
systems [1]. Many practical methods have been introduced in the past to produce a reconfigurable
aperture with multiple patterns, including multi-mode feeding technologies for reflector antennas [2], and
some multi-beam forming networks for antenna arrays [3–6]. Other studies focus on the design of phase-
differentiated antenna arrays using some sophisticated synthesis methods, such as alternating projection
approaches [7, 8], stochastic optimization algorithms [9–11], and some other techniques [12, 13]. The
phase-differentiated antenna array reported in the literature usually adopts a uniform spacing and
the common excitation amplitude distribution for multiple patterns. In such a way, the complexity
of designing a feeding network is greatly reduced. On the other hand, advanced techniques such
as the digital beamforming hardware have increasingly been developed in recent years [14]. These
techniques allow for much more flexibility in both the design of array’s geometry and the individual
control of excitation amplitudes and phases. From the perspective of pattern synthesis, relaxing the
both limitations of uniform spacing and the common amplitude distribution would provide much more
degrees of freedom to achieve the synthesis performance improvement, such as the reduction in the
number of elements [15].
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This work focuses on the synthesis of reconfigurable multiple patterns with fewer elements by
selecting the common ones with optimized excitation amplitudes and phases. Some synthesis methods
by using nonuniform element positions [16–22], or by applying thinning techniques [23–25], have been
presented to effectively reduce the number of elements. However, these reviewed techniques are proposed
for the synthesis of single-pattern arrays. It is unclear whether they can be easily extended to the
multiple-pattern case since the best element positions usually change with different patterns. Some
stochastic optimization algorithms capable of finding the global optimal solutions, such as in [26–29],
may be appropriate, but they can be time-consuming since many unknowns including positions, multiple
sets of excitations and even the number of elements, need to be determined. Recently, the extended
forward-backward matrix pencil method (FBMPM) has been applied to find the common element
positions with optimized excitations for multiple desired patterns [15]. This method is indeed effective
for reducing the number of elements. However, the extended FBMPM deals only with the case of linear
arrays, and the extension to planar arrays is not available right now. Note that, to the best of our
knowledge, the problem of reducing the number of elements for a planar array with multiple patterns
has been never discussed in the literature.

Here we will show that the synthesis problem mentioned above can be formulated into a sequence
of reweighted �1-norm optimizations under multiple linear constraints. The iterative reweighted �1

optimization was presented in [30], and recently this idea was used to reduce the number of elements for
a single focused beam or shaped pattern, by developing the iterative second-order cone programming
(SOCP) in [31–33] or sequential compressive sensing (CS) approach in [34]. We now apply this idea
to reduce the number of elements for multiple-pattern arrays by selecting the best common elements,
each with multiple optimized excitations, under multiple power pattern requirements that are all given
by upper and lower bounds. However, the lower bound used for a shaped power pattern is in general
non-convex [31]. To overcome this problem, the excitation distribution is assumed to be conjugate-
symmetrical for each pattern. In this case, both the upper and lower pattern bounds can be transformed
into the form of linear inequalities. Although this assumption cannot exploit the maximum degrees of
synthesis freedom [35], it effectively eliminates the non-convexity of the lower bound. Note that this
assumption does not really reduce the solution space for a class of patterns which would have conjugate-
symmetrical excitations (e.g., some of pencil-beam patterns). In addition, the choice of a symmetrical
layout and symmetrical amplitudes can greatly simplify the beamforming network. Hence, this choice
has been widely adopted by many single-pattern synthesis methods, for example, in [23] and [31]. To
cast the problem of finding the common element positions for multiple patterns into the form of linear
programming, we introduce an auxiliary variable to define the common upper bound of the real and
imaginary parts of multiple excitations for each element. Consequently, multiple linear inequalities
(other than the second-order cone constraints) can be used to deal with the complex excitations in
the framework of �1 optimization. Hence, the proposed method can be very efficiently implemented
by iteratively performing the linear programming (LP) that is more computationally efficient than the
iterative SOCP. This method can be applicable to the synthesis of an arbitrary array geometry with
multiple pattern requirements (with the only limitation of conjugate-symmetrical excitations), and can
be considered as a significant extension of the method presented in [31] where the problem of synthesizing
the rectangular-grid array with a single shaped pattern has been successfully dealt.

To validate the effectiveness and advantages of the proposed method, several examples are given for
synthesizing multiple patterns for linear array, rectangular/triangular-grid arrays, and randomly spaced
planar array. Significant savings in the number of elements are achieved in the tested examples.

2. FORMULATION AND ALGORITHMS

2.1. Conjugate-Symmetrical Array Model

Consider a reconfigurable array of N elements that can radiate multiple desired patterns by varying the
element excitation distributions. The kth array’s pattern (for k = 1, 2, . . . ,K) is given by

Fk (θ, φ) =
N∑

n=1

wn,ke
−jβrT

ne(θ,φ) (1)
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where j =
√−1, β = 2π/λ, rn = [xn, yn]T ∈ R2 denotes the location of nth element, and wn,k denotes

the complex excitation of the nth element for the kth pattern. e(θ, φ) = [sin θ cos φ, sin θ sinφ]T is
the unit direction vector. For different patterns, the array element has the common position but with
probably different excitations.

Assume that the element excitations of this array are conjugate-symmetrical. For an even N , we
have rn = −rN+1−n and (wn,k)∗ = wN+1−n,k for n = 1, 2 . . . , N/2. With this constraint, it can be easily
proven that the pattern Fk(θ, φ) is real-valued, and can be expressed as

Fk (θ, φ) = 2Re

⎧⎨
⎩

N/2∑
n=1

wn,ke
−jβrT

ne(θ,φ)

⎫⎬
⎭ (2)

Note that the above formula can be also applicable to the array with an odd N , only if we treat it with
rN/2 = rN/2+1 = 0 and wN/2,k = wN/2+1,k ∈ R. By defining the vectors

a (θ, φ) =
[
e−jβrT

1 e(θ,φ), e−jβrT
2 e(θ,φ), . . . , e

−jβrT
N/2

e(θ,φ)
]T

(3)

Wk =
[
w1,k, w2,k, . . . , wN/2,k

]T (4)
and

sT (θ, φ) =
[
2Re

{
aT (θ, φ)

}
,−2Im

{
aT (θ, φ)

}]
(5)

zT
k =

[
Re

{
W T

k

}
, Im

{
W T

k

}]
(6)

we can rewrite Eq. (2) as
Fk (θ, φ) = sT (θ, φ) zk (7)

Since Fk(θ, φ) is real-valued, we have

|Fk (θ, φ)| =
{

sT (θ, φ) zk, for Fk (θ, φ) ≥ 0
−sT (θ, φ) zk, for Fk (θ, φ) < 0

(8)

Note that the above array model can be considered as a more general version of the formulation in [31]
which is derived for the case of rectangular-grid arrays.

2.2. Multiple-Pattern Constraints

The whole angle space can be subdivided into mainlobe region ΩML and sidelobe region ΩSL. If a
focused beam is desired, the look direction (θLook, φLook) should be specified. Assume that we have P
focused beams and Q shaped patterns (K = P + Q). Each pattern can be produced by one individual
set of excitations, but they share with the common element positions. The multiple patterns can be
formulated as the following constraints.
1) Focused Beams (p = 1, 2, . . . , P ){

sT
(
θLook
p , φLook

p

)
zp = 1

−Up (θ, φ) ≤ sT (θ, φ) zp ≤ Up (θ, φ) , for (θ, φ) ∈ ΩSL
p

(9)

2) Shaped Patterns (q = P + 1, P + 2, . . . ,K){
Lq (θ, φ) ≤ sT (θ, φ) zq ≤ Uq (θ, φ) , for (θ, φ) ∈ ΩML

q

−U q (θ, φ) ≤ sT (θ, φ) zq ≤ Uq (θ, φ) , for (θ, φ) ∈ ΩSL
q

(10)

In the above, Up(θ, φ) or Uq(θ, φ) denotes the upper bound of the pth or qth amplitude pattern which
is a (θ, φ)-dependent function. By presetting an appropriate upper bound, one can obtain an arbitrary
sidelobe distribution including pattern nulls if required. Lq(θ, φ) denotes the lower bound of the qth
shaped amplitude pattern. Note that Eqs. (9) and (10) have modified the formulation of Eqs. (9c)
and (9d) in [31] for the sidelobe region since sT (θ, φ)zq may be negative. Besides, the best element
positions usually vary with different patterns. So, the difficulty comes from determining the best
common element positions with as few elements as possible to simultaneously satisfy the multiple
pattern constraints.



30 Liu et al.

2.3. Element Selection Using Iterative Reweighted �1 Optimization

The above constraints describe the feasible solution space where every solution meets the desired multiple
pattern requirements. Among all the feasible solutions, the one with fewer non-zero excitations is
preferred. The problem of finding the best common elements for a sparse solution can be formulated as

min
z1,...,zk

‖t‖0, under Const. (9) and (10) (11)

where t is defined as

Const.

{
t = [t1, t2, . . . , tN/2]

T

tn ≥ |wn,k| , for any k
(12)

In the above, ‖t‖0 is a �0-norm that represents the number of non-zero elements in the vector t (�0-norm
is not strictly speaking a norm since it is not homogeneous, but it has been widely used in compressive
sensing and other areas), and tn is defined as the common magnitude bound of the multiple excitations
for different patterns at the nth element. Eq. (12) can be described by multiple second-order cone
(SOC) constraints. However, due to the non-convex objective, Eq. (11) is a combinatorial optimization
problem that usually costs huge CPU time. A practical alternative can be obtained by replacing the
�0-norm with �1-norm optimization and changing the definition of tn, which is given by

min
z1,...,zk

N/2∑
n=1

tn under Const. (9) and (10), (13)

and

Const.

⎧⎪⎨
⎪⎩

t = [t1, t2, . . . , tN/2]
T

tn ≥ |Re [wn,k]| , for any k

tn ≥ |Im [wn,k]| , for any k

(14)

Now, problem in Eq. (13) can be efficiently solved by the linear programming.
The �1-norm has been extensively used in many applications to produce the sparse solution.

However, there also exists a significant difference between �0 and �1 norms. That is, larger coefficients
are penalized more heavily than smaller coefficients in the �1 norm. Recently, the iterative reweighted
�1-norm optimization was presented in [30] to approach as closely as possible to �0-norm for enhanced
sparsity. This method has been successfully applied to the sensors selection for single-pattern arrays
in [31–33]. Now, we extend the idea to enhance the sparsity of the multiple-pattern array synthesis.
The weighted �1 optimization at the kth iteration is given by

min
z1,...,zk

N/2∑
n=1

αl
ntn under Const. (9), (10) and (14), (15)

where αl
n = 1/(tl−1

n + δ) for l > 1, and tl−1
n is the result obtained from the (l − 1)th iteration. The

parameter δ > 0 is used to provide numerical stability when tl−1
n = 0. Usually, δ is set to be slightly

larger than the smallest excitation coefficient [31]. Larger weight αl
n is obtained for a smaller coefficient,

which penalizes the smaller coefficient more approaching to zero at the next iteration. In the initial
iteration (l = 1), we set αn = 1, and the problem in Eq. (15) reduces to the original �1 optimization
of Eq. (13). The solutions of z1, z2, . . . , zK are updated by the iteration procedure until l attains a
specified maximum iteration number, or the number of selected elements maintains the same after
multiple iterations.

Note that the whole optimization process in Eq. (15) needs to sequentially perform the linear
programming solver, but all the matrices and vectors defined above are fixed at each iteration except
that the vector b needs to be updated at each iteration. Many optimization toolboxes are available
to solve the linear programming problem, such as the MATLAB function ‘linprog’ and the SeDuMi
(Self-Dual-Minimization) tool [36].
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3. NUMERICAL RESULTS

To validate the effectiveness of the proposed method, we provide several synthesis examples with different
situations including linear arrays, rectangular/triangular-grid and randomly spaced planar arrays. In
these examples, we set the parameter δ = δ0 ∗ max{t0n} fixed in the iteration procedure, where t0n
(n = 0, 1, . . . , N − 1) are obtained from the first iteration. How to choose the value of δ0 will be shown
in the following examples. For all the tested cases, we set the maximum number of iterations to be
15. However, the synthesis procedure can be stopped if the number of selected elements maintains the
same for three iterations. The excitation with very small tn (e.g., tn ≤ max{tn}/105) are discarded.
The comparisons with some other methods are also given in these examples.

(a) (b)
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Figure 1. The dual patterns synthesized by the proposed method with 14 elements, and the
reconstructed patterns by the extended FBMPM with 15 elements in [15]: (a) focused beam, and
(b) flat-top pattern.
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3.1. Linear Array

As the first example, we consider a dual-pattern including a pencil beam and a flat-top beam, which was
obtained by the extended forward-backward matrix pencil method (FBMPM) using 15 nonuniformly
spaced elements [15]. Now, to apply the proposed method, we put 57 potential element positions with
spacing of λ/6. Appropriate upper and lower bounds are used for the desired pattern characteristics
for each pattern, as shown in Fig. 1. In the iteration, we set the parameter δ = δ0 ∗ max{t0n} with
varying δ0 = [10−2, 10−3, 10−4, 10−5] to check its effect on the performance of proposed method. Fig. 2
shows the number of selected elements versus the iteration number for different choices of δ0. As can
be seen, δ0 = 10−3 or 10−4 would be a good choice. With this choice, the proposed method takes
only 3 iterations to reach the convergence, and only 14 elements are finally selected. Note that in the
first iteration, we actually solve problem (13), the unweighted �1 optimization, which gives 36 selected
elements. Clearly, the later weighted �1-norm optimizations is very effective to further reduce the
number of selected elements. The synthesized focused and shaped patterns are shown in Figs. 1(a)
and (b), respectively. For comparison, the patterns obtained by the extended FBMPM in [12] are also
shown here. As can be seen, the dual patterns synthesized by the proposed method strictly meet their
specified upper and lower bounds, and has more accurate sidelobe control than the extended FBMPM.
Fig. 3 shows the selected element positions and those given by the extended FBMPM. We can see that
the proposed method saved one more element than the extended FBMPM. If compared with a uniformly
spaced array by using 20 elements to occupy the same aperture, the saving in the number of elements
is 30%. Fig. 4 shows the excitation distributions of the synthesized focused and shaped patterns by the
proposed method. Due to the symmetry property of the dual patterns, their excitation distributions
are also symmetrical.
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Figure 4. The normalized excitation distributions for the synthesized dual patterns in Fig. 1.

3.2. Rectangular-Grid Planar Array

In the second example, we consider to synthesize a planar array with dual patterns. For the first pattern,
the mainlobe is specified as circular-shaped region {(u, v) : |u2 + v2 ≤ 0.22} with a ripple ≤ 1 dB, where
u = sin θ cos φ and v = sin θ sin φ. The sidelobe region is defined as {(u, v) : |u2 + v2 ≥ 0.42} with
the sidelobe level (SLL) ≤ −25.85 dB. This pattern was synthesized by the iterative second-order cone
programming (SOCP) in [31] where 85 antennas were finally selected from a 11 × 11 rectangular-grid
planar array with a spacing of λ/2. For the second pattern, the mainlobe is defined as a diamond-
shaped region {(u, v) : ||u − 0.2| + |v − 0.2| ≤ 0.2} with a ripple ≤ 1 dB, and the sidelobe level is
SLL ≤ −24.30 dB for the region {(u, v) : ||u − 0.2| + |v − 0.2| ≥ 0.4}. A circular-shaped null region
{(u, v) : |(u − 0.5)2 + (v − 0.5)2 ≤ 0.12} with SLL ≤ −50 dB is also added into the second pattern.
The second pattern was also synthesized in [31] with a 14 × 14 array with spacing of λ/2. Since no
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(a) (b)

Figure 5. The synthesized dual patterns by using 150 elements: (a) the circular-shaped pattern, and
(b) the diamond-shaped pattern with a −50 dB circular-shaped null region.
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Figure 6. The selected (‘◦’) and unselected (‘×’) element positions for the rectangular gird array with
dual patterns.

antenna selection is used for this pattern in [31], all the elements of this array are fully excited. We
now use the proposed method to simultaneously synthesize the dual patterns by using only a single
array. To compare with the results in [31], the initial array is used as the one with λ/2-spacing 14× 14
elements. The parameter δ0 = 10−4 is used in this example and the followings. 8 iterations are required
for the proposed method to reach the convergence. Finally, 150 antennas are selected from the initial
array for the dual patterns. The synthesized first and second patterns are shown in Figs. 5(a) and (b),
respectively. The dual patterns in Fig. 5 strictly meet their specifications. The distribution of selected
elements is shown in Fig. 6. Compared with the original 14 × 14 array with a single pattern, we have
produced dual mainlobe-shaped patterns, and in addition we have saved 23.47% elements.
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3.3. Triangular-Grid Planar Array

The proposed method can be applied to an arbitrary array with conjugate-symmetrical excitations.
As the third example, we consider to synthesize a triangular-grid array with four patterns which have
different mainlobe shapes. They are specified as follow:

(1) focused beam: u = v = 0 for the look direction, and {(u, v) : |u2 + v2 ≥ 0.172} for the sidelobe
region;

(2) circular-shaped pattern: {(u, v) : |u2 + v2 ≤ 0.22} for the mainlobe region, and {(u, v) : |u2 + v2 ≥
0.42} for the sidelobe region;

(3) moon-like pattern: {(u, v) : |(u + 0.35)2 + v2 ≥ 0.52 & u2 + v2 ≤ 0.352} for the mainlobe region,
and the outside of {(u, v) : |(u + 0.5)2 + v2 ≥ 0.52 & u2 + v2 ≤ 0.52} for the sidelobe region;

(4) rectangular-shaped pattern: {(u, v) : ||u| ≤ 0.25& |v| ≤ 0.1} for the mainlobe region, and the
outside of {(u, v) : ||u| ≤ 0.4& |v| ≤ 0.2} for the sidelobe region.

Note that the response ripple ≤ 1 dB and SLL ≤ −20 are used for all the patterns in this example. 247
potential element positions are used with the spacings of dy = λ/2 and dx = λ/

√
3. The proposed

method takes 9 iterations to reach the convergence. The synthesized four patterns are shown in
Figs. 7(a)–(d), respectively. It can be seen that for all these patterns, the mainlobe shapes are obtained
as expected, and their sidelobe levels also meet the specifications. The distribution of selected antennas
is shown in Fig. 8. Only 121 antennas are selected. So, we have reduced 51.01% elements from the
array of all potential antennas. Note that in practice, we may not know exactly how many elements

(a) (b)

(c) (d)

Figure 7. The synthesized four patterns by using 121 elements: (a) focused beam, (b) circular-shaped
pattern, (c) moon-like pattern, and (d) rectangular-shaped pattern.
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are required for multiple desired patterns, but we can assume a potential distribution with a relatively
large number of elements and then apply the proposed method to select the appropriate antennas.

3.4. Randomly Spaced Planar Array

The last example is given to check if the proposed method can reduce the number of elements for a
planar array with randomly spaced but symmetrically distributed elements. This array consists of 974
potential elements, and the positions for half of them are randomly generated, as shown in Fig. 9.
Assume that the following dual patterns are desired:

(1) focused beam: u = v = 0 for the look direction, and {(u, v) : |u2 + v2 ≥ 0.252} for the sidelobe
region;
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Figure 8. The selected (‘◦’) and unselected (‘×’)
element positions for the triangular grid array
with four patterns.
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Figure 10. The synthesized dual patterns for the randomly spaced planar array by using 72 elements:
(a) focused beam, and (b) elliptical-shaped pattern.
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(2) elliptical-shaped pattern: {(u, v) : |u2 + v2/2 ≤ 0.22} for the mainlobe region, and {(u, v) :
|u2 + v2/2 ≥ 0.42} for the sidelobe region.

The response ripple ≤ 1 dB and SLL ≤ −20 are still used for these dual patterns. The proposed iterative
linear programming method is used to find the best common positions and the optimized excitations
as well. 5 iterations are required to reach the convergence for this example. Finally, 72 elements
are selected, as shown in Fig. 9. The synthesized focused and elliptical-shaped patterns are shown in
Figs. 10(a) and (b), respectively. They completely meet their specifications again.

4. CONCLUSION

We have presented a new multiple-pattern synthesis method based on performing the iterative linear
programming under multiple linear constraints. For multiple desired patterns, the proposed method
can select the common antennas with multiple sets of optimized amplitudes and phases, each set
corresponding to one pattern. Therefore, the number of elements required for multiple patterns can
be significantly reduced. In addition, for each pattern, the characteristics such as the mainlobe shape,
response ripple, sidelobe level and nulling region, can be easily controlled by specifying the upper and
lower pattern bounds in the proposed method. A set of examples with different situations including
linear array, rectangular/triangular-grid and randomly spaced planar arrays, have been tested to validate
the effectiveness and advantages of this method. The comparisons with other synthesis methods in the
literature are also included in these examples. The proposed method would be a preferred choice to
reduce the number of elements or channels when multiple different far-field patterns are required in
either electromagnetic or acoustic applications.
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