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Development of Fundamental Theory of Thin Impedance Vibrators

Yuriy M. Penkin, Victor A. Katrich, and Mikhail V. Nesterenko*

Abstract—In the paper, we prove two theorems relating to the theory of thin impedance vibrator
radiators excited by a lumped voltage generator under rather general conditions. The first theorem
proves that influence of external electrodynamic media on the vibrator current distribution is limited
and can be estimated using a small natural parameter. The second theorem ascertains that there
exists principal possibility to compensate influence of spatial boundaries upon current distributions
on a perfectly conductive vibrator by applying to its surface complex impedance with predetermined
variation along the vibrator length. Several corollaries disclose a range of the theorems application and
their fundamental importance.

1. INTRODUCTION

The theory of thin vibrators is now considered as classic both for perfectly conducting [1, 2] and
impedance vibrators [3–10]. The theory was outlined in a large number of well-known articles and
monographs (see, e.g., references in [3]). However, this problem is still of great interest, since the vibrator
structures are widely used in various devices and systems to provide the required mode of excitation.
Since the problem is multivariable, an experimental optimization of devices is almost impossible, and
physically adequate mathematical models are needed for compound boundary value problems, non-
coordinate border of spatial domains, presence of scattering irregularities, medium inhomogeneity, etc.
In any case, a key stage of modeling consists in a search of current distributions on a vibrator surface.
The problem solution can be greatly simplified by selection of the basic current distribution. This choice
should be done taking into account the vibrator surrounding which cannot always be done relying only
on analysis of available publications. Therefore, the generalization of the theoretical results concerning
the influence of surrounding media upon the current distribution on the thin impedance vibrator is an
actual problem.

One approach to such generalization is based on an analytical solution of an integral equation for
vibrator current using small natural parameter [7]. For example, in the monograph [11], attention was
drawn to the fact that the functional effect of walls of a hollow rectangular waveguide upon the current
on the linear scattering vibrator located inside the waveguide contains the proportionality factor equal
to the natural small parameter of the problem. An analog situation has arisen during the analytical
determination of the current on a radial impedance monopole allocated on the perfectly conducting
sphere [6, 9], and on the impedance vibrator over the perfectly conducting screen of finite size [10].
The boundary problem solution for these two cases requires that the total field should be represented
by waves of electric and magnetic types. This article is aimed at the generalization of the influence
on a boundary value problem with arbitrary boundaries that do not possess a property of mutual
transformation of electric and magnetic fields. The second theorem assets that there exists principal
possibility to compensate influence of spatial boundaries upon current distributions on a perfectly
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conductive radiator by covering its surface by complex impedance material with predetermined variation
along the vibrator length. The second theorem states that influence of spatial boundaries upon current
distributions on a perfectly conductive vibrator can be compensated by applying complex impedance
with predetermined variation along the vibrator length.

2. LEMMA FORMULATION AND PROOF

To simplify the proof of the theorems, let us consider an auxiliary lemma.
Lemma. Let a thin radiating impedance vibrator, excited by a point source is placed in an infinite

homogeneous medium with material parameters (ε1, μ1). The vibrator is a segment of a circular cylinder,
whose radius r and the length 2L are such that inequalities [r/(2L)] � 1 and r

√
ε1μ1/λ � 1 (λ is the

wavelength in free space) hold. Then the electric current on the vibrator can be represented by a power
series J(s) = αJ1(s) + α2J2(s) + . . . in the small parameter α = 1

2 ln[r/(2L)] , |α| � 1, and Jn(s) is the
current approximation of the n-th order (n = 1, 2 . . .).

Proof. The proof is based upon the well-known solution of the integral equation for the vibrator
current obtained using a small natural parameter [7]. Consider the following equation [3]

1
iωε1

(
graddiv + k2

1

) ∫
S

Ĝe
(
�r,�r ′) �J (�r ′) d�r ′ = − �E0 (�r) + zi (�r) �J (�r) , (1)

where zi(�r) is the linear intrinsic impedance ([Ohm/m]) of the vibrator, �E0(�r) is the field of extraneous
sources, Ĝe(�r,�r ′) is the tensor Green’s function of the spatial domain for the electric vector potential,
k1 = k

√
ε1μ1, k = ω/c = 2π/λ is wave number, c ≈ 2.998 · 1010 cm/s is the speed of light in vacuum.

Equation (1) was obtained using boundary conditions on the vibrator surface S if time t dependence is
eiωt and ω is a circular frequency of a monochromatic process.

In a thin wire approximation, the electric current induced on the vibrator surface can be represented
as

�J(�r) = �esJ(s)ψ(ρ, ϕ), (2)

where �es is the unit vector directed along the vibrator axis; s is the local coordinate along the vibrator
axis; ψ(ρ, ϕ) is the function of transverse (⊥) polar coordinates, satisfying the normalization condition∫
⊥
ψ(ρ, ϕ)ρdρdϕ = 1. If the relations

∫
S

Ĝe
(
�r,�r ′) �J(�r ′)d�r ′ =

L∫
−L

J(s′)
π∫

−π

e−ik1

√
(s−s′)2+[2r sin(ϕ/2)]2√

(s − s′)2 + [2r sin(ϕ/2)]2
ψ(r, ϕ)rdϕds′

≈
L∫

−L

J(s′)
e−ik1

√
(s−s′)2+r2√

(s− s′)2 + r2
ds′ =

L∫
−L

J(s′)
e−ik1R(s,s′)

R(s, s′)

∣∣∣∣∣
R(s,s′)=

√
(s−s′)2+r2

ds′ (3)

are valid [1, 3] and zi(�r) = zi(s) ≡ const. The surface Equation (1) can be converted to an integral
equation with a quasi-one-dimensional kernel

(
d2

ds2
+ k2

1

) L∫
−L

J(s′)
e−ik1R(s,s′)

R(s, s′)
ds′ = −iωε1E0s(s) + iωε1ziJ(s), (4)

where E0s(s) is projection of the extraneous source field on the vibrator axis.
Let us isolate a logarithmic singularity in Equation (4) core using the method described in [1, 7]

L∫
−L

J(s′)
e−ik1R(s,s′)

R(s, s′)
ds′ = Ω(s)J(s) +

L∫
−L

J(s′)e−ik1R(s,s′) − J(s)
R(s, s′)

ds′. (5)
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where

Ω(s) =

L∫
−L

ds′√
(s− s′)2 + r2

= Ω + γ(s). (6)

γ(s) = ln [(L+s)+
√

(L+s)2+r2] [(L−s)+
√

(L−s)2+r2]

4L2 is a function vanishing at the vibrator center and reaching
maxima at the vibrator ends, where the current is zero as required by the boundary conditions
J(±L) = 0 [1, 3]; Ω = 2 ln 2L

r is a large parameter. Then, taking into account Equation (5), Equation (4)
can be converted to the following integral-differential equation with a small parameter

d2J(s)
ds2

+ k2
1J(s) = α {iωε1E0s(s) + F [s, J(s)] − iωε1ziJ(s)} . (7)

Here α = − 1
Ω = 1

2 ln[r/(2L)] is the small natural parameter (|α| � 1), and functional

F [s, J(s)] = −dJ(s′)
ds′

e−ik1R(s,s′)

R(s, s′)

∣∣∣∣∣
L

−L

+
[
d2J(s)
ds2

+ k2
1J(s)

]
γ(s)

+

L∫
−L

[
d2J(s′)
ds′2

+ k2
1J(s′)

]
e−ik1R(s,s′) −

[
d2J(s)
ds2

+ k2
1J(s)

]
R(s, s′)

ds′ (8)

presents the vibrator eigenfield.
If we denote k̃ = k1

√
1 + iαωε1zi/k1 = k1

√
1 + i2αZ̄S/(μ1kr) (Z̄S = ZS/Z0 is distributed surface

impedance normalized to the wave resistance Z0 = 120π [Ohm]), Equation (7) can be written as
d2J(s)
ds2

+ k̃2J(s) = α {iωε1E0s(s) + F [s, J(s)]} . (9)

Since Equation (9) is proportional to the small parameter α, its solution can be obtained by a successive
approximation technique using the following algorithm⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2J1(s)
ds2

+ k̃2J1(s) = iωε1E0s(s),

d2J2(s)
ds2

+ k̃2J2(s) = F [s, J1(s)],
·
·
d2Jn(s)
ds2

+ k̃2Jn(s) = F [s, Jn−1(s)].

(10)

The solution of each differential equation can be obtained using the boundary conditions for the current
J1(±L) = J2(±L) = . . . = Jn(±L) = 0. Thus, we obtain the current decomposition as power series in
small parameter α, i.e., J(s) = αJ1(s) + α2J2(s) + . . ., which was to be proved.

The zero approximation for the current J0 was not included into the equation system (10), since
its solution is J0(s) = C1 cos k̃s + C2 sin k̃s. Taking into account losses in the medium and/or on the
vibrator surface, the trigonometric functions in the solution are complex and cannot be zero for any
arguments. Therefore, to satisfy the boundary conditions J0(±L) = 0, the constants C1 and C2 should
be zero and identities J0 ≡ 0, F [s, J0(s)] ≡ 0 become valid for any vibrator length.

The first approximation of the vibrator current obtained from (10) as sum of the general and partial
solutions is

J(s) ≈ αJ1(s) = −α iωε1/k̃
sin 2k̃L

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sin k̃ (L− s)

s∫
−L

E0s

(
s′
)
sin k̃

(
L+ s′

)
ds′

+ sin k̃ (L+ s)

L∫
s

E0s

(
s′
)
sin k̃

(
L− s′

)
ds′,

(11)
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and it does not depend on the function F [s, J(s)] (8).

3. FORMULATION AND PROOF OF THE FIRST THEOREM

Theorem 1. Let a thin radiating impedance vibrator, exited by a point source, be placed in an
electrodynamic volume filled by homogeneous medium with material parameters (ε1, μ1). The volume
boundary is an arbitrary Lyapunov surface S [12], not passing through sources of extraneous currents.
The vibrator is a segment of a circular cylinder, whose radius r and the length 2L are such that
inequalities [r/(2L)] � 1 and r

√
ε1μ1/λ � 1 (λ is the wavelength in free space) hold. Then the

influence of the volume boundaries upon the current distribution on the vibrator surface does not exceed
an amount proportional to the small natural parameter α = 1

2 ln[r/(2L)] .

Proof. The kernel Ĝe(�r,�r ′) of integral Equation (1) is the electric tensor Green’s function of the
closed volume. In a system of orthogonal curvilinear coordinates (q1, q2, q3), this function, according to
the general properties [12], satisfies the inhomogeneous Helmholtz equation

ΔĜ
(
�q, �q ′)+ k2

1Ĝ
(
�q, �q ′) = −4πÎ

δ (q1 − q′1) δ (q2 − q′2) δ (q3 − q′3)
h1h2h3

, (12)

where Î is unit tensor; (q′1, q′2, q′3) are source coordinates; δ(q − q′) is Dirac delta function; hn are Lame
coefficients. Laplacian Δ applies to all tensor components. Then, the solution for the vector Hertz
potential can be written as

�Πe (�q) =
1

iωε1

∫
V

�J
(
�q ′)Ĝe

(
�q, �q ′) dv +

∮
S

{
div �Πe

(
�q ′) Ĝe

(
�q, �q ′)�n− div Ĝe

(
�q, �q ′) �Πe

(
�q ′)�n

+
[
�n, Ĝe

(
�q, �q ′)] rot �Πe

(
�q ′)− [�n, �Πe

(
�q ′)] rot Ĝe

(
�q, �q ′)}ds′, (13)

where �n is the unit vector of the external normal to the surface S. The volume integral is taken over
the entire volume V (dv is volume element), and the surface integral is taken over the entire surface
(ds′ is the area element in the primed coordinates). The expression in the curly brackets is a vector,
and differentiation is performed over the primed coordinates.

Thus, the solution of the inhomogeneous Helmholtz equation is the sum of the volume and surface
integrals. The surface integrals can be eliminated by building the Green’s function in a special way. If the
components of the Green’s function Ĝe(�q, �q ′) and components of the vector potentials �Πe(�q) satisfy the
boundary conditions on the surface S, the surface integrals vanish, since integrand of surface integrals
in (13) vanish. Otherwise, the solution will have the general form (13). Thus, the expression (13) allows
us to use alternative forms of the Green’s function.

If the Green’s tensor for unbounded domain, which is the solution of Equation (12) satisfying the
boundary conditions at infinity is

Ĝe(�r,�r ′) = Î
e−ik1|�r−�r ′|

|�r − �r ′| = ÎGe
0(�r,�r

′), (14)

the vector Hertz potential (13) can be presented as

�Πe (�r) =
1

iωε1

∫
V

�J
(
�r ′)Î e−ik1|�r−�r ′|

|�r − �r ′| dv +
∮
S

{
div �Πe

(
�r ′) (ÎGe

0(�r,�r
′)
)
�n− div

(
ÎGe

0(�r,�r
′)
)
�Πe
(
�r ′)�n

+
[
�n,
(
ÎGe

0(�r,�r
′)
)]

rot�Πe
(
�r ′)− [�n, �Πe

(
�r ′)] rot

(
ÎGe

0(�r,�r
′)
)}

ds′. (15)

Considering that in the general case �E(�r) = grad div�Πe(�r) + k2ε1μ1
�Πe(�r), substituting Equation (15)
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into Equation (1), we obtain

1
iωε1

(
grad div + k2

1

) ∫
S

(
Î
e−ik1|�r−�r ′|

|�r − �r ′|

)
�J(�r ′)d�r ′

= − �E0(�r) + zi(�r) �J(�r) − (grad div + k2
1

) ∮
S

{
div �Πe

(
�r ′)(ÎGe

0(�r,�r
′)
)
�n− div

(
ÎGe

0(�r,�r
′)
)
�Πe
(
�r ′)�n

+
[
�n,
(
ÎGe

0(�r,�r
′)
)]

rot �Πe
(
�r ′)− [�n, �Πe

(
�r ′)] rot

(
ÎGe

0(�r,�r
′)
)}

ds′. (16)

The functional defining the field of arbitrary boundaries at the observation point �r can be found,
using the relation (16)

FS

(
�r, �J (�r)

)
=
(
grad div + k2

1

) ∮
S

{
div�Πe

(
�r ′) (ÎGe

0(�r,�r
′)
)
�n

−div
(
ÎGe

0(�r,�r
′)
)
�Πe
(
�r ′)�n+

[
�n,
(
ÎGe

0(�r,�r
′)
)]

rot �Πe
(
�r ′)

−
[
�n, �Πe

(
�r ′)] rot

(
ÎGe

0(�r,�r
′)
)}

ds′, (17)

Then, Equation (4) for the current on the vibrator surface can be written as follows

(
d2

ds2
+ k2

1

) L∫
−L

J(s′)
e−ik1R(s,s′)

R(s, s′)
ds′ = −iωε1E0s(s) − iωε1FS (s, J(s)) + iωε1ziJ(s), (18)

FS(s, J(s)) is the projection of the vector functional FS(�r, �J(�r)) on the vibrator axis. Then, combining
field functionals fΣ(�r, �J(�r)) = F (�r, �J(�r)) + iωε1FS(�r, �J(�r)), in equation similar to (7), we can use the
Lemma to proof the Theorem 1. Indeed, according to Lemma, the electric current on a thin impedance
vibrator can be represented by a series in the small parameter α, therefore, its first approximation,
determined by the expression (11), does not depend on the functional of the boundary influence.
The influence is taken into account by successive approximations. Thus, the influence of the volume
boundaries on the current distribution on the vibrator does not exceed an amount proportional to the
small parameter α. The Theorem 1 is proved.

3.1. Corollaries from Theorem 1

Theorem 1 is formulated for sufficiently general conditions allowing to establish several corollaries of
physical interest, which define the fundamental nature of the theorem.

Corollary 1.1. Since no restrictions were imposed on magnitude of the vibrator constant
impedance, the theorem is valid for a perfectly conducting vibrator, zi = 0.

Corollary 1.2. Since no restrictions were imposed on the material parameter of the medium
(ε1, μ1) the theorem is valid both for unbounded space and hollow closed volumes with ε1 = μ1 = 1.

Corollary 1.3. Since the formulation and proof of the theorem does not require specifying the
coordinates of a feed point s0 of the voltage δ-generator E0s(s′) = V0δ(s′ − s0), the theorem is valid for
arbitrary choice of the feed point. Here V0 is the voltage amplitude, δ(s′ − s0) is one-dimensional Dirac
delta function.

Commentary. Really, the expression for the first approximation of the current (11) was obtained
for an arbitrary extraneous excitation field E0s(s′). The term “arbitrary” applies only to the choice of
the feed point coordinates and model describing the local excitation source. It is related to the fact
that the vibrator excitation by the incident extraneous field, formed in the spatial domain with account
of the borders, which influence through structure of the field E0s(s′) will have an indirect reflection in
the first approximation for the current. This certainly violates the logic of the theorem proof.
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Corollary 1.4. One of the Theorem 1 conditions are the following requirements on the surface:
1) it must be a Lyapunov surface; 2) it should not cross current sources; 3) in a more general sense, it
has to be passive, i.e., without generation of extraneous fields, and 4) it does not possess the properties
of mutual transformation of spatial harmonics of the electric and magnetic fields. Since the type of
electrodynamic boundary surfaces is not defined and do not exclude the possibility of its composite
presentation, the theorem is valid both for different types of surfaces such as perfectly conducting,
impedance, partially impedance, etc. and for the different scattering inhomogeneities in the spatial
domain, whose surfaces can be interpreted as parts of the total surface.

Commentary. Parts of the boundary surface can be presented by impedance surfaces of coupling
holes between coupling volumes. Separate areas of piecewise inhomogeneous of the magneto-dielectric
filling of the electrodynamic volume can be thought as scattering irregularities.

The approach used to the proof of Theorem 1 allows us to formulate the second theorem. It
concerns the fundamental possibility to compensate the influence of the spatial boundaries upon the
current distribution on a perfectly conducting vibrator using “application” of the distributed impedance
on the surface.

4. FORMULATION AND PROOF OF THE SECOND THEOREM

In the proof of the Lemma and Theorem 1, linear impedance of the vibrator was assumed to be constant
zi(�r) = zi(s) ≡ const. Now, let us assume that the impedance can be distributed along the vibrator
axis zi(�r) = zi(s), or be concentrated at some points on the vibrator axis, or be superposition of these
two options.

Theorem 2. Let a thin radiating impedance vibrator, exited by a point source, be placed in an
electrodynamic volume filled by homogeneous medium with material parameters (ε1, μ1). The volume
boundary is an arbitrary Lyapunov surface S [12], not passing through sources of extraneous currents.
The vibrator is a segment of a circular cylinder, whose radius r and the length 2L are such that
inequalities [r/(2L)] � 1 and r

√
ε1μ1/λ� 1 (λ is the wavelength in free space) hold. Then, the influence

of the volume boundaries upon the current distribution on the vibrator surface can be compensated by
coating its surface with the complex impedance, varying along the vibrator axis, zi(s) = FS(s,J(s))

J(s) . J(s)
is the current distribution on the perfectly conducting vibrator, and FS(s, J(s)) is the functional (17)
defining the boundary influence.

Proof. Let us consider the equation similar to Eq. (18)
(
d2

ds2
+ k2

1

) L∫
−L

J(s′)
e−ik1R(s,s′)

R(s, s′)
ds′ = −iωε1 [E0s(s) + FS (s, J(s)) − zi(s)J(s)] , (19)

where zi(s) is complex surface impedance which varies along the vibrator axis. If the equality
FS(s, J(s)) = zi(s)J(s) on the right hand side of Equation (19) holds, the vibrator current is determined
only by the fields of extraneous sources. Hence, Equation (19) can be formally represented as a system
of two equations ⎧⎪⎪⎨

⎪⎪⎩
(
d2

ds2
+ k2

1

) L∫
−L

J(s′)
e−ik1R(s,s′)

R(s, s′)
ds′ = −iωε1E0s(s),

FS(s, J(s)) − zi(s)J(s) = 0.

(20)

The first equation is Equation (4) for a perfectly conducting vibrator, zi = 0, located in an infinite
homogeneous medium. The second equation is the functional equation, which can be solved using the
current found from the first equation. These equations can be used to obtain the distribution of variable
complex impedance along the vibrator axis

zi(s) =
FS(s, J(s))

J(s)
, (21)

where zi(s) can be a generalized function. Thus, the influence of the boundaries can be fully compensated
by “applying” the impedance in Eq. (21) to the vibrator surface. The current distribution of such
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impedance vibrator corresponds now to that of perfectly conducting vibrator, located in an infinite
homogeneous medium with material parameters (ε1, μ1). Thus, Theorem 2 is proved.

4.1. Corollaries from Theorem 2

Corollary 2.1. Since the surface of the scattering irregularities, located in electrodynamic volume,
can be interpreted as components of the common surface S, and the Theorem 2 is valid for this case.

Commentary. The main difficulty of the Theorem 2 application concerns determination of the
functional FS(s, J(s)). However, if Green’s function of the electromagnetic volume is known, the problem
is greatly simplified, since the fields at the boundary surface S in Eq. (17) can be found using the Green’s
function.

Corollary 2.2. Input resistance of the impedance vibrator with the distribution in Eq. (21),
positioned in the electrodynamic volume, is equivalent to that of perfectly conductive vibrator of the
same geometry located in free space.

4.2. Example of Theorem 2 Application

The application of the Theorem 2 can be demonstrated by the problem of the electro-magnetic radiation
by a horizontal vibrator in a semi-infinite material medium [3]. Geometry of the structure and notation
are shown in Fig. 1. Here {x, y, z} is a Cartesian coordinate system associated with a perfectly
conducting plane, a cylindrical vibrator allocated in a medium at a distance h from the plane with
material parameters (ε1, μ1). The vibrator length is 2L and its radius is r.

Figure 1. The geometry of the vibrator structure.

Let us substitute Green’s function for the half-space

Gs(s, s′) =
e−ik1

√
(s−s′)2+r2√

(s− s′)2 + r2
− e−ik1

√
(s−s′)2+(2h+r)2√

(s− s′)2 + (2h+ r)2
. (22)

in Equation (4). Then the equation for the vibrator current can be written as

(
d2

ds2
+ k2

1

) L∫
−L

J(s′)
e−ik1

√
(s−s′)2+r2√

(s− s′)2 + r2
ds′

= −iωε1E0s(s) +
(
d2

ds2
+ k2

1

) L∫
−L

J(s′)
e−ik1

√
(s−s′)2+(2h+r)2√

(s− s′)2 + (2h+ r)2
ds′ + iωε1zi(s)J(s). (23)
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Without loss of generality, we assume that the vibrator is excited at the center of a lumped voltage
generator with an amplitude V0. Let us apply the Theorem 2. First, we find the vibrator current in the
infinite material medium by solving the first equation of the system (20) using the averaging method.
The solution [3, 4, 7] is

J(s) = −αV0

(
iωε1
2k1

)
sin k1(L− |s|) + αP s

δ (k1r, k1s)
cos k1L+ αP s

L(k1r, k1L)
. (24)

Here P s
δ (k1r, k1s) = P s[k1r, k1(L+s)]− (sin k1s+sin k1|s|)P s

L(k1r, k1L), the constants P s[k1r, k1(L+s)]
and P s

L(k1r, k1L) are defined by the analytical formulas [3, 4, 7].
Then, substituting the current J(s) from (24) into the formula (21), we obtain

zi(s) =

(
d2

ds2
+ k2

1

) L∫
−L

(
sin k1(L− |s′|) + αP s

δ (k1r, k1s
′)
) e−ik1

√
(s−s′)2+(2h+r)2√

(s− s′)2 + (2h + r)2
ds′

sin k1(L− |s|) + αP s
δ (k1r, k1s)

. (25)

Thus, the functional FS(�r, �J(�r)) in (17), wherein the integration is done over an infinite boundary
surface, is replaced by the functional, wherein integration is performed only over the surface of the
mirror vibrator image. Since the kernel of the integral operator is a smooth function, the differentiation
operator can be moved under the integral sign. The final expression for the impedance distribution
function can be written as

zi(s) =
1

Fi(s)

L∫
−L

Fi
(
s′
)
Fe
(
s, s′

)
ds′, (26)

were

Fi(s) = sin k1(L− |s|) + αP s
δ (k1r, k1s), R1

(
s, s′

)
=
√

(s− s′)2 + (2h + r)2,

Fe
(
s, s′

)
=

e−ik1R1(s,s′)

(R1 (s, s′))4

⎡
⎢⎣
(
s− s′

)2(3ik1 − k2
1 − 3

R1 (s, s′)

)
−R1 (s, s′) − ik1 (R1 (s, s′))2 + k2

1 (R1 (s, s′))3

⎤
⎥⎦ .

As might be expected, if h→ ∞ in expression (26), |zi(s)| → 0 for the any point on the vibrator surface.

5. CONCLUSION

The paper presents a generalization of the theory of thin impedance vibrators which can be found
in a number of publications devoted to vibrator radiators with a lumped excitation in free space or
in electrodynamic volumes with coordinate boundaries. Taking into account methodological aspects
of the problem, the authors decided to make such a generalization in the form of two theorems. On
the one hand, the approach allows systematically assessing already known results, and, on the other
hand, extend the methodology to the solutions of new boundary value problems with compound surface
boundaries. Requirements for the boundary surface are as follows: it must be a Lyapunov surface, which
does not cross current sources, or in a more general sense, it has to be passive and does not possess the
properties of mutual transformation of spatial harmonics of the electric and magnetic fields.

The first theorem proves the limited influence of the external electrodynamic medium upon the
current distribution on the radiating vibrator. Quantification of this effect was related to the natural
small parameter α = 1

2 ln[r/(2L)] ; therefore, the result would not exceed the small parameters α. The
theorem proof is based on the lemma, which has independent significance. Four corollaries disclose
more fully the theorems’ scope. The theorem can be used for selection of the current distribution in
the vibrator for the solution of complicated boundary value problems and assessing the accuracy of this
approximation.

The second theorem states that the influence of the spatial boundaries, including borders
of scattering irregularities on the current distribution in a perfectly conducting radiator can be
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compensated by “applying” an extended complex impedance having the required distribution to the
vibrator surface. The theorems’ application was demonstrated by solving the problem for the horizontal
vibrator located above a perfectly conducting plane.

The results presented in the paper can be useful both for electromagnetic theory of thin impedance
vibrators and for solution of boundary value problems with vibrator excitations including the questions
related physical interpretation of mathematical modeling results.
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