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Abstract—The generalized Fibonacci multiferroic superlattices (GFMS) are composed of single-phase
multiferroic domains with simultaneous polarization and magnetization and are defined by the binary
substitutional rule (B −→ BmA, A −→ B, m = 2, 3). We propose to construct a nonreciprocal multi-
channel bandstop filter by the GFMS. The couplings between electromagnetic waves and lattice vibration
of multiferroic material with ferroelectric and ferromagnetic (or antiferromagnetic) orders can be invoked
either through piezoelectric or piezomagnetic effects and can lead to the creation of polaritonic band
structure. The plane wave expansion method with first-order approximation predicts the existence
of multiple band gaps, and electromagnetic waves lying within the band gaps are prohibited, and
the band gaps with respect to forward electromagnetic waves (FEWs) and backward electromagnetic
waves (BEWs) are asymmetric. The forbidden band structures with FEWs and BEWs are calculated
by the transfer matrix method and multiple frequency channels with unidirectional transmission of
electromagnetic waves can be further confirmed. Nine and twenty transmission dips in transmission
spectra for the BEWs in the frequency range of ω̄ = 0.4–0.6 (17.06 GHz–25.59 GHz) are found in the
GFMS with m = 2 and 3, respectively, in which the BEWs are prohibited while the FEWs can travel.
Thus, the GFMS has all the conditions for the nonreciprocal multi-channel bandstop filter. Besides, the
GFMS can also be applied to construct compact multi-channel one-way electromagnetic waveguides.

1. INTRODUCTION

The nonreciprocal bandstop filter as a great potential application of microwave device has attracted
great attention during the past two decades, in which the properties for the FEWs and the BEWs
are not consistent. A variety of nonreciprocal microwave devices [1–6] have been investigated which
involve filters with a turnstile open gyromagnetic resonator [2], bidirectional erbium-doped fiber [3], an
optically coherent high birefringence fiber transversal filter structure [4], magnetostatic surface wave [6],
and involve an fiber Fabry-Perot resonator [1], as well as an orthogonal frequency division multiplexing
system [5]. Generally, the asymmetry for FEWs and BEWs originates from time-reversal and space
inversion symmetries (TRSIS) breaking due to magnetic materials integrated into the devices.

Multiferroic materials with the TRSIS breaking as the coexistence of magnetic and electric
parameters can be regarded as a potential candidate for the nonreciprocal bandstop filter. A general
single-phase multiferroic material is one that two or three distinct properties [7], such as ferroelectricity,
ferromagnetism and ferroelasticity, coexisting in the same phase, in which magnetic and electric
order parameters are included. The multiferroic materials also usually allow for the coexistence
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of piezoelectricity and piezomagnetism [8]. The electric field to these materials can induce lattice
strain because of piezoelectric effect and the magnetic field to them can induce the lattice strain via
piezomagnetic effect as well. Furthermore, the electric and magnetic fields can couple to the lattice
vibration simultaneously, which has a contribution to the magnetoelectric effect. One of application
approaches [9] on the multiferroic materials is constructed as superlattices with simultaneous electric
polarization and magnetization in order to manipulate electromagnetic waves.

Up to now, many investigations on superlattices have been carried out, which include the
dielectric [10, 11] properties and periodical structures with one-way electromagnetic propagation
modes [12–17]. However, there are almost no attentions on the generalized Fibonacci multiferroic
superlattices (GFMS) with silver-mean sequence, especially as the nonreciprocal compact multi-channel
bandstop filter or the multi-channel one-way waveguide. In this paper, we consider the GFMS with
fourth-order silver-mean sequence illustrated in Figure 1. It has a spontaneous magnetization along z-
axis direction and a spontaneous polarization along y-axis direction in the same domain. The positively
and negatively domains with thickness L± are the two building blocks A and B. They have been
arranged repeatedly along one direction according to the substitution rules of generalized Fibonacci
sequence described by successive application (B → BmA and A → B, m = 2, 3) [18], with the zeroth
generation s0 = A, s1 = B, and s2 = BmA. Consider an electromagnetic wave impinging on the GFMS,
the coupling between the acoustic wave originating from the lattice vibration and electromagnetic waves
can occur, which lead to the creation of the coupled polaritonic band structure. The band structures
with respect to the FEWs and BEWs are asymmetric due to the TRSIS breaking originating from
coexisting of the electric and magnetic order parameters simultaneously in the GFMS.

A B B A A A B B A B B

A B B B A A A B B B A B B B
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→
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→

x (k)
→
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Figure 1. A schematic diagram of quasi-one-dimensional generalized Fibonacci multiferroic
superlattices with the generation of l = 4 and the substitution index (a) m = 2 and (b) m = 3.
Lattice displacement ux and wavevector k are along x-axis, the magnetic field Hz and magnetization
Mz are along ±z-axis, the electric field Ey and polarization Py are along ±y-axis.

This work presents a design that the nonreciprocal compact multi-channel bandstop filter or the
multi-channel one-way waveguide can be constructed on the basis of the GFMS. The plane wave
expansion method with first-order approximation indicates there are many band gaps in the GFMS,
and the band gaps with respect to the FEWs and BEWs are asymmetric. Transmission dips for the
BEWs can be observed in transmission spectra while for the FEWs do not appear in the same frequency
as the former.

2. GOVERNING EQUATIONS

The GFMS is composed of the domains with the coexistence of polarization and magnetization. The
purpose of the experimental construction is to achieve the couplings between the electric and magnetic
components of an electromagnetic wave and lattice vibration simultaneously. As a consequence, the
experimental setting must ensure the piezomagnetic and piezoelectric effects can occur simultaneously.
There are many different arrangements for the domains according to the orientations of polarization
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and magnetization for the GFMS. An arrangement of domains with +�P , + �M and −�P , − �M has been
considered, where ±�P represent the polarization along positive and negative y axis, and ± �M denote the
magnetization along positive and negative z axis are considered in our paper. The lattice constant of
lth generation sequence is al = F 1

l L+ + F 2
l L−, where F 1

l and F 2
l is the number of positive and negative

domains. Figure 1 shows that the electric field Ey(x, t), the magnetic field Hz(x, t) and the lattice
displacement ux(x, t) are in the y, z and x axis, respectively. The dynamic properties of the system are
described by the coupled equation set as follows:(
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Where Ēy(x̄, ω), H̄z(x̄, ω) and ūx(x̄, ω) correspond to the Fourier transformed quantities of Ey(x, t),
Hz(x, t) and ux(x, t), respectively. The above equation set is written in dimensionless form. The
dimensionless variables x = x̄L/2π, ux(x, t) = ūx(x̄, t)/2π, H̄z(x, t) = |T̄31|Hz(x, t) and Ēy(x, t) =
|d̄21|Ey(x, t) are introduced. θ1(x̄) = ±1 denote the domains with magnetization along positive and
negative z axis, θ2(x̄) = ±1 denote the domains along positive and negative y axis, respectively.
cs = 1/

√
ρs̄11 is the sound velocity of the media. The six dimensionless material parameters are α1 =

|T̄31|/μ0μ̄|d̄21|cs, α2 = |d̄21|/ε0ε̄|T̄31|cs, β2 = k11|d̄21|2/ε0ε̄, β1 = k11|T̄31|2/μ0μ̄, γ1 = ᾱ23|T̄31|/μ0μ̄|d̄21|
and γ2 = ᾱ23|d̄21|/ε0ε̄|T̄31|. β1 and β2 denote the magneto-mechanical transducer and electromechanic
coefficients and describe the coupling strength between the electric and magnetic field components
of electromagnetic waves and lattice vibration, respectively. γ1 and γ2 denote the electro-magnetic
and magneto-electric coefficients that describe the energy transfer efficiency between the electric and
magnetic energy. Where ε̄ = ε22 − Δε22 is the effective dielectric constant. μ̄ = μ33 − Δμ33

and ᾱ23(x) = α23(x) − Δα23(x) correspond to effective permeability and magnetoelectric coefficient,
respectively.

Δε22 =
1
ε0

[
d21(x)k11d̄21(x) + d22(x)k21d̄22(x) + d23(x)k23d̄23

]
(4)
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1
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T31(x)k11T̄31(x) + T32(x)k21T̄32(x) + T33(x)k33T̄33(x)

]
(5)

Δα23(x) =
[
T31(x)k11d̄21(x) + T32(x)k21d̄22(x) + T33(x)k31d̄33(x)

]
. (6)

The reduced bulk modulus kij is defined as the inverse matrix of elastic compliance tensor and the
reduced piezoelectric coefficients d̄21(x), d̄22(x) and d̄23(x), and the piezomagnetic coefficients T̄31(x),
T̄32(x) and T̄33(x) have the following forms:

d̄21(x) = d21(x) + d22(x)
k12

k11
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k11
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, (7)
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k31
, T̄31(x) = T31(x) + T32(x)

k12
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, (8)

T̄32(x) = T31(x) + T32(x)
k22
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+ T33(x)

k23
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, T̄33(x) = T31(x) + T32(x)
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. (9)

An ideal interface between the positive and negative domains is assumed. The transverse electric
and magnetic fields, the longitudinal displacement and the stress component across the domain
interface are continuous. The transfer matrices M(L̄i, ω̄) can describe the basic properties of different
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domains and are given in Ref. [14]. The whole matrix of the GFMS can be obtained by multiplying
multiferroic domain matrices according to the corresponding sequences. We extend the plane wave
method describing the pure piezoelectric Thue-Morse superlattices in Ref. [18] to the system of the
GFMS, in which Ēy(x̄, ω̄), H̄z(x̄, ω̄), ūx(x̄, ω̄) can be expanded in the reciprocal space in the following:
Ēy(x̄, ω̄) =

∑
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denotes the reciprocal lattice vector with lth-
order Fibonacci sequence with nl representing an integer.
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Since β1 � α1 and β2 � α2, and the electromagnetic wave-lattice vibration coupling take places near
the center of the Brillouin zone, in the framework of first-order perturbation theory, the coupled modes
mainly include the folded phonon branches with wavenumber k̄ + kml

and the unfolded photon branch
with wave number k̄. Thus the Eqs. (10)–(12) can be transformed as follows:
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θi(ml) (i = 1, 2) denotes the Fourier component of θi(x̄). Eliminating the independent variables
of magnetic field H(k̄, ω̄) and lattice displacement U(k̄ + kml

, ω̄), the above Eqs. (13)–(15) can be
transformed into the equation for electric field. Four different eigensolutions for a homogeneous
multiferroic domain can be obtained at a given frequency, which consist of two pairs of traveling wave,
one pair is along the forward direction of the domain, the other pair is along the backward direction.
The eigensolutions ω̄±i (i = 1, 2) are written in the following,
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The forward and backward propagating modes are marked by subindex ±. δis indicate the coefficients
of polynomial equation of third degree determined by the material parameters
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and δ is a real special solution of the polynomial equation
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Here, ±1 denote the electromagnetic propagating modes while ±2 refer to the acoustic propagating
modes. Although the dispersion relations in purely piezoelectric or piezomagnetic materials are
polarization direction independent and are symmetrical with respect to the forward and backward
directions, the coexistence of electric polarization and magnetization in the GFMS breaks the time-
reversal and space inversion symmetries and the dispersion relations ω̄+1 �= ω̄−1 and ω̄+2 �= ω̄−2 can be
obtained. The coupled polaritonic band gap for the forward direction is determined by Δω̄+ = ω̄+2−ω̄+1

and for the backward direction is determined by Δω̄− = ω̄−2 − ω̄−1. The band gap difference
Δω̄ = Δω̄+ − Δω̄− for the forward and backward directions can give the frequency window allowing
one-way propagating electromagnetic modes. The position of Δω̄± is determined by the nonvanishing
Fourier components θi(ml), and the bandwidth of Δω̄ is dominated by the six dimensionless coefficients
derived from the actual material parameters in the right hand of Eqs. (10)–(12).

3. NUMERICAL RESULTS AND DISCUSSION

The dimensionless parameters used in Eqs. (1)–(3) are α1 = 1.11 × 107, α2 = 29.2, β1 = 0.170,
β2 = 4.47× 10−7, γ1 = 1.27, and γ2 = 3.33× 10−6. The electromechanic coefficient is quite robust. The
bandgap as an important research object has been concerned since it can show clearly the frequency
ranges that photons do not propagate. The coupled polaritonic forbidden band structures with respect
to the forward and backward electromagnetic waves for the GFMS with m = 2, 3 are calculated by
the transfer matrix and originate from a two-step process: (1) the periodical modulation of electric
polarization and magnetization in multiferroic domains causes the phonon dispersion branch to be
folded, which can provide the possibility for the coupling between the only photon branch and phonon
branches; (2) the whole matrix Ml(L̄i, ω̄) for the l-th generation GFMS with m = 2, 3 can be obtained
by successively multiplying the matrices with the prescribed sequences. Its purely imaginary eigenvalues
are extracted. The corresponding frequency ranges for them are given, which represent the forbidden
propagation modes, and the photons do not propagate in those frequency ranges.
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(a)

(b)

(c)

Figure 2. The evolutionary relationship
of polaritonic band gaps with the Fibonacci
generation l = 2 ∼ 7 and L̄M+ = L̄M− = π
in frequency range of (a) ω̄ = 0–2.0, (b) ω̄ =
0.50–0.75 for the GFMS with m = 2 and (c)
ω̄ = 0–2.0 for the GFMS with m = 3. The red
solid squares denote the forbidden gaps for the
backward electromagnetic waves, and the black
solid squares represent the forbidden gaps for the
forward electromagnetic waves.

(a)

(b)

(c)

Figure 3. The evolutionary relationship
of polaritonic band gaps with the Fibonacci
generation l = 2 ∼ 7, L̄M+ = 0.5π and L̄M− =
1.5π in frequency range of (a) ω̄ = 0–2.0, (b)
ω̄ = 1.60–1.80 for the GFMS with m = 2 and
(c) ω̄ = 0–1.99 for the GFMS with m = 3. The
other parameters are the same as Figure 2.

The forbidden band structures for the GFMS with m = 2, 3 are calculated and illustrated in
Figures 2(a)–(c) with L̄+ = L̄− = π, respectively. The horizontal axis represents the generation l and
the vertical axis denotes the reduced frequency. The red solid squares denote the band gaps for the
BEWs, and the black solid squares represent the band gaps for the FEWs. We can find easily that the
red solid squares and the black solid squares are not completely coincident. As shown in Figure 2(a),
the band gap differences with regard to the FEWs and BEWs for the GFMS with m = 2 can be found in
the vicinity of ω̄ = 0.6 and ω̄ = 1.3. In order to observe the band gap differences more clearly, the band
structure around ω̄ = 0.65 is enlarged and replotted in Figure 2(b), where an obvious band gap difference
can be observed around ω̄ = 0.67 and can provide a frequency window allowing electromagnetic waves
propagating only along a single direction. The reason for the existence of the band gap differences is
the TRSIS breaking in the GFMS due to the coexistence of electric polarization and magnetization in
multiferroic domains.

Besides, the forbidden band structures are also the relative domain sizes in a unit cell dependent and
for the GFMS with m = 2, 3 are shown in Figures 3(a)–(c) with L̄+ = 0.5π and L̄− = 1.5π. The band
gap differences with respect to the FEWs and BEWs can be observed in the neighborhood of ω̄ = 0.6,
ω̄ = 1.1 and ω̄ = 1.7 for the GFMS with m = 2 in Figure 3(a) and in the neighborhood of ω̄ = 0.4,
ω̄ = 0.8, ω̄ = 1.2, ω̄ = 1.6 and ω̄ = 2.0 for the the GFMS with m = 3 in Figure 3(c), respectively, which
show the number of frequency channels having one-way electromagnetic propagation modes increasing
compared with the corresponding results in Figure 2.

Although the presence of the band gaps with respect to the FEWs and BEWs has been confirmed
by the forbidden band structures shown in Figure 3, the values of the absolute or relative bandwidth
(gap-to-midfrequency ratio) for them still can not be calculated quantitatively. To achieve this purpose,
the thickness of multiferroic domains are chosen as LM+ = LM− = 0.5µm, and transmission spectra
are calculated and illustrated in Figure 4. The horizontal axis represents the reduced frequency and
the vertical axis denotes the normalized transmission coefficient. The black square line denotes the
transmission curve for the FEW while the red uptriangle line represents that of the BEW. The black
square and the red uptriangle lines are not completely coincident, and multiple transmission dips can
be observed around ω̄ = 0.5 (21.3 GHz), ω̄ = 0.7 (29.82 GHz) and ω̄ = 1.5 (63.9 GHz) as shown in
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(a)

(b)

(c)

Figure 4. The transmission spectrum of the
multiferroic Fibonacci superlattices with m = 2
(S23) as a function of reduced frequency ω̄ with
LM+ = LM− = π. (a) For frequency range of ω̄ =
0–2.0. (b) For frequency range of ω̄ = 0.4–0.6.
(c) For frequency range of ω̄ = 0.6–0.8. The
black square line denotes the transmission curve
for the forward electromagnetic wave while the red
uptriangle line represents that of the backward
electromagnetic wave.

(a)

(b)

(c)

Figure 5. The transmission spectrum of the
multiferroic Fibonacci superlattices with m = 3
(S23) as a function of reduced frequency ω̄ with
LM+ = LM− = π. (a) For frequency range of ω̄ =
0–2.0. (b) For frequency range of ω̄ = 0.4–0.5. (c)
For frequency range of ω̄ = 0.5–0.6.

Figure 4(a). In order to observe the band gaps more clearly, the transmission spectra around ω̄ = 0.5
(21.3 GHz) and ω̄ = 0.7 (29.82 GHz) are enlarged and replotted in Figures 4(b) and 4(c).

The transmission dips for the BEWs can be observed around ω̄ = 0.468 (19.96 GHz), ω̄ = 0.493
(21.02 GHz), ω̄ = 0.517 (22.05 GHz), ω̄ = 0.540 (23.03 GHz) and ω̄ = 0.562 (23.97 GHz), and the
corresponding relative (absolute) bandwidths for them are 0.77% (0.154 GHz), 0.40% (0.084 GHz),
0.21% (0.046 GHz), 0.24% (0.055 GHz) and 0.9% (0.215 GHz), respectively. Moreover, there are still
three additional transmission dips with narrow frequency ranges beside them. Six transmission dips for
the BEWs in the frequency ranges of ω̄ = 0.6–0.8 can also be found in Figure 4(c), in which the FEWs
can propagate while the BEWs are prohibited. Similarly, the transmission dips in the black square
curves in Figures 4(a)–(c) denote the band gaps for the FEWs, where the FEWs can not pass through
the GFMS, but the BEWs is allowed to pass. In addition, the transmission spectrum of the GFMS is
also the binary substitutional index m dependent.

As in the situation in Figure 5(a), the transmission dips are more intensive than the corresponding
results shown in Figure 4(a) when the substitution index m is changed from 2 to 3. Nine transmission
dips can also be observed at ω̄ = 0.4–0.5 and are shown in Figure 5(b). The distribution relationship in
frequency axis of transmission dips shown in Figure 5(c) is very similar to that of the results illustrated in
Figure 5(b). Thus, the GFMS with m = 2 and 3 demonstrate multi-channel band gaps or multi-channel
one-way electromagnetic transmission and can be constructed nonreciprocal compact multi-channel
bandstop filters or multi-channel one-way electromagnetic waveguides.

4. CONCLUSION

In this paper, a program on a nonreciprocal multi-channel bandstop filter using the GFMS has been
proposed. We have predicted the existence of multiple band gaps and unidirectional frequency channels
in the GFMS with substitution indices m = 2 and 3 by the plane wave expansion method in the
framework of first-order perturbation theory. The forbidden structures and transmission spectra are
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utilized to verify and calculate the relative (absolute) bandwidths of those channels quantitatively, and
there are nine transmission dips for BEWs in the frequency range of ω̄ = 0.4–0.6 for the GFMS with
m = 2, in which the FEWs can pass while the BEWs are prohibited. Thus the multi-channel bandstop
filter is nonreciprocal with regard to the FEWs and BEWs. The GFMS can be potentially useful for
multiple channel unidirectional waveguides or isolators. In addition, the decrease of symmetry in a unit
cell and the increase of substitution index m in the GFMS can also lead to increasing the number of
unidirectional transmission channels of electromagnetic waves.
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