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Abstract—The high frequency scattering problems of electromagnetic fields scattered from electrically
large scatterers are important and challenging. On the calculation of the reflected and diffracted wave
fields, the high frequency methods could be classified into the current based method and the ray based
method. In this paper, first, we give a review on the progress of the modern high frequency methods
for solving the electromagnetic scattering problems. Next, due to the highly oscillatory property of
the high frequency electromagnetic scattered fields, we propose the numerical steepest descent path
method. Finally, we comprehensively address the high frequency wave physics, including the high
frequency critical point contributions, the Keller’s cone, the shadow and reflection boundaries and the
creeping wave fields.

1. INTRODUCTION

Maxwell’s equations are a set of four equations expressed in the integral or differential forms. Maxwell’s
equations were developed by Maxwell [1] early in 1865 and further simplified by Heaviside [2]. Maxwell’s
equations describe the interactions of the electric and magnetic fields with the external electric charge
and current, which play an important role in microwave, microelectronic, quantum electrodynamics,
subsurface sensing technologies, etc. [3–11].

For electromagnetic field scattered from the complicated scatterers or propagating in the complex
medium, the simulation of electromagnetic field with high accuracy and speed is an important goal
for the computational electromagnetic (CEM) community. Therefore, efficient methods have being
developed to simulate the electromagnetic field. These methods are the method of moment (MOM) [12],
the finite element method (FEM) [13], and the finite difference time domain (FDTD) method [14].
However, the analysis of the electromagnetic fields scattered from the electrically large object remains
as an important and challenging problem [15]. The reason is that the computational effort for the
scattered field increases vastly with the growth of the electrical size of the considered scatterer. The
fast multilevel fast multipole algorithm (MLFMA) [15] reduces the workload to O(N logN), with N as
the number of unknowns from the integral equation system. However, in the high frequency regime,
the computational workload is still too high to afford. Hence, a fast algorithm to calculate the high
frequency scattered field with acceptable workload is in great need [16].

When the frequency becomes extremely high, the electromagnetic fields assume the ray physics
phenomenon. In the ray physics regime, the high frequency methods could be classified into the current
based method and the ray based method. In this situation, researchers have been seeking various high
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frequency methods to calculate the scattered fields over the last several decades. For the current based
method, the physical optics (PO) method [17], the physical theory of diffraction (PTD) method [18, 19]
and the incremental length diffraction coefficients (ILDC) method [20–23] were developed to calculate
the reflected and diffracted fields with different mathematical techniques. For the ray based method, the
geometric optics (GO) method, the geometric theory of diffraction (GTD) [24, 25], the uniform theory
of diffraction (UTD) [26] and the uniform asymptotic theory (UAT) [27] were proposed to calculate the
reflected and diffracted fields. In the high frequency regime, due to the highly localized phenomenon,
the dominant contributions of the scatterer mainly come from important critical points, namely, the
specular reflection point, the edge and the vertex points [28–32]. Furthermore, the specular reflection
contribution from the scatterer is the leading term and the contributions from the edges and the vertices
are weaker terms. To study the high frequency edge physics, the canonical solutions such as for the
Sommerfeld half plane could be adopted [33]. Then, the shadow and reflection boundaries, and the
Fresnel transition function for the scattered wave fields occur. For the convex scatterer and curved
edges, the Fock current and the creeping wave fields occur [34]. The creeping wave field comes from the
Fock current on the shadow region of the convex scatterer that creeps around the convex scatterer, which
is a surface wave and decays fast as it travels along the convex surface [34, 52]. Furthermore, the ray
optics approximations break down near the shadow boundary and near the caustics. Therefore, uniform
solutions via the uniform approximation technique are in great need for calculating the solutions in this
regime [26, 27]. Based on the aforementioned physical insights, the GTD, PTD, UTD, UAT and ILDC
methods were proposed with different asymptotic and mathematical techniques. Recently, there is a
progress on the numerical steepest descent path (NSDP) method [44–52] to calculate the high frequency
scattered fields from the PO and ILDC methods. On invoking the NSDP method, the highly oscillatory
wave fields could be transformed to smooth kernels on the complex plane. In this paper, the various
high frequency methods and the fast NSDP solver will be introduced in the following.

In [53], the wave boundary element methods were proposed to calculate the high frequency wave
scattering problems. Compared with the conventional direct collocation element methods, the wave
boundary element methods demonstrated their high efficiencies for solving the wave scattering problems.
In [54], rapidly oscillating phenomena occurring in electromagnetics, quantum theory, acoustics, fluid
dynamics, electrodynamics and plasma transport, were introduced in detail. Then, the highly oscillatory
quadratures were studied, like the asymptotics method, the Filon method, the Levin collocation method,
the steepest descent path method. In [54, 55], the boundary integral methods adopted for solving the
high frequency scattering problems were comprehensively studied. The recent progress on the analysis
and implementation of numerical-asymptotic hybridization of the boundary integral methods for the
acoustic scattering problems was systemically given. In [56], the wideband fast multipole method for
solving the Helmholtz equation in three dimensions was studied. In the high frequency regime, on
invoking the fast multipole method, the computational workload is O(N logN). In [57], the integral
equations, high-order integration, fast fourier transforms and highly accurate high-frequency integrators,
were studied and proposed to calculate the high frequency scattering solutions of electromagnetic and
acoustic.

In [58, 59], the method of equivalent currents (MEC) was derived by the asymptotics of the surface
radiation integral of the physical theory of diffraction method. And the surface radiation integral was
obtained from the exact solutions of the canonical wedge problem. In [60, 61], time-domain based
simulations high frequency methods were studied. In [60], the time domain uniform geometrical theory
of diffraction was developed to calculate the radiation fields from elemental pulsed antennas placed on a
smooth perfectly conducting convex surface. The time domain uniform geometrical theory of diffraction
was further obtained by the analytic time transform technique. In [61], the time domain physical optics
approximation extended the concept of the frequency-domain physical optics approximation, and used
to determine some significant properties of electrically large reflector antennas with high efficiency.
In [61], a time domain version of the equivalent edge current formulation of the physical theory of
diffraction was derived. The time domain equivalent edge currents were expressed as the integrals of
the time-domain fringe wave currents on the canonical wedge.

Compared to the work in [47–50], in this review paper, we introduced the NSDP solver to calculate
the high frequency scattered fields. The NSDP method provides an efficient way to calculate the
scattered field from both the PO and the ILDC techniques. The PO scattered fields could be represented
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as the surface integrals, while the diffracted wave fields from the ILDC technique could be represented
as line integrals. Moreover, both the PO scattered fields and the diffracted wave fields from the ILDC
method are highly oscillatory with the growth of wave frequency. In this situation, we propose the
NSDP method to calculate both the PO scattered fields and the diffracted wave fields. Moreover, the
NSDP method could be adopted to calculate these highly oscillatory wave fields with the frequency
independent computational workload and error controllable accuracy. Hence, the NSDP method may
provide an efficient way to calculate the high frequency highly oscillatory wave fields from various current
based high frequency methods.

This paper is organized as follows. Section 2 introduces the GO method and the ray tube technique.
In Section 3, the key points of the SBR method are discussed. Section 4 addresses the key ideas of
the GTD and UTD methods. Sections 5–6 illustrate the current based PO and PTD method with the
radiation integrals involved. Section 7 derives the ILDC method for calculating the scattered fields from
the convex body and wedge. Section 8 introduces the fast solver, namely, the NSDP method, to calculate
the high frequency scattered fields from electrically large scatterers. In Section 9, the connections and
comparisons of different high frequency methods are discussed. The numerical examples via the NSDP
method are given in Section 10. Section 11 ends the paper with conclusions and future research areas.

2. GEOMETRIC OPTICS METHOD

In the high frequency regime, the electromagnetic fields take on the ray physics phenomenon, which
are demonstrated in Figure 1(a). The incident and reflected fields could be expanded in terms of the
Luneberg-Kline series as [35]

E(r) = eikψ(r)
∞∑
j=0

Ej(r)
(−iω)j

(1)

In this paper, the time dependence e−iωt is assumed. And r is the position point in spatial space; k
and ω are the wavenumber and the angular velocity of the background medium; ψ(r) is the wave front
surface at the position point r; Ej(r) is independent of wave frequency. Furthermore, the light intensity
between any two points in space follows the ray tube theory. That is, the conservation of energy flux
follows along the ray path, as shown in Figure 2(a). Furthermore, by adopting the ray tube technique,
the leading term in Equation (1) could be obtained as [29]

E(r) ≈ E0(r0)
√

ρ1ρ2

(ρ1 + l)(ρ2 + l)
eikl (2)

Here, E0(r0) follows the leading term of Equation (1) at r0. ρ1 and ρ2 are the principal radii of the
wavefront curvature with respect to the reference point r0, and

l = ‖r − r0‖2 (3)

denotes the distance between the reference point r0 and the position point r, which is demonstrated in
Figure 1(a).

Importantly, the ray path between any two points r1 and r2 in space follows the Fermat’s principle,
which is governed by

δ

∫ r2

r1

n(s)ds = 0 (4)

Here, n(s) represents the refraction index of the medium, and δ is the variation operator. In physics,
Equation (4) means that the ray propagates along the path that minimizes the optical distances between
any two points in space. Then, on invoking the Fermat’s principle in Equation (4), the direction of the
reflected rays could be determined from the incident ray in Figure 2(b).

Based on the ray tubes theory and the Fermat’s principle, the reflected field E(r)(r) at distance l
from the reflection point pr of the considered scatterer could be expressed as

E(r)(r) ≈ R ·E(i)(pr)

√
ρ1(pr)ρ2(pr)

(ρ1(pr) + l)(ρ2(pr) + l)
eikl (5)
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Figure 1. (a) High frequency ray fields from the scatterer, including the reflected fields from the
spatial specular points and the diffracted fields from the edge points and the vertex points. (b) The
wave physics of the Sommerfeld half plane problem.

Here, R is the dyadic reflection coefficient from pr, and E(i)(pr) represents the incident field at pr.
And ρ1(pr) and ρ2(pr) are the principle radii of ∂Ω at pr, and l is the distance from pr to r along the

direction of the reflected field. Furthermore, the term
√

ρ1(pr)ρ2(pr)
(ρ1(pr)+l)(ρ2(pr)+l) in Equation (5) represents

the spatial attenuation factor. The dyadic reflection coefficient R depends on the local curvature and
the material property of the scatterer. In particular, for the perfectly conducting (PEC) scatterer, one
has

R =
[

1 0
0 −1

]
(6)

Hence, when the observation point r is located at the reflection point pr of the PEC scatterer, we have

E(r)(pr) ≈ R · E(i)(pr) = E(i)(pr) ·
(
êi‖ê

r
‖ − êi⊥ê

r
⊥
)

(7)

Here, êi‖ and êi⊥ correspond to the unit vectors that are parallel and perpendicular to the plane of
incidence, and êr‖ and êr⊥ follow the similar definition for the reflected wave fields, which are formulated
as

êi⊥ × k̂i = êi‖ (8)

êr⊥ × k̂r = êr‖ (9)

and demonstrated in Figure 2(b).
The GO method provides a fast way to calculate the reflected field from the electrically large

scatterer as given in Equation (5). From Equation (5), it is evident that the workload of calculating
the reflected field via the GO method could be achieved frequency independently.

3. SHOOTING AND BOUNCING RAY METHOD

For the external source incident on the complicated structure like the cavity in Figure 3, because of
the multiple reflection and diffraction, the ray physics is rather complicated. In particular, the rapid
variation of the curvature of the cavity, large dimension of the cavity and inhomogeneous medium of
the cavity make the simulation of high frequency wave fields challenging.

In 1989, Ling et al. [36] proposed the shooting and bouncing ray (SBR) method to capture the
scattered fields from the cavity. The SBR method contains three parts. The first part is the ray tracing
technique. That is, for the considered scatterer and the incident wave, one finds the multiple ray paths
from the Snell’s law and the Fermat’s principle, which is given in Equation (4).
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Figure 2. (a) The ray tube figure in [29]. (b) Reflection of the incident rays from the scatterer in [29].
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Figure 3. The multiple reflections from the cavity in [36].

The second part is the determination of the amplitude of the exit rays based on the amplitude
tracking, which is formulated as

E(rj+1) = (R)j · E(rj)(DF )je
ik‖rj+1−rj‖2 , j = 1, 2, · · · , N. (10)

Here, rj are the sampling points on the cavity. And Rj is the dyadic reflection coefficient matrix at
the reflection point rj with the local tangent plane approximation technique, which is demonstrated in
Figure 3. The factor (DF )j is the amplitude divergence factor after the j-th reflection and before the
(j + 1)-th reflection with the ray tube technique. And k‖rj+1 − rj‖ corresponds to the phase factor
traveling from the point rj to rj+1 along the ray path.

The final part of the SBR method is the application of the physical optics (PO) method to calculate
the scattered fields and the radar cross section (RCS) from the cavity structure. With the ray tube
technique, the calculation of the PO scattered fields could be further reduced to the calculation of the
following integral

I =
∫

Δ
dydxeik(ax+by) (11)

Here, a and b are constants depending on the information of the incident wave fields and the ray
tube. Furthermore, the integral I in Equation (11) could be evaluated analytically by the Fourier
transformation technique [37]. One could notice that Equation (11) contains the linear phase term,
and the dense sampling mesh with size of λ/10 is required. Hence, the computational workload for
the scattered fields via the SBR method shall increase vastly with the increase of the external wave
frequency.

4. GEOMETRIC THEORY OF DIFFRACTION AND UNIFORM THEORY OF
DIFFRACTION

As discussed in Section 2, the GO method could be used to evaluate the reflected fields. However,
when the rays come to the wedges and the convex scatterers, the diffracted wave fields emerge. In this
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situation, when the observation point lies in the deep shadow regions, the GO method fails to capture
the scattered wave fields very well [24].

In 1896, Sommerfeld [33] addressed the early high frequency scattering problem from the perfect
conducting half plane, as shown in Figure 1(b). The scattered field was given in a closed form, which was
expressed in terms of the Fresnel integral [33]. With the asymptotic expansion of the Fresnel integral,
the scattered far field could be captured in an elegant way. The high frequency diffracted wave physics
such as the fringe current, shadow and reflection boundaries were clearly demonstrated. The regions
for the observation point lying around the reflection and shadow boundaries are named as transition
regions.

The calculation of the diffracted ray fields from the perfectly conducting curved wedges was given by
Keller [24]. This method was called the geometric theory of diffraction (GTD) method. In detail, after
solving the diffracted fields from the canonical wedge and adopting the ray tube technique, the leading
term of the diffracted wave fields from the point pd along the curved wedge has a similar formulation
to that given in Equation (5) [24]:

E(d)(r) ≈ E(i)(pd) · D
√

ρd(pd)
l(ρd(pd) + l)

eikl (12)

In Equation (12), D is the dyadic diffraction coefficient in [24], and l denotes the distance between
the two points r and pd. And ρd(pd) denotes the distance of the edge and the second caustic of the
diffracted ray. In Figure 4, we demonstrate the figure of the diffraction from the curved edge with

φ̂i = r̂i × θ̂i (13)

φ̂d = r̂d × θ̂d (14)

that is, the diffracted ray (rd, π−φd, θd) and incident ray (ri, π−φi, θi) are represented in the spherical
coordinate system. The unit vectors r̂i and r̂d are in the directions of the incidence and diffraction rays
at the edge, respectively. The unit vectors φ̂i and φ̂d are parallel to the edge fixed plane of incidence
and diffraction. The unit vectors θ̂i and θ̂d are perpendicular to the edge fixed plane of incidence and
diffraction.

For the diffraction of the PEC wedge, similar to that given in Equation (12), the relationship
between the incident field and the diffracted field could be formulated as

E(d)(r) ≈ E(i)(pd) ·DA(l′, l)eikl (15)

where A(l′, l) corresponds to the attenuation factor of the amplitude of E(d)(r) along the diffracted rays.
Here, l′ denotes the distance of the source point and the diffraction point pd, and l denotes the distance
of the diffraction point pd and the observation point r. For the plane and conical incident waves, A(l′, l)
takes the formulation [26]

A(l′, l) =
1√
l

(16)

While for the spherical incident wave, A(l′, l) takes the form

A(l′, l) =

√
l′

l(l′ + l)
(17)

The diffraction coefficient D could be obtained from the asymptotic expansion of the radiation integrals
for the canonical PEC wedge diffraction problem. Hence, the fields from the GTD method contain both
the fields from the GO method and the diffracted wave fields, which are more accurate for calculating
the high frequency wave fields. Moreover, the dyadic diffraction coefficient D takes the form

D = −φ̂iφ̂dDs − θ̂iθ̂dDh (18)

where Ds and Dh correspond to the scalar diffraction coefficients for the two dimensional canonical
wedge diffraction problems with the Dirichlet and Neumann boundary conditions [24], respectively.
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Keller gave the scalar diffraction coefficients as [24]

Ds,h(θd, θi;φi) =
ei

π
4 sin

π

n
n
√

2πk sinφi
χ(n, θi, θd) (19)

where

χ(n, θi, θd) =
1

cos π/n− cos[(θi − θd)/n]
∓ 1

cos π/n − cos[(θi + θd)/n]

Here, the wedge takes the angle (2 − n)π. The “∓” sign corresponds to the Dirichlet and Neumann
boundary conditions for the PEC wedge diffraction problems. When the observation point r lies near
the reflection and incident shadow boundaries with θd = π ∓ θi, the above Equation (19) breaks down.
Furthermore, from Equations (15) and (19), we see that the diffracted wave fields E(d)(r) is O

(
1√
k

)
.

In Equation (5), the reflected fields are O(1). Hence, when the wave frequency goes large, the reflected
field becomes more important than the diffracted field. In this sense, the GO method will become more
accurate with the increase of wave frequency. In particular, when n = 2, the above problem reduces to
the so-called Sommerfeld half plane problem.

To solve the above break down problems around the incident and reflection shadow boundaries
in [24], the scattered fields from the canonical PEC wedge are expressed in terms of the contour integrals
on the complex plane. The uniform asymptotic technique, named as Pauli-Clemmow modified method
of steepest descent, was adopted to evaluate these contour integrals by Kouyoumjian and Pathak [26].
Then, the dyadic diffraction coefficient of a PEC wedge was obtained as [26]

Ds,h(θd, θi;φi) = − ei
π
4

2n
√

2πk sinφi
X(n, θd, θi) (20)

X(n, θd, θi) = cot
(
π + (θd − θi)

2n

)
F

[
kDa+(θd − θi)

]
+ cot

(
π − (θd − θi)

2n

)
F

[
kDa−(θd − θi)

]
∓ cot

(
π + (θd + θi)

2n

)
F

[
kDa+(θd + θi)

]
∓ cot

(
π − (θd + θi)

2n

)
F

[
kDa−(θd + θi)

]
(21)

In the above Equation (21), F (x) involves the Fresnel function [42]

F (x) = −2i
√
xe−ix

∫ ∞
√
x
eiτ

2
dτ (22)

The parameters a±(x) andD are related to the incident wave fields information, which were given in [26].
The formulation in Equation (20) for calculating the diffracted wave fields is named as uniform theory
of diffraction (UTD) [26]. When the observation points lie around the incident and reflection shadow
boundaries, one could analyze that Equation (21) is finite by the asymptotic expansion of F (x) [26].
Hence, Ds,h(θd, θi;φi) in Equation (20) is finite. In this situation, the UTD method could overcome the
break down problem in the GTD method.

5. PHYSICAL OPTICS METHOD

In 1913, Macdonald introduced the physical optics (PO) approximation method by approximating the
induced current on the surface of the scatterer [17]. The PO approximation serves as an efficient
technique to calculate the scattered fields from the electrically large and smooth scatterers [37, 38].
Specifically, for the external source impinging on the considered scatterer, in the lit region, the PO
induced current is approximated with the local tangent plane approximation, which is usually good
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Figure 4. The diffraction from the curved wedge with the Keller’s cone geometry in [29].

for the locally flat and smooth surface of the scatterer. On the other hand, in the shadow region,
the PO induced current is set to be zero. However, the PO current is not correct around the shadow
boundary [18], which leads to the fact that the PO method does not satisfy the reciprocity theorem.
The induced current in the lit region of the scatterer could be approximated as

JPO(r) = 2n̂(r) × H(i)(r) (23)

Equation (23) is known as the PO current, which is demonstrated in Figure 5. Here, n̂(r) is the outward
unit normal to the surface, and H(i)(r) is the incident source field. Then, the electric scattered far fields
from the PO current could be expressed as

E(s)(r) ≈ ikeikr

4πr

√
μ

ε

(
I − r̂r̂

) · ∫
∂Ω1

dr′e−ikr̂·r
′
JPO(r′) (24)

In particular, for the plane incident wave, one has

E(i)(r) = E0
(i)eikr̂

(i)·r, H(i)(r) =
r̂(i) × E0

(i)

Z0
eikr̂

(i)·r (25)

with Z0 as the intrinsic impedance of free space. In this situation, the scattered electric field could be
rewritten as

E(s)(r) ≈
∫
∂Ω1

s(r′)eikv(r
′)dS(r′) (26)

Figure 5. PO approximation current on the PEC scatterer.
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with

s(r′) = − ike
ikr

2πr
r̂× r̂×

(
n̂(r′) × r̂(i) × E0

(i)
)

(27)

v(r′) =
(
r̂(i) − r̂

)
· r′ (28)

Equation (26) is the bistatic scattered electric field under the PO approximation. The vector function
s(r′) in Equation (27) is known as the vector amplitude function, and v(r′) in Equation (28) is the phase
function. The integrand of the vector PO surface integral in Equation (26) is highly oscillatory when
kL goes large. Here, L is the diameter of the considered scatterer. The highly oscillatory property of
the PO integrand makes the computational effort grow via the direct numerical integration method.
Therefore, one needs to seek efficient techniques to evaluate these PO integrals.

6. PHYSICAL THEORY OF DIFFRACTION

The limitation of the PO approximation is that the PO current fails to capture the electric current
around the shadow boundary. To remedy this limitation, Ufimtsev considered the PEC wedge diffraction
problems, which is shown in Figure 6. He introduced the edge current to correct the PO current, known
as the physical theory of diffraction (PTD) method [19]. In mathematics, the PTD current takes the
expression

JPTD(r) = JPO(r) + JNU (r) (29)

where JNU (r) is the edge current used to correct the limited accuracy of JPO(r) around the shadow
boundary and in the deep shadow regions. Similar to the GTD problem introduced in Section 4, the
non-uniform (NU) current JNU (r) could also be obtained from the canonical PEC wedge diffraction
problem. After substituting JPTD(r) in Equation (29) into (24), one could obtain the scattered far
fields from the PTD method, with the formulation

E(s)(r) ≈ ikeikr

4πr

√
μ

ε

(
I − r̂r̂

) · ∫
Ω
dr′e−ikr̂·r

′
JPTD(r′) (30)

The differences of the PTD scattered fields and the PO scattered fields lie in two parts. First, instead
of the lit region ∂Ω1 of the scatterer in Equation (24), one could see that the integration domain in
Equation (30) is ∂Ω. Second, the resultant scattered fields contain the PO scattered field in Equation
(30) and the edge diffracted wave field, which is also regarded as the radiation integral with highly
oscillatory integrand. Meanwhile, with the consideration of the computational workload, it is frequency
dependent to evaluate the radiation integral from the PTD method by the direct numerical integration
scheme.

Figure 6. The diffraction from the PEC wedge.

7. INCREMENTAL LENGTH DIFFRACTION COEFFICIENT TECHNIQUE

The incremental length diffraction coefficient (ILDC) technique, which was proposed by Mitzner early
in 1974, was used to calculate the diffracted wave fields from the wedge diffraction problem [20]. Latter,
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Figure 7. (a) The obliquely incident plane wave with wavevector ki that impinges on the convex
cylinder with finite length; the shadow boundary is shown by the blue line on the cylinder. The shadow
boundary point rs is denoted by the black dot on the shadow boundary. (b) The geometry of the finite
length wedge diffraction from the obliquely incident wave.

Yaghjian and Shore [21–23] comprehensively studied the ILDC technique, and further extended the
ILDC technique to the convex scatterer. Recently, Wu and Chew [52] proposed the numerical contour
deformation technique together with the ILDC technique to evaluate the diffracted wave fields from the
three dimensional convex scatterer. The details of the ILDC technique are introduced as follows.

In Figure 7, we define the integration surface from the scatterer (the cylinder or the wedge) as [52]

Ω(x, y, z) = C(x, y) × [za, zb] (31)

Here, C(x, y) is the cross section of the contour curve on the x-y plane, and [za, zb] is the integration
domain along the z-axis. Then, on performing the integration of the free space dyadic Green’s function
and the uniform current over ∂Ω(x, y, z), we have

E(s,q)(r) = iωμ

(
I +

∇∇
k2

)
·
∫
∂Ω
dr′

K(q)(r̂i, r′)eik|r−r′|

4π|r − r′| (32)

Here, K(q)(r̂i, r′) represents the uniform current for the cylinder or the wedge, named as the Fock or the
fringe current [21, 23, 52], respectively. Index q corresponds to the TE and TM cases. For notational
convenience, we omit index q in the rest of this paper. In the far field approximation, Equation (32)
could be formulated as

E(s)(r) ≈ ikeikr

4πr

√
μ

ε

(
θ̂θ̂ + φ̂φ̂

)
·
∫
∂Ω
dr′e−ikr̂·r

′
K

(
r̂i, r′

)
(33)

To adopt the ILDC technique, we consider the differential formulation of Ω(x, y, z) with respect to
the z-axis, which is given by dΩ(x, y, z) = C̃(s) × dz. Here, C̃(s) is the parameterization of contour
C(x, y) on the x-y plane with the parameter s. In the illuminated region, C̃(s) is normal to the shadow
boundary, that is, C̃(s) follows the direction of the incident wavevector k̂i. In the shadow region, C̃(s)
is the geodesic curve whose tangential direction forms θi angle with the z-axis, as shown in Figure 7.
Then, the scattered fields dE(s)(r) at the observation point r away from the incremental current sheet
of length dz could be formulated as

dE(s)(r) ≈ dz
ikeikr

4πr

√
μ

ε

(
θ̂θ̂ + φ̂φ̂

)
·
∫
C̃(s)

dr′e−ikr̂·r
′
K(r̂i, r′) (34)

Here, the shadow boundary curve is governed by

k̂i · n̂s(rs) = 0 (35)
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where n̂s(rs) is the outward unit normal vector at the point rs lying on the shadow boundary of the
scatterer. With the observation point r lying in the lit and shadow regions of the considered scatterers,
we have

k̂i · n̂(r) < 0, k̂i · n̂(r) > 0 (36)

respectively. On invoking the ILDC technique, we see that Equation (34) represents the incremental
length scattered fields along the z direction.

By subtracting the PO current from the uniform current, we have the non-uniform (NU) incremental
diffraction wave fields around the transition region of the scatterer as

δE(s,NU)(r) ≈ dz
ikeikr

4πr

√
μ

ε

(
θ̂θ̂ + φ̂φ̂

)
·
∫
C̃(s)

dr′e−ikr̂·r
′
K(NU)(r̂i, r′) (37)

Here,

K(r̂i, r′) = K(PO)(r̂i, r′) + K(NU)(r̂i, r′). (38)

In wave physics, the term K(PO)(r̂i, r′) corresponds to the PO current in the scatterer’s lit region, and
K(NU)(r̂i, r′) is the NU-Fock or NU-fringe currents near the transition region and in the deep shadow
region. The expression of the Fock current K(NU) is formulated via the current on the cylinder diffraction
problems and the Sommerfeld-Watson transformation technique, which involves the Airy function and
its derivative [34, 52]. The fringe current follows the solution of the canonical wedge diffraction problem,
which is expressed as the contour integral on the complex plane [20].

8. THE NUMERICAL STEEPEST DESCENT PATH METHOD

On invoking the high frequency asymptotic (HFA) method, the radiation integrals in Equations (26, 30)
from the PO and PTD methods could be approximated as several leading terms [28, 39–41]. However,
the generated high frequency scattered fields results usually lose accuracy. This limitation becomes
serious when the parameter kL is not extremely large but lies in the high frequency regime.

To remedy the aforementioned limitation from the HFA method, Wu and Chew proposed the
numerical steepest descent path (NSDP) method [47, 49, 50]. On invoking the NSDP method, the PO
integrands are transformed to exponentially decay integrands on the complex NSDPs, which could be
integrated with workload independent of frequency. With respect to the integration accuracy, the only
approximation process via the NSDP method is the numerical integration of the exponentially decay PO
integrand [43]. Therefore, compared to the HFA method, the proposed NSDP method could improve
the accuracy of the PO scattered field .

We define the NSDP method as follows. For the given integration domain [L1, L2] with the highly
oscillatory integrand eikg(x), one could define the path functions x = xLm(p), m = 1, 2, p ∈ [0,∞),
satisfying the following three conditions [3]:
(a) xLm(0) = Lm, that is, the paths start at Lm.
(b) Re(g(xLm(p))) = Re(g(xLm(0))) ≡ C, where C is a constant.
(c) Im (g(xLm(p))) = p.

Then, after substituting x = xLm(p) into the phase function g(x), one could see that eikg(xLm (p)) =
eikg(Lm)−kp decreases exponentially as O(e−kp). The above contour transformation technique on
deforming the real integration variable “x” to the complex path function xLm(p) is called the NSDP
technique. Through (a), (b) and (c), the NSDPs xLm(p) for the end points Lm could also be obtained [47–
50].

However, one could notice that g(x) − g(xs) is a quadratic function after the Taylor expansion of
g(x) at xs [3]. Hence, the behavior of g(x) at xs is different from that at the end points. This fact
leads to the change of the corresponding NSDPs on the complex plane. Therefore, for the stationary
phase point xs, one needs to change the above condition (c) to Im(g(xLm(p))) = p2, and define the
corresponding NSDP, x = x0(p), p ∈ (−∞,∞).

As known in [47–50], the quadratic phase variations for the PO scattered fields in Equation (26)
cover the high frequency critical points. Hence, the quadratic variation for the phase functions on
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Figure 9. The four sub-figures correspond to the NSDPs for the integrands of I(am,bm)
2 ,m = 1, 2, 4, 5,

defined on the four edges of the quadrilateral domain V1V2V3V4 in Figure 8.

the quadrilateral PEC patches in Figure 8 is considered [49]. The projected quadrilateral domain on
the xy plane is denoted as V1V2V3V4. The four edges of the quadrilateral domain are governed by
y = amx+ bm, m = 1, 2, 4, 5. Then, after substituting the parabolic patch ∂Ω in Figure 8 into Equation
(24), the three PO surface integrals could be obtained. For simplicity, one can denote them as Ĩ. In the
process of the reduction of the PO surface integral into several line integrals I(am,bm)

2 , the complementary
error function emerges in the integrand [47]. On invoking the Stokes’ phenomenon of the complementary
error function [42], the phase functions on the four edges are g(m)(x) = x2+(amx+bm)2, and the Stokes’
lines are y = −x− bm

am
. Then, the NSDPs on the four edges of the quadrilateral domain are [3]:

xLm(p) =
sgn(L′

m)√
1 + a2

m

√
L′
m

2 + ip+ xs, p ∈ [0,∞) (39)
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x0,m(p) =
e(i

π
4 )p√

1 + a2
m

+ xs, p ∈ (−∞,∞) (40)

where xs = − ambm
1+a2m

is the stationary phase point of the phase function g(m)(x) defined on the four edges,

and L′
m =

√
1 + a2

m (Lm − xs). These NSDPs are demonstrated in Figure 9. After changing the original
PO integration path to the NSDPs and on invoking the Cauchy’s integral theorem, the PO integral Ĩ
can be represented in terms of the NSDPs as

Ĩ = −I(a1,b1)
2 + I

(a2,b2)
2 + I

(a4,b4)
2 + I

(a5,b5)
2 (41)

where

I
(a1,b1)
2 = I

(a1,b1)
L1

− I
(a1,b1)
L2

+ I(a1,b1)
xs

+K ((V2(1), 0)) −K ((V1(1), 0)) −K
(
B(1)

)
+K

(
A(1)

)
I

(a2,b2)
2 = I

(a2,b2)
L1

+ I(a2,b2)
xs

− I
(a2,b2)
L2

+K ((V2(1), 0)) −K
(
A(2)

)
I

(a4,b4)
2 = I

(a4,b4)
L1

+ I(a4,b4)
xs

− I
(a4,b4)
L2

+K
(
B(4)

)
−K

(
A(4)

)
I

(a5,b5)
2 = I

(a5,b5)
L1

+ I(a5,b5)
xs

− I
(a5,b5)
L2

+K
(
A(5)

)
−K ((V1(1), 0))

Originally, I(am,bm)
2 ,m = 1, 2, 4, 5, are the highly oscillatory PO line integrals I(a,b)

2 defined on the four
edges

−−−→
V1V2,

−−−→
V2V3,

−−−→
V3V4 and

−−−→
V1V4 in Figure 8. Here, K(x) comes from the Stokes’ phenomenon

of erfc(z)’s different asymptotic behaviors on different domains, which has the closed-form formula. At
this point, the PO integral is expressed in terms of some NSDPs with exponentially decay integrands,
which could be evaluated with frequency independent workload.

On invoking the NSDP method proposed in [47], Wu and Chew expressed the high frequency critical
point contributions via the PO integrand defined on the NSDPs. Since the process for evaluating the
PO integral uses less approximation, these PO integral results could gain high accuracy from those
produced by the HFA method. Meanwhile, the frequency independent workload is achieved [47–50].

9. THE CONNECTIONS AND COMPARISONS OF THE HIGH FREQUENCY
METHODS

The connection of the PO method and the GO method could be obtained via the HFA technique.
On invoking the HFA technique for Equation (24), one could obtain that the leading term of the PO
scattered field corresponds to the GO ray field at the specular reflection point in Equation (5). As
is known, the GTD method serves as the correction of the GO method with the consideration of the
edge diffracted wave fields. And UTD method comes from the uniform asymptotic approximation of
the radiation integrals from the wedge diffraction problems. When the observation point lies outside
of the incident and reflection shadow boundaries of the wedge diffraction problem, the UTD diffraction
coefficient in Equation (20) could reduce to the GTD coefficient in Equation (19).

The PTD current is the summation of the PO approximation current and the edge diffracted wave
approximation current. The scattered fields from the PTD method are expressed as the radiation
integrals. When the radiation integrals are approximated in the asymptotic way, the results are similar
to the wave fields obtained from the GTD method. Furthermore, when the radiation integrals are
approximated in the uniform asymptotic fashion, the scattered fields from the UTD method result. With
respect to the computational workload, the scattered fields from the GO, GTD and UTD methods are
frequency independent. However, the calculations of the scattered fields from the PO and PTD methods
via the direction numerical integration are frequency dependent. With respect to the accuracy, on
invoking the direction numerical integration method for the scattered fields from the PO and PTD
methods, the generated results are more accurate than those generated from the GO, GTD and UTD
methods.
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Recently, progress is made on the fast evaluation of the high frequency scattered fields by the NSDP
method [47–50]. The efficient NSDP method is adopted to calculate the scattered fields from the PO
method and the ILDC method in the following Section 10.

10. THE NUMERICAL REPRODUCIBILITY

The numerical reproducibility of the PO scattered fields by the NSDP method could be given as follows:
Step 1. We identify three types of quadratic surfaces, which are parabolic, hyperbolic and saddle.
Step 2. We formulate the PO scattered field formulations on the assembled quadratic triangular
patches.
Step 3. We implement the affine transformation and transform the PO surface integral on each
quadratic triangular patch to its canonical form.
Step 4. We reduce the PO surface integral to three highly oscillatory line integrals on each quadratic
triangular patch.
Step 5. We find the phase formulations of the PO integrands from the quadratic surfaces.
Step 6. From the obtained phase formulations, we find all kinds of NSDPs on the complex plane.
Step 7. We formulate all cases of the Stokes’ lines on the complex plane.
Step 8. From the Cauchy’s integral theorem, we obtain the PO scattered fields formulations via the
NSDPs on the complex plane.
Step 9. We calculate the radar cross section of the PO scattered fields with frequency independent
computational workload and error controllable accuracy.
The numerical reproducibility of the high frequency scattered fields from the convex scatterers by the
ILDC and NSDP methods could be expressed as follows:
Step 1. We find the curvature of the convex scatterers.
Step 2. We find the geodesic curve of the convex scatterers and derive the formulations of the Fock
currents.
Step 3. We calculate the Fock currents by the hybrid fast solver, that is, the hybridization of the high
frequency asymptotic (HFA) method and the NSDP method.
Step 4. From the Fock current, we calculate the high frequency scattered fields along the incremental
length differential direction.
Step 5. With the ILDC technique, we calculate the radar cross section (RCS) of the high frequency
scattered fields from the convex scatterers.
Step 6. In order to study the wave physics, we separate the PO scattered fields and the diffracted wave
fields from the convex scatterers by the ILDC technique.

11. NUMERICAL RESULTS BY THE NSDP METHOD

To demonstrate the strength of the proposed NSDP method, we consider the scattered fields from the
PO method and the ILDC method in this section. We first apply the NSDP method to analyze the PO
scattered field on the parabolic surface, as demonstrated in Figure 8(a). The NSDP method is adopted
for calculating the bistatic case PO scattered fields in Equation (26). The parameters: the frequency
k ∈ [10, 500], the incident wave propagates along r̂(i) =

[
0.5, 0.5,−√

2/2
]
direction, the observation point

is set along the unit direction r̂ =
[√

2/4,
√

6/4,
√

2/2
]
, and the incident electric wave has polarization

amplitude E0
(i) =

[−√
2/2,

√
2/2, 0

]
with E0

(i) · r̂(i) = 0. On invoking the NSDP method, Figures
10–11 demonstrate the error-controllable accuracy and frequency-independent workload for calculating
the bistatic PO scattered fields.

To show the accuracy of the NSDP method for calculating Es(r) on the parabolic patch, Figure 12
presents the comparison of relative errors between the NSDP and HFA methods relative to the brute
force method [32]. It can be seen that the NSDP method can significantly improve the accuracy of
Es(r) by around two digits

(
10−2

)
when the working frequency k is not extremely large.

The second numerical example is the application of the NSDP method for the calculation of the
scattered fields with the ILDC technique for the 3-D convex scatterer. The incident plane wave with
x-polarized direction is impinging on the electrically large convex sphere in the z-direction. The NSDP
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technique is adopted to evaluate the Fock current from the convex scatterer [52]. With the wave physics
viewpoint, the Fock current contains rich physics from the convex scatterer, including the PO current in
the lit region, the NU-Fock current in the transition region and the deep shadow regions, respectively.
In this sense, the scattered fields from the uniform Fock current shall greatly enhance the accuracy of
those obtained by the PO current alone. In Figure 13, the effect of the wave physics of the convex
scatterer is clearly demonstrated. The scattered field from the summation of the PO current and the
NU-Fock current in the lit region is represented by the dashed blue line, which clearly demonstrates the
accuracy enhancement from the PO scattered fields. However, compared to the scattered field results
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from the uniform Fock current in the lit and shadow regions, the NU-Fock current in the lit region
still lose the accuracy. To demonstrate the effect of the NU-Fock current in the shadow region, the
contributions of the creeping wave fields from the NU-Fock current in the shadow region are shown in
Figure 14. In summary, on invoking the ILDC technique and the NSDP method for the 3-D convex
scatterer, the scattered fields from the Fock currents gain high accuracy and could even agree well with
the Mie series solution.

11.1. Accuracy Improvements of the High Frequency Methods

As shown in Figure 12, compared with the conventional HFA method, the NSDP method could
significantly improve the accuracy of the PO scattered fields in Equation (26) with two digits. On
invoking the NSDP method, the PO surface integral is exactly expressed as some contour integrals in
Equation (41) with exponentially decaying integrand on the complex plane. The only approximation
process is the Gauss-Laguerre quadrature rule for the contour integrals in Equation (41). And this
approximation process could gain high accuracy results. Meanwhile, on adopting the HFA method
with the asymptotic expansion, the surface integrals are expressed as several leading terms. This is the
reason that the high frequency PO scattered fields from the NSDP method could improve the accuracy
from the HFA method. Furthermore, we adopt the NSDP method together with the ILDC technique
for calculating the diffracted fields from the electrically large and convex scatterers. On invoking the
NSDP method, the high frequency scattered fields from the ILDC technique could significantly enhance
the accuracies from the PO scattered fields, which is shown in Figure 13.
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11.2. Discussions on the Numerical Results from the High Frequency Methods

In Figure 10, the PO scattered fields results from the quadratic parabolic surfaces are demonstrated
by the NSDP method and the brute force method. From the confirmations of the PO scattered fields
results by the brute force method, the NSDP method could generate error controllable results. With
the respect to the computational workload, Figure 11 depicts that the NSDP method could generate the
frequency independent workload on the calculation of the PO scattered field. Moreover, with respect
to the accuracy of the PO scattered fields, Figure 12 depicts that the NSDP method could significantly
yield two digits accuracy. The reason is that less approximation of the NSDP method is done than the
HFA method.

Figures 13–14 demonstrate the high frequency scattered field results from the convex scatterers by
the ILDC method. As shown in Figure 13, the results of the high frequency scattered fields from the
Fock current agree well with those from the exact MIE series solutions. Meanwhile, the PO scattered
fields loose the accuracy in the shadow and transition regions of the considered scatterers.

12. CONCLUSIONS

In this work, we give a review of the recent important high frequency techniques. The high frequency
techniques could be classified into the current based and ray based methods. Various high frequency
methods were developed over last decades to calculate the scattered fields. To compute the high
frequency scattered fields, the NSDP method provides an efficient way. On invoking the NSDP method,
the radiation integrals from the PO and ILDC methods could be transformed to some smooth kernels
on the complex plane. By adopting the Gauss-Laguerre quadrature rule, the NSDP method provides
the frequency independent approach to evaluate these radiation integrals. Furthermore, the rich high
frequency wave physics from the edge and convex body are covered in this review paper. Finally, the
improvement of the accuracy and speed of existing high-frequency techniques requires further research
in this area.
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