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Abstract—The plasmonic behavior of nanostructured materials has ignited intense research for the
fundamental physics of plasmonic structures and their cutting-edge applications concerning the fields
of nanoscience and biosensing. The optical response of plasmonic metals is generally well-described by
classical Maxwell’s Equations (ME). Thus, the understanding of plasmons and the design of plasmonic
nanostructures can therefore directly benefit from lastest advances achieved in classic research areas
such as computational electromagnetics. In this context, this paper is devoted to review the most
recent advances in nanoplasmonic modeling, related with the latest breakthroughs in surface integral
equation (SIE) formulations derived from ME. These works have extended the scope of application of
Maxwell’s Equations, from microwave/milimeter waves to infrared and optical frequency bands, in the
emerging fields of nanoscience and medical biosensing.

1. INTRODUCTION

The great potential of metal/dielectric interfaces and, in particular, metallic nanoparticles (NP)
to provide subwavelength confinement, enhancement, and spatiotemporal control of light, has put
the field of plasmonics and nanoplasmonics at the forefront of nanotechnology research in the past
years, up to the point that plasmonics is considered to be one of the 23 milestones in the history
of photonics [1]. This rise of plasmonics has materialized in cutting-edge applications to medicine
(e.g., cancer therapy) [2], nanoscale optical microscopy and lithography [3], molecular spectroscopy
enhancement [4], photovoltaics [5], nanolasing [6], quantum processing [7], and wireless optical
communications [8].

The optical response of metals is quite different from the high conductivity observed at lower
frequencies. At optical frequencies the response is ruled by the plasma-like collective oscillations of the
conduction electrons induced by the interaction of electromagnetic radiations [9, 10]. Intuitively, the
conduction-electron gas of an irradiated metallic nanoparticle reacts toward the incident electric field
and produce a net charge displacement from the equilibrium position, subsequently experiencing the
restoring force from the positive ionic lattice. Additionally, electrons have an effective mass that causes
them to react with increasing phase lag to the oscillating incident field as the frequency increases. This
leads to plasmon collective oscillations, whose resonances are strongly governed by particle shape, size,
composition and the dielectric properties of the metal itself and the background medium, and typically
they are located in the visible and near-infrared (vis-NIR) regimes.

Plasmons are bosonic elementary excitations in a metallic solid and, in this regard, the question
arises as to whether we should treat them in terms of a quantum-mechanical or a classical model. In other
words, at which point is it justified that we neglect the discrete photon nature of the electromagnetic
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waves and move from quantum electrodynamics over to Maxwell’s classical theory? The answer is
virtually always in the macroscopic phenomena domain. The classical notion of electromagnetic fields
can be thought of as the classical limit (limit of large photon numbers and small momentum and energy
transfers) of quantum electrodynamics [11]. If applicable, which is true for the linear response of metallic
nanoparticles, it is possible to relate, via the fluctuation-dissipation theorem, the dielectric response to
the dyadic Green tensor of Maxwell’s theory, embodying all the details of the metal electrodynamics in
the dielectric function (permittivity). In doing so, we are concealing the quantum-mechanical properties
of matter within their dielectric description, which can be experimentally obtained [12, 13]. Simply
put, we are transitioning from the microscopic world through the constitutive parameters ε and μ.
Remarkably, such a classical approach produces predictive results for particle and surface feature sizes
down to around 1 nm, a distance below which nonlocal effects become significant [14].

Consequently, Maxwell’s solvers can be applied safely in plasmonics, and as far as these solvers is
concerned, plasmonic nanoparticles can be treated as regular homogeneous dielectrics. Thereby, they are
entirely characterized by their permittivity (as they are non-magnetic), despite the underlying physics
being in the antipodes of what might be expected for a dielectric in its very traditional definition.
There are several popular methods that are capable of yielding rigorous classical electromagnetic
solutions in arbitrary dielectric geometries. In particular, volume approaches such as the discrete-dipole
approximation (DDA) [15], the finite difference in the time domain (FDTD) [16, 17], and frequency-
domain finite-element methods (FEM) [18, 19] benefit from non-excessively complex parameterizations
from the differential Maxwell’s equations. However, as they must permeate the whole of space, they
require solving a linear set of equations with a numerical demand scaling with at least the square
of the volume. Although these approaches are increasingly popular, partly due to the availability
of commercial software, dealing with realistic structures spanning several wavelengths in size rapidly
inflates the computational costs required. Hence, the precise analysis of extended three-dimensional
(3D) plasmonic systems using volumetric approaches still often exceeds current computational limits.

A more computationally efficient approach comprises the use of surface integral equation (SIE)
formulations combined with the variational enforcement of the boundary conditions offered by the
method of moments (MoM) [20–22]. These methods bring important advantages when compared to the
above-mentioned volumetric approaches. As they are boundary integral equation (BIE) methods, they
only require a parameterization of the boundary surfaces involved, rather than a 3D space embedding of
the material structure and the volume of the structure itself, thus resulting in a dramatic reduction in
the number of unknowns. Furthermore, no absorbing boundary conditions or surrounding empty space
need to be specifically handled. This results in a great efficiency and versatility, which together with
its high accuracy, has made the SIE-MoM approach becomes a pervasive technique for the solution of
all kind of radiation and scattering problems in radiofrequency and microwaves.

Much as in the lower frequency bands, the availability of such efficient BIE Maxwell’s solvers is
very welcomed in optics. They enable the accurate simulation of larger plasmonic systems, assisting in
the interpretation of experimental results [22]. They can also provide a priori information that reliably
predicts the optical response from complex plasmonic assemblies, aiding the devise of new systems and
increasing the possibilities for new fruitful discoveries [23].

In this paper, we present a deep review of the effort we have made over the last years extending the
SIE-MoM [21, 24–26] combined with the most recent advances in spectral acceleration techniques, based
on the multilevel fast multipole algorithm (MLFMA) [27–29] and the fast Fourier transform (FFT) [30–
32], for the simulation of realistic large-scale plasmonic systems. This methodology was applied for the
solution of problems such as the design of nanoantennas [33, 34] and optical wireless interconnects [35].
But among all the possible applications, we have concerned ourselves especially with biosensing, and
particularly with surface enhanced Raman scattering (SERS) based spectroscopy [23, 36–38].

2. OPTICAL PROPERTIES OF METALS

The optical response of noble metals in the frequency domain is described by a dispersive complex
dielectric function, ε(ω). From a qualitative point of view we can identify two mechamisms that
contribute to ε(ω):

• Response of conduction electrons: From the concept of single electrons moving against a background
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lattice of positive ion cores we can describe many of the fundamental electronic properties of the
solid state. If, in a first naive approximation and for the sake of getting an intuitive picture, we
ignore the lattice potential and electron-electron interactions, we end up with a gas of free electrons
in the metal that can be treated as an electron liquid of high density or plasma. Drude adopted
this classical approach to describe the electron dynamics in a metal [39], and came up with the
motion equation of a damped oscillator, where the electrons, subjected to an incident electric field,
move between heavier relatively immobile ions:

mẍ + mγẋ = −eE. (1)

This is known as Drude-Sommerfeld model (or simply Drude model) of the free electron gas, where
x is the displacement of the electron with respect to its rest position (ẋ and ẍ represent the
first and second time derivatives, respectively), m is its effective optical mass (incorporating some
aspects of the band structure), e is its charge, and γ = 1/τ is a motion damping factor accounting
for collisions, being τ the relaxation time of the free electron gas. If a time harmonic variation
exp(jωt) is assumed, and jumping over to the Fourier transformed space, this can be solved as:

x =
e

m(ω2 − jγω)
E, (2)

which allows to use a linear dielectric model that leads to a total polarization P of the material
equal to P = np = −nex, being n the electrons per unit volume and p the dipole moment produced
by a single electron. It is then straightforward to derive the desired relative dielectric function:

ε(ω) = 1 − ω2
p

ω2 − jγω
, (3)

where ωp =
√

ne2/ε0m is the volume plasma frequency, with values lying in the ultraviolet region
for most metals, ε0 being the permittivity of vacuum. The requirement of metallic character entails
that Re{ε(ω)} < 0, a condition that metals fulfill at frequencies below the bulk plasmon frequency
ωp, and which allows, as we will see below, the existence of surface plasmons.
For the noble metals, an extension to this model is needed in the region ω > ωp (with a response
dominated by free s electrons) that includes the residual polarization due to the positive background
of the ion cores. This is done by introducing the dielectric constant ε∞, corresponding to the limiting
value of ε(ω → ∞), so that:

ε(ω) = ε∞ − ω2
p

ω2 − jγω
. (4)

• Response of valence (bound) electrons: The dielectric function of the Drude model adequately
describes the optical response of metals only for photon energies below the threshold of transitions
between electronic bands. Above this threshold, higher-energy photons can promote bound
electrons from lower-lying d-bands into the conduction band. For some of the noble metals,
interband effects already start to occur for energies over 1 eV (corresponding to a wavelength
λ ≈ 1µm ), which invalidates the adequacy of this model at high frequencies. This inadequate
modeling can be overcome by replacing Equation (1) by:

mẍ + mγẋ + mω2
0x = −eE, (5)

which describes interband transitions through the classical picture of a bound electron with
resonance frequency ω0. An accurate model for ε(ω) requires the solution of several of these
equations, each equation yielding a separate polarization that translates into a Lorentz-oscillator
term, to be added to Equation (4), of the form [40]:

Ai

ω2
0,i − ω2 + jγiω

, (6)

where ω0,i and γi are the plasma and the damping frequencies for the bound electrons, and Ai is a
parameter that weights the contribution of the i-th interband transition to the dielectric function.

The previous expressions provide a good insight into optical properties of metals. Let’s describe
now the interaction between a metal and an incident light.
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2.1. Surface Plasmon Polariton

When an electromagnetic wave impinges on a metal, a force is applied on the conduction electrons’
charges, which show such little resistance that their movement easily follows the driving electromagnetic
field at low frequencies. This movement of charges in turn creates a scattered field, which cancels the
electromagnetic field inside the metal. This is why, for radiofrequency and microwave applications,
metals are usually modeled using the perfect conductor approximation. In the optical regime,
nonetheless, the electron movement lags behind the rapidly varying electromagnetic field, allowing
for a reduced screening effect, and hence a non-negligible penetration depth of the field into the metal.

In certain cases, if the relation of metalo-dielectric permittivities fulfills certain criteria, the
electrons’ collective motion induces an electromagnetic field near the surface capable of maintaining
by itself the collective electron motions, generating a self-sustained excitation which may propagate
closely confined along the metal’s surface. This excitation is called a surface plasmon polariton (SPP),
and was first theoretically investigated by Ritchie in the context of loss spectra of low-energy electron
beams undergoing diffraction at thin metallic films [41]. The simplest geometry capable of sustaining
SPPs is a planar interface between a metal (z < 0) with dielectric function ε1(ω) and a non-absorbing
half space (z > 0) with positive real dielectric constant ε2(ω). We seek homogeneous propagating wave
solutions confined to the interface (evanescent decay in the perpendicular z-direction). The Helmholtz
wave equation (∇2 + εk2

0

)
E = 0 (7)

has then to be solved separately in each half-space, and the enforcement of the boundary conditions will
match both solutions at the interface. This supports two sets of self-consistent solutions with different
polarization properties, TE (s-polarized) and TM (p-polarized), but it can be shown [10] that the first
do not excite surface modes, so we will focus on the latter:

Ei = (Ex,ix̂ + Ez,iẑ)e−jkxxe−jkz,iz, (8)
with i = 1, 2. Note that the component of the wave vector parallel to the interface, kx, is the same for
both regions. As the relation below holds:

k2
x + k2

z,i = εik
2
0, (9)

and applying Gauss’s law, we have:
kxEx,i + kz,iEz,i = 0, (10)

such that we can rewrite Equation (8) as:

Ei = (x̂ − kx/kz,iẑ)e−jkxxe−jkz,iz. (11)
Continuity of Ex and Dz at the interface requires that Ex,1 = Ex,2 and ε1Ez,1 = ε2Ez,2. The existence
of a solution then requires that ε1kz,2 = ε2kz,1, which leads to the dispersion relation between the
wavevector components of SPPs and the angular frequency ω:

kx =
ω

c

√
ε1ε2

ε1 + ε2
, (12)

kz,i =
ω

c

√
ε2
i

ε1 + ε2
. (13)

In order to discuss the conditions necessary for an interface mode to exist, we may assume, for simplicity,
that the metal is an ideal conductor with negligible Im{ε1}. On the one hand, we are looking for
interface waves that propagate along the surface, i.e., we require a real kx; this holds if the numerator
and denominator in Equation (12) are either both positive or both negative. On the other hand, in
order to obtain a bound or exponentially decaying solution, we need purely imaginary kz in both media;
this can only be fulfilled if the sum of the dielectric functions is negative. We thereby conclude that the
conditions for an interface mode to exist are the following:

ε1(ω)ε2(ω) < 0 , (14)
ε1(ω) + ε2(ω) < 0 . (15)

Taking a closer look to the dispersion curves in Fig. 1 may provide some more valuable physical
insight. We can clearly identify two well-differentiated sets of modes:
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Figure 1. Dispersion relation of SPPs at the interface between a Drude metal with negligible collision
frequency and air, together with the light dispersion for air and silica. Direct SPP coupling is only
possible at the intersection between the SPP dispersion curve and the light cone of silica. The dispersion
of SPPs corresponding to the lossy metal case is also included. The lower 3D plot illustrates the resulting
dispersion surfaces if propagation in any direction of the xy interface is allowed.

• Bound modes (SPPs), which in the dispersion curves are lying to the right of the light cone.
An example of SPP is shown in Fig. 2. Note that direct excitation of such modes with an
electromagnetic wave would require the fulfillment of both energy and momentum conservation
simultaneously, but this is not possible (light momentum k0 sin(θ) is always too small, being θ the
tilt angle of the direction of incidence with respect to the interface’s normal) unless the missing
momentum contribution is provided.

• Radiative modes, which transmit into the metal in the transparency regime ω > ωp.
• Between the regime of the bound and radiative modes, a frequency gap region with purely imaginary

kx prohibiting propagation exists.

Regarding bound modes, for small wave vectors corresponding to low (mid-infrared or lower) frequencies,
kx is close to k0 of the light cone, with SPP waves extending over many wavelengths into the dielectric
space (Sommerfeld-Zenneck waves), similar in nature to a grazing-incidence light field. On the contrary,
for large wave vectors, the frequency of the SPPs approaches the characteristic surface plasmon
frequency:

ωsp =
ωp√

1 + ε2
, (16)

obtained through the insertion of the Drude-model dielectric function into Equation (11). In the limit
of negligible damping of the conduction electron oscillation (implying Im{ε1(ω)} = 0), the wave vector
kx goes to infinity as the frequency approaches ωsp, and the group velocity vg → 0. This mode, known
as surface plasmon, thus acquires electrostatic character.

However, as excitations of the conduction electrons of real metals suffer both from free-electron and
interband damping, ε1(ω) is actually complex, and also the SPP propagation constant kx. Thus, the
traveling SPPs have a wavelength of 2π/Re{kx}, and are damped with an energy attenuation length
(also called propagation length) L = 1/(2 Im{kx}), typically between 10 and 100µm in the visible.
Besides, the SPP dispersion bends back into the radiation region, so the quasi-bound leaky part of the
dispersion relation between ωsp and ωp is now allowed, in contrast to the case of an ideal conductor.

2.2. Localized Surface Plasmon Resonance

In the case of a finite metallic nanoparticle excited by an electromagnetic wave, its small size allows
the conduction electrons to oscillate collectively with a restoring force coming from the particle’s
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Figure 2. Near-field distribution for an SPP
arising at a metal/dielectric interface with ε1 =
−4 and ε2 = 1.

Figure 3. Near-field distribution of an LSPR
obtained from the quasi-static limit for a sphere
of radius λ0 = 40 and ε1 = −4, immersed in
water (refractive index n2 = 1.33) and irradiated
by E0ẑ.

walls. As frequency increases, so does the phase lag of these collective oscillations with respect to
the incident excitation, leading to plasmonic resonances when this phase lag equals π/2 rad. These
are not propagating resonances but rather localized to the nanoparticle, hence their denomination,
localized surface plasmon resonance (LSPR). The resonance wavelength thus not only depends upon
the constitutive parameters of the inner and outer regions, but also upon the particle size and shape.

The optical response of a particle of size d can be approximately analyzed through a simple quasi-
static approximation, provided that d � λ. In that case, we are looking for a solution of the Laplace
equation for the potential, ∇2Φ = 0, which will allow us to retrieve E = −∇Φ. If, for convenience, we
assume a spherical geometry for the nanoparticle (radius a), the solution to the problem for an incident
electric static field E0 = E0ẑ can be obtained as [10, 11]:

Φ1(r, θ) = − 3ε2

ε1 + 2ε2
E0r cos θ, (17)

Φ2(r, θ) = −E0r cos θ +
ε1 − ε2

ε1 + 2ε2
E0a

3 cos θ

r2
, (18)

for the inner and outer regions, respectively, with θ defining the angle between the position vector r
and the z-axis. Equation (18) can be expressed as:

Φ2(r, θ) = −E0r cos θ +
p · r

4πε0ε2r3
, (19)

where we have inserted the particle’s dipole moment p = ε0ε2αE0, being α the polarizability:

α = 4πa3 ε1 − ε2

ε1 + 2ε2
. (20)

Of course, for larger particles retardation effects come into play and accurate full-wave electrodynamics
solvers must be applied instead.

The previous equations lead to the well-known condition of plasmonic resonance for a very small
nanosphere:

Re {ε1(ω)} = −2ε2. (21)
A resonance for the polarizability leads to a field-enhancement for both the inner and outer regions,
an important property most of the prominent plasmonic applications rely on. Fig. 3 shows an example
of such LSPR on a plasmonic nanosphere. Note the field enhancement and confinement leading to
strong hot spots in the outer region, as well as an appreciable penetration of field into the nanoparticle.
Remarkably, LSPRs can be excited optically without the need for careful matching of the wavevector
as in SPPs.
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3. INTEGRAL EQUATION MAXWELL’S SOLVERS

3.1. Method of Moments for Surface Integral Equations

Maxwell’s surface integral equation formulations combined with the method of moments is a powerful
tool that has demonstrated high accuracy and efficiency for the analysis of composite objects with
real conductors and dielectrics in radio frequency and microwave regimes. Recently, it has successfully
been extended to the solution of metamaterial and plamonic problems in near infrared frequencies
and in optics [21, 22, 24–26]. Based on Love’s equivalence principle, metallic nanostructures can be
replaced by equivalent electric and magnetic currents distributed over the boundary surfaces and
interfaces. The total electromagnetic fields can be therefore obtained as a superposition of the known
incident fields and the unknown scattered fields, which can be self-consistently obtained from the
equivalent currents through the integro differential Stratton-Chu representation formulas and the 3D
electrodynamic homogeneous Green’s function.

More precisely, we derive a set of SIEs for the unknown equivalent currents by imposing the well-
known continuity of the tangential fields at the boundaries. Among the infinitely many possibilities, we
fulfill the procedure of [42], which has proven to render a set of stable and well-conditioned equations.
Let us denote with Sij (or Sji) the interface between two homogeneous regions Ri and Rj . In each
region the electric field integral equation (EFIE) and the magnetic field integral equation (MFIE) can
be formulated in two alternative ways, depending on the method applied to project the fields onto the
surfaces: Namely, the tangential (T) and the twisted or normal (N) EFIE and MFIE. Combining these
integral equations in region Rl, with l = i, j, we can derive the two following combined field integral
equations (CFIEs) on Sij:

al
1
ηl

T-EFIEl + blN-MFIEl, (22)

−clN-EFIEl + dlηlT-MFIEl, (23)

where ηl is the intrinsic impedance in region Rl and with al, bl, cl and dl the appropriate complex
combination coefficients in Rl. Usually these equations are referred to as the electric current (J) CFIE,
and the magnetic current (M) CFIE, as the electric current and the magnetic current are respectively
well-tested in each one. The two regions defining the interface Sij are then mixed just by combining
Equations (22) and (23) for regions Ri and Rj, yielding two single integral equations for the interface
Sij as follows:

JCFIEi + JCFIEj , (24)
MCFIEi + MCFIEj. (25)

These SIEs are subsequently discretized by applying the Galerkin MoM procedure [20] using a set
of known basis and testing functions, leading to a dense matrix system of linear equations. In our case
we use the well-known Rao-Wilton-Glisson (RWG) vector basis/testing functions [43], together with
the analytical extraction procedures of [44–47] for the accurate evaluation of singular and hypersingular
integrals that appear in Equations (24) and (25). This results in a linear system of N equations and
N unknowns, N being the number of surface RWG basis functions used to expand the electric and
magnetic currents, that can be written as follows:

Z · I = V. (26)

In order to apply the SIE-MoM to the correct modeling of the optical properties of metals as
described in the previous section, the only caveat is the proper derivation of electromagnetic parameters,
namely the wavevector and the intrinsic impedance. Under the time-harmonic variation of exp(jωt),
the constitutive parameters of a passive homogeneous region Ri fulfill the general form εi = ε′i − jε′′i
and μi = μ′

i − jμ′′
i . In conventional materials, ε′i, ε′′i , μ′

i, and μ′′
i are positive quantities, and the

derivations of the wave number ki =
√

ω2μiεi and the wave impedance, ηi =
√

μi/εi, do not suffer
from any ambiguity. Nevertheless, ε′i becomes negative when dealing with plasmonic media (while μ′

i
could become also negative in some metamaterials). In such cases we could face the ambiguities in the
definition of ki and ηi due to the presence of the square root, which is a multivalued function for complex
arguments [48]. Obviously, only one solution is valid and obeys physical laws [49] such that Re{ηi} ≥ 0,
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thus guaranteeing causality in the sense of energy flowing away from the source, and Im{ki} ≤ 0, leading
to a stable system where the wave energy attenuates as it propagates away from the source in a lossy
(passive) medium.

Under the C++ standard [50], the branch cut of the square-root function lies along the negative
real axis, which limits the phase of the complex arguments to the interval (−π, π], and the phase range
of the square-root result (which is given in the principal-value sense) to (−π/2, π/2]. The ambiguity
in the solution can be avoided by factorizing the wave parameters to unwrapp the phases of εi and μi,
as illustrated in the complex plane depicted in Fig. 4. Importantly, the lossless cases must be treated
as limiting cases, defined from the general lossy case as the limit when the electric and/or magnetic
losses approach zero. The above conditions pose the following expressions for the calculation of the
wave parameters [51]:

ki = lim
δ→0

ω
√

μi − jδ
√

εi − jδ, (27)

ηi = lim
δ→0

√
μi − jδ√
εi − jδ

. (28)

Remarkably, the previous expressions yield valid solutions in all cases, including lossy cases where the
addition of an infinitesimal imaginary part does not have any significant impact on the results.

Up to this point we are considering single interfaces between two media (e.g., a homogeneous particle
in the background). Nonetheless, practical applications often comprise many homogeneous regions with
different compositions touching each other. One leap forward of utmost importance is then to gain the
ability to address multiple composite piecewise-homogeneous penetrable bodies. For this, one has to
appropriately treat those edges or junctions where more than two regions meet, such that there are
only two independent unknowns, one for the electric current J and another for the magnetic current M,
since the unknown coefficients of the oriented vector basis functions supporting a given junction must
have the same value. This can be looked at as the continuity property of surface currents at junctions,
i.e., Kirchoff’s laws for surface currents, that translates into the enforcement of field boundary condition
across these multiple interfaces.

It is well-known that the implementation of such continuities in the framework of a SIE-MoM
solver becomes rather tedious [52, 53]. An alternative simple way to handle this casuistic was proposed
in [25], with the aid of so-called multiregion (MR) piecewise vector basis functions. The MR basis
functions are oriented functions that implicitly satisfy the boundary conditions. They are defined
similarly in both boundary surfaces and junctions, yielding a compact formulation that greatly simplifies
the implementation of SIE-MoM when tackling scattering and/or radiation problems with composite

Figure 4. Complex diagram relating k and η to ε and μ, and their respective square roots for plasmonic
media.
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(a) (b)

Figure 5. (a) Boundary conditions at interfaces (top) and junctions (bottom). X stands for J or M.
(b) Piecewise multiregion (MR) oriented basis functions Λn implicitly satisfying the boundary conditions
at interfaces (top) and junctions (bottom).

objects with multiple junctions. Fig. 5(a) illustrates the boundary conditions ensuring the continuity
of the tangential component of the fields at a boundary interface between two media (top) and at
a junction between four regions (bottom). These conditions are directly satisfied by expanding the
unknown equivalent currents in a sum of MR piecewise functions Λn as depicted in Fig. 5(b), where fn|i
are subsectional basis/testing functions (RWG functions in our case) defined on each of the regions Ri

that conform the interface or junction [25].

3.2. Acceleration Techniques

As noted above, SIE-MoM yields a relatively reduced numerical size with respect to volumetric
approaches (2D vs 3D). It also provides a greater stability, as the field singularities and hotspots
related for example to localized surface-plasmon resonances (LSPRs) in the vicinity of sharp wedges or
very small gaps are analytically handled by the Green’s function and its derivatives. Consequently the
method does not suffer from numerical dispersion or instability due to rapid field variations, as may be
the case when using field-based volumetric formulations. Nonetheless, despite of all these advantages,
the computational requirements for the solution of realistic large-scale plasmonic problems involving
thousands or even millions of nanoparticles are still very high due to the high computational complexity
of MoM (O(N2) using iterative solvers).

In order to extend the practical applicability of SIE-MoM to larger structures, considerable
efforts have been made towards the development of fast, efficient algorithms that can reduce the
high costs of MoM in terms of both storage and computer processing time. Specifically, we single
out the fast multipole method (FMM) [54] and its variants, the multilevel fast multipole algorithm
(MLFMA) [27, 28], and the MLFMA combined with the fast Fourier transform (FFT) [30–32]. Based
on Gegenbauer’s addition theorem for the homogeneous Green function, the FMM reduces the
computational cost to O(N3/2), whereas its multilevel version achieves O(N log N) by incorporating
plain and adjoint interpolation schemes for the fields. The FFT extension of the latter (MLFMA-
FFT) combines the algorithmic efficiency of MLFMA with the high scalability of FMM-FFT [55] via
parallelization, which is optimal when using distributed multicore computer clusters. In MLFMA-FFT
the translation stage at the top (coarsest) level of the multilevel Cartesian octree decomposition of the
geometry is addressed in terms of a 3D circular convolution per sample of the plane wave expansion
(Ewald sphere). The convolution is accelerated in the transformed domain by applying the FFT. By
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(a) (b)

Figure 6. (a) Diagram of the MLFMA-FFT distributed algorithm; FMM-FFT is applied at the
coarsest level while MLFMA is applied throughout all the lower leves. (b) MLFMA-MoM algorithm;
MoM applies for self-couplings through the internal region of the nanoparticles, while MLFMA-FFT
applies for the large-scale all-to-all computation through the external region.

so doing, the workload can be distributed among parallel processes by plane wave samples almost
without inter-process communication or synchronization (note that the FFT is never parallelized [32]).
A schematic description of this method is shown in Fig. 6(a). As an indication of its power, the MLFMA-
FFT method has been used to solve an electromagnetic problem with 1 billion unknowns in 2010 [32],
and more recently some applications of this methodology to the field of nanoplasmonics can be found
in [22].

However, we can still take a step further when dealing with nanoplasmonic applications. Not
few nowadays nanotechnology applications revolve around colloidal disordered assemblies of plasmonic
nanoparticles or ordered lattices of periodically lined-up nanostructures (metamaterials). In both cases,
there is a single (or a few) building element that is repeatedly translated and/or rotated along the
structure. When facing such problems with so particular features, the solver should be able to efficiently
exploit this repetition pattern. For this we proposed a hybridization of MoM and MLFMA via an efficient
strategy for distributing the work [56]. Without lack of generality, let us focus on the case where a single
particle is repeated, and let us first consider the problem of the isolated particle in a homogeneous
medium. Applying SIE-MoM to this problem poses a matrix system as shown in Equation (26), which
according to Equations (24) and (25) can be decomposed into the sum of the contribution of the
Green’s function through the internal and the external regions simultaneously. Since the nanoparticles
are identical except from rotation and translation movements, and thanks to the translational and
rotational invariance of the couplings between the basis functions of each particle, the problem can be
solved via the hybridization of MoM and MLFMA as follows (see diagram in Fig. 6(b)):

• The calculation of the self-coupling in the internal regions is addressed through MoM. This can
be efficiently done with a low computational cost and nearly no memory footprint, given the
(comparatively) reduced dimensions of the repeating element.

• The large-scale computation accounting for the self and mutual couplings among all nanoparticles
throughout the external region is addressed through MLFMA or MLFMA-FFT in a very efficient
manner.

• The block diagonal Jacobi preconditioner [57] can be straightforwardly applied also exploiting the
pattern repetition. It is well-known that this preconditioner is extremely suitable in problems with
well-separated elements and thus natural splitting of non-adjacent subdomains, such as colloidal or
metamaterial systems, leading to fast-converging iterative methods.

4. EXAMPLES

In this section we present some example to demonstrate the accuracy, efficiency and versatility of the
above described SIE numerical methods to solve some relevant problems in plasmonics. First we examine
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the accuracy of the method by computing the electric near field distribution of a coated silver nanosphere
with 50 nm diameter. The shell is made of silica, with a thickness of 25 nm. The silver nanosphere is
characterized by the measured frequency-dependent dielectric function taken from [12] for silver, while
the silica shell is described by an index of refraction of n = 1.456, from [58]. The coated sphere is excited
by an x-polarized plane wave with θi = 180◦ and an amplitude of 1 V/m at the resonant wavelength
of the coated nanoparticle, of 407.5 nm. Figs. 7(a) and (b) show the color maps with the electric near
field magnitude in the xz incident plane containing the polarization of the incident electric field, and
the xy (transversal) plane, respectively. A total of 3,000 unknowns were used to model the electric and
magnetic equivalent currents at the vacuum-silica and silica-silver interfaces. Looking at this figure, the
penetration of field inside the metallic nanospbere can be clearly observed, while the remarkable electric
field enhancement distinctive of LSPRs is obtained inside the Silica shell, at the silica-silver interface.
These results are virtually identical to the analytical results provided by the Mie’s series [59] (the latter
two are not shown for conciseness). The relative root-mean-square (RMS) error for the magnitude of
the simulated electric field compared to the analytical field, defined as:

eRMS =

√√√√ 1
P

P∑
p=1

|Esim(p) − EMie(p)|2

max (|EMie(p)|) , (29)

where Esim and EMie are arrays with the simulated and analytical electric field over the P observation
points, is below 5.27 · 10−4.

The large electromagnetic hot spots associated with LSPR excitation give rise to the well-known
surface enhanced emission phenomena, which is the bedrock of the Surface Enhanced Raman Scattering
(SERS) optical spectroscopy technique [4, 60–63]. Raman spectroscopy has long been an important
biosensing method for the specific identification of molecules. Simply put, it involves impinging onto
a sample of analyte molecules with a laser source. Of the light that is absorbed by the sample, most
of it is elastically scattered back at the same laser wavelength (Rayleigh scattering). However, a very
small portion of the impinging energy is inelastically scattered in a range of wavelengths that depends
on the energy differences between vibrational states of the molecule. Different molecules have different
vibrational modes, so the spectrum of the inelastically scattered light yields a molecular fingerprint
which uniquely identifies the interrogated molecule.

The SERS effect results from the very high enhancement of the otherwise extremely weak
Raman (inelastic) emission of molecules adsorbed onto arrangements or colloids of metal nanoparticles
supporting LSPRs. It has become a powerful spectroscopy technique for the ultrasensitive detection

(a) (b)

Figure 7. Magnitude of the total electric near field for a silver nanosphere coated by a shell of silica
and illuminated by an incident x-polarized plane wave impinging from θi = 180◦ at a wavelength of
407.5 nm. (a) Distribution on the xz (incident) plane. (b) Distribution on the xy (transversal) plane.
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of a variety of organic molecules at low concentrations [23, 64]. Currently, much effort is being put in
devising pathways that allow for the detection of small inorganic molecules and ions too [65]. Most of
these paths pass through obtaining substrates with higher electromagnetic enhancements that result in
even stronger hot spots.

The SERS electromagnetic enhancement factor can be calculated from simulation data as
follows [60, 62]:

E.F. =
|E(ωin)|2
|Ei(ωin)|2

|E(ωout)|2
|Ei(ωout)|2

, (30)

where Ei is the electric field of the incident laser source and E the total field in the presence of the
nanoparticle enhancement system. The first term in Equation (30) represents the local electric field
intensity enhancement at the incident frequency ωin. The second term represents the local electric field
intensity enhancement of the Raman inelastic scattering from the interrogated molecule. Note that
the calculation of the second term rests on the application of the reciprocity theorem, by repeating
the simulation under a laser light excitation at the Raman-shifted (output) frequency ωout. When the
Raman shift is small compared with ωin, or in order to estimate the potential enhancement in a given
system, the SERS enhancement factor can be approximated as E.F. ≈ |E(ωin)|4/|Ei(ωin)|4, which poses
a fourth power dependence on the local electric field enhancement. This is why very high enhancements
can be obtained using this technique.

Figure 8(a) shows an example of SERS for a coloidal deposition of 2,900 gold nanorods (NRs)
compacted in a 1 × 1µm2 monolayer with a minimum interparticle separation of 1 nm. A zoom on the
central region of this figure is shown in Fig. 8(b). The NRs have a diameter of 17.5 nm, a length of
54 nm, and they are ended with hemispherical end-caps. The SERS enhancement factor is calculated
as |E(ωin)|4/|Emax

i (ωin)|4 for a highly focused laser illumination at normal incidence and linear ŷ-
polarization. The beam is focused by an aplanatic optical lens [62] with numerical aperture NA =
0.7, focal length of 4 mm and very large filling factor. The incident wavelength is λin = 785 nm, in
accordance with usual experimental setups. |Emax

i (ωin)| is the maximum field strength at the center of
the lens focus. Very high enhancement factors > 108 can be observed at the center region, coinciding
with the location of the lens focus.

The simulations were carried out on a workstation with 4 Intel Xeon E7-8880v2 microprocessors,
each with 15 cores clocked at 2.50 GHz, which gives 60 physical processors overall (no hyperthreading
is used). The total memory and execution time needed to compute E(ωin) was of 110.03 GB and 5.5
hours. The total number of unknowns required to solve the whole system was 7.08 million.

(a) (b)

Figure 8. (a) SERS on an in-vacuum coloidal deposition of 2,900 gold nanorods (NRs) compacted in
a 1 × 1µm2 monolayer (minimum interparticle separation of 1 nm) irradiated by a highly focused laser
beam at 785 nm. (b) Zoom on the central region of the SERS color map distribution.
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5. CONCLUSION

Plasmonic nanoparticles play an important role in biomedical applications as they can serve as
bioimaging agents, be employed in biosensor devices for the early diagnosis of diseases, and exhibit
promising results in vivo as therapeutic agents. This is because of their plasmonic properties,
originated from the interaction of such small particles with electromagnetic irradiation that gives
rise to the localized surface plasmons (collective oscillations of their surface conduction electrons).
The quanta of these oscillations are known as plasmons, and their frequency increases with the
electron density. The optical response of plasmonic metals is generally well-described by classical
electrodynamics. The theoretical understanding of plasmons and the design of plasmonic nanostructures
can therefore directly benefit from knowledge gathered in electrical engineering, antenna design, and
other classical areas in which the solution of the electromagnetic problems plays a central role. In recent
works, the most computationally efficient approaches in computational electromagnetics comprising
SIE formulations based on the Maxwell’s Equations, combined with the MoM and the most recent
advances in spectral acceleration techniques based on MLFMA, have been successfully applied to model
realistic plasmonic problems. Although not yet widespread in optics, these methods bring important
advantages when compared to the previously used volumetric approaches. Thus, in the context of
the commemoration on 150 Years of Maxwell’s Equations, this paper has been devoted to review the
ultimate advances in nanoplasmonic modeling, showing those SIE methods that have extended the
scope of application of Maxwell’s Equations from microwave to optical frequency bands, illustrating
how they have allowed/achieved the accurate simulation of real-life plasmonic problems that can be
straightforwardly applied to the solution of cutting-edge medical biosensing nanoscience challenges.
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