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Magnetic Induction Tomography with High Performance
GPU Implementation
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Abstract—Magnetic induction tomography (MIT) is a non-invasive medical imaging technique with
promising applications such as brain imaging and cryosurgery monitoring. Despite its potential, the
realisation of medical MIT application is challenging. The computational complexity of both the forward
and inverse problems, and specific MIT hardware design are the major limitations for the development
of MIT research in medical imaging. The MIT forward modeling and linear system equations for large
scale matrices are computationally expensive. This paper presents the implementation of GPU (graphics
processing unit) for both forward and inverse problems in MIT research. For a given MIT mesh geometry
composed of 167,488 tetrahedral elements, the GPU accelerated Biot-Savart Law for solving the free
space magnetic field and magnetic vector potential is proved to be over 200 times faster compared to
the time consumption of a CPU (central processing unit). The linear system equation arising from the
forward and inverse problem, can also be accelerated using GPU. Both simulations and experimental
results are presented based on a new GPU implementation. Laboratory experimental results are shown
for a phantom study representing potential cryosurgery monitoring using an MIT system.

1. INTRODUCTION

Magnetic Induction Tomography (MIT) is the most recent and least developed electrical tomography
technique. It does not require electrical contact with the body and instead uses the interaction of an
oscillating magnetic field with a conductive medium. The field is excited by inductive coils with an
alternating current, which are arranged around the region of interest (ROI). Eddy currents arise when a
conductive object is present within the sensing zone, which causes a perturbation to the magnetic field.
The passive electromagnetic properties of the object under testing can be reconstructed from the degree
of perturbation of this field. It is important to note that MIT is sensitive to conductivity, permeability
and permittivity; however, sensitivity to conductivity is usually the primary focus for research [1].

In MIT, the relationship between the field perturbation and the primary magnetic field can be
expressed by ΔB

B ∝ ω(ωε0εr − jσ) [2], where it can be seen that perturbation of the secondary magnetic
field is proportional to the square of the frequency. If the object is highly conductive, such as metal,
the field perturbation ΔB is dominated by a negative imaginary part. Therefore, the measurements
can be taken from the amplitude of the imaginary part, as the real component is negligible. For
biomedical applications, the conductivity of biological tissues is many orders of magnitude lower than
that of metals and they have no appreciable permeability above that of free space. Therefore, both the
real and imaginary parts need to be taken into consideration. This paper presents the reconstruction
of a non-conductive inclusion in a low conductive background, which has an electrical conductivity of
1.58 S/m. This might be of interest in medical applications, for example, cryosurgery, where undesired
tissues need to be frozen as part of the treatment [3–7]. Human tissues have conductivity values less
than 2 S/m; in this context, frozen cells/tissues can be considered non-conductive [8, 9], and as such this
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conductivity contrast can be used for imaging. The aim of this study is to provide insight as to how
MIT can be of general use for medical applications as a non-destructive tomographic technique. In this
paper, both simulations and experimental results are presented.

In the area of tomographic research, there are usually two problems which need to be solved, the
forward problem and the inverse problem. Both problems can be computationally expensive and time
consuming, resulting in a growing demand for advanced computing techniques to accelerate the solving
process. This could be of particular use in brain/lung function imaging as the finite element model could
incorporate up to millions of elements [10–13]. It has also been shown that the calculation of Jacobian
matrix is the most expensive computing process in the forward solver [14], especially for 3D tomography
approaches. As a result, the implementation of graphics processing units (GPU) has gradually gained
popularity [15]. The implementation of GPU techniques has been investigated in the area of both hard-
field [16] and soft-field tomography [14] to achieve computational gain, including electrical impedance
tomography (EIT) [17] and electrical capacitance tomography (ECT) [18]. Compared to the use of
GPU in previous MIT research [19, 20], where the parallelisation of the finite difference (FD) algorithm
was achieved, in this work, the time reduction using GPU is realised differently. An edge finite element
method (FEM) is used to solve the forward model, which involves generating the meshes, solving the
magnetic vector potential and fields in every single tetrahedral element, as well as solving the system
linear equation which is a large scale sparse matrices calculation. In the algorithm section, a high
performance computation is achieved using GPU implementation, which improved the computational
efficiency in solving both MIT forward and inverse problems.

2. METHODS

2.1. Measurement System

The MIT system used for this study consists of (i) a coil array of 16 equally spaced air-core sensors, (ii)
a National Instrument (NI) based data acquisition system and (iii) a host computer. The sensing zone
has a diameter of approximate 25 cm, each coil has 6 turns, a side length of 1 cm, and a radius of 2 cm.
Figure 1 shows the medical MIT system used in this study. Among 16 coils, 8 coils are engaged for
transmitting signals, and the remaining 8 coils are dedicated for receiving signals; the total number of
independent measurements is therefore 64. A grounded aluminium cylinder is used to prevent external
electric field perturbation. As the signal perturbation caused by the secondary magnetic field is usually
low for a MIT system, the measurement system requires accurate measurement devices to improve the
sensitivity. A NI2953 is employed to realise the multi-channel switching process. The measured data are
collected, combined and displayed through a NI5781 device. In order to improve the system efficiency,
a NI7951 FlexRIO board is utilized to accelerate the data acquisition process. An excitation frequency
of 13 MHz is chosen for this system. The sampling rate of this system is 100 megasamples/s. The image
reconstruction module extracts 64 independent measurements to perform the reconstruction algorithm,
displays and updates the images through the LabView and Matlab programs. A detailed description of
the system design and evaluation of driving signal level, phase noise and phase drift have been reported
in [21].

Figure 1. Bath-MK II medical magnetic induction tomography system.



Progress In Electromagnetics Research B, Vol. 65, 2016 51

2.2. Forward and Inverse Problem

In this study, a reduced magnetic vector potential is used to avoid modelling the structure of the coils
using edge FEM [22, 23]. In the (A, A) formulation we have:

∇× 1
μ
∇× A + jσωA = Js (1)

where the current density, Js, can be prescribed by the magnetic vector potential according to the
Biot-Savart Law.

The magnetic potential constitutes two parts A = As + Ar, where As represents the impressed
magnetic vector potential as a result of current source Js, and Ar represents the reduced magnetic
vector potential in the eddy current region Ωe.

In the non-conductive region Ωn:
∇× Hs = Js (2)

where Hs is the magnetic field generated by an excitation coil, which can be directly computed from
any point P in a free space from Js:

Hs =
∫

Ωn

Js(Q) × rQP

4π|rQP |3 dΩQ (3)

where rQP is the vector pointing from the source point Q to the field point P .
The impressed magnetic vector potential As can be written by:

∇× As = μ0Hs (4)

From Equation (3) and Equation (4), As is readily shown as:

As =
∫

Ωn

μ0Js(Q)
4π|rQP |2 dΩQ (5)

In the entire region Ωn + Ωe, using time harmonic and complex notation, the magnetic flux density can
be expressed by:

B = μ0Hs + ∇× Ar (6)

According to Faraday’s Law of induction, ignoring the displacement current, the induced electric field
can be written in the following form:

∇× E = −jωB (7)

From Equation (6) and Equation (7), the induced electric field in the entire region is:

E = −jωAs − jωAr (8)

Eddy currents arise when a conductor is exposed in a time varying magnetic field; therefore, in the eddy
current region Ωe:

Jeddy = σE (9)

In the region of Ωn + Ωe, the magnetic field can be expressed by:

∇× H = Jeddy + Js (10)

It is known that the relationship between B and H is:

B = μH (11)

where μ is the permeability of the medium.
Combining Equations (2), (6), (8), (10) and (11), we have:

∇×
(

1
μ
∇× Ar

)
+ jωσAr = ∇× Hs − jωσAs −∇× 1

μ
μ0Hs (12)

In MIT, the inductive coils are considered magneto-static, not antennas; as such the wave
propagation effect can be ignored. Edge FEM is a useful technique to solve such problems by
approximating the system as a combination of linear equations in small elements with appropriate
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boundary conditions. In edge FEM on a tetrahedral mesh, a vector field is represented using a basis
vector function Nij associated with the edge between nodes i and j:

Nij = Li∇Lj − Lj∇Li (13)

where Li is a nodal shape function. Applying the edge element basis function to Galerkin’s
approximation [24, 25], one can obtain:∫

Ωe

(
∇× N · 1

μ
∇× Ar

)
dv +

∫
Ωe

jωσN · Ardv =
∫

Ωc

(∇× N · Hs) dv −
∫

Ωc

(N · jωσAs) dv

−
∫

Ωc

(
1
μ

μ0∇× N · Hs

)
dv (14)

where N is any linear combination of edge basis functions, Ωe the eddy current region, and Ωc the coil
region. It can be seen from Equation (14) that the right hand side can be solved by Equations (3)
and (5), the only unknown variable is the reduced vector potential Ar. By applying edge FEM, the
second order partial differential equations can be computed by a combination of system linear equations,
which can then be processed through Matlab. Ar can be obtained using the BiConjugate Gradients
Stabilized Method to solve the system linear equation [26]:

SAr = b (15)

where S = Sr + jSi, which is a complex matrix; b is the current density, which is also complex. By
solving the reduced magnetic vector potential Ar, one is able to evaluate the induced voltages in the
measuring coils. The induced voltages can be calculated by using a volume integration form:

Vmn = −jω

∫
Ωc

A · J0dv (16)

where A = As + Ar, and J0 is a unit current density passing through the coil.
The sensitivity matrix is essential in MIT as it realises the linearisation between the conductivity

and the induced voltages. The elements of the Jacobian matrix can be expressed by [27, 28]:

∂Vmn

∂σk
= −ω2

∫
Ωk

Am · Andv

I0
(17)

where Vmn is the measured voltage, σk the conductivity of pixel k, and Ωk the volume of the perturbation
(pixel k). Am and An are respectively solutions of the forward solver when the excitation coil m is
excited by I0 and the sensing coil n excited with unit current. It is worth mentioning that if the object
under testing has a significant relative permittivity εr, the imaginary term jωε0εr must be added to
the complex conductivity. In this case, the complex conductivity can be written as ξ = σ + jωε0εr.

The inverse problem usually makes use of the forward model as part of the solving process. Let
the forward model be expressed in a linear approximation.

V = Jσ (18)

where V is a column vector consisting of M voltage measurements and σ also a column vector
representing K pixels. J is an M×K matrix of the sensitivity map, calculated from Equation (17). The
inverse problem is solved to compute the distribution of the conductivity through measured voltages.
In most cases, this is an underdetermined problem as the number of measured voltages is far less than
the number of pixels, resulting in the solution being ill-posed. In order to ensure the uniqueness and
the stability of the solution, the least square solution (LSS) is applied.

min ‖ V − Jσ ‖2 = min(V − Jσ)T (V − Jσ) (19)
∂

∂σ

[
(V − Jσ)T (V − Jσ)

]
= −2JT (V − Jσ) (20)

σ = (JT J)−1JT V (21)

Although the LSS guarantees the uniqueness of the solution, it does not ensure the stability. A
regularisation function can be added to ensure the accuracy and robustness of the solution. In this paper,
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the Tikhonov regularisation method is used to solve the inverse problem, where the reconstruction relies
on the fact that for small changes, the measurements can be approximated in a linear fashion with a
regularisation parameter α and regularisation matrix R [29].

σ =
(
JT J + αR

)−1
JT V (22)

2.3. GPU High Performance Computing

2.3.1. Parallelisation Scheme

The computation of both forward and inverse problems for MIT is time consuming, and as such, there is
a pressing need to accelerate it. One approach is to adapt and convert MIT data processing into parallel
computing architectures. There are two possible ways to achieve this goal: the classic parallel solution,
i.e., running on multiple CPU (central processing unit) cores, and the GPU (graphics processing units)
solution. The former uses multi-node PC (personal computer) systems to perform one global task by
splitting it into subtasks. This method is well established, requiring a specialised software, a low-latency
network infrastructure to exchange data between nodes and an increased hardware complexity. The
latter uses the parallel architecture of GPUs, through a novel technique called GP GPU (General-
Purpose computing on Graphics Processing Units) (http://gpgpu.org).

A growing interest in GPU computation began in general with the difficulty in clocking CPUs
above a certain level due to the limitations of silicon-based transistor technology. Although sequential
programs are easier to understand, the growing demand for improvements in modern computing led
to an increased interest in multi-core technology and parallel architectures [30, 31]. Nevertheless, even
with parallel architectures, there is still a limit as to how fast programs can run. Speed increases are
now based primarily on improving the architecture of the CPU rather than higher clock rates [32]. Until
recently, parallel programming was reserved for high performance clusters with multiple processors, as
the cost was often prohibitively expensive. However, this changed with the introduction of new types
of multi-core processor to the mainstream market, including GPUs.

Compared to CPUs which today have a maximum of 2 to 12 cores, GPUs consist of dozens, or even
hundreds, of smaller, simpler cores designed for a high level of parallelisation (Figure 2).

CPUs are designed to execute a large set of instructions (which often includes a high level of
branching) as fast as possible, while GPUs mostly take care of computations using a more limited
instruction set with less branching. For this reason their execution units, or cores, can be much simpler,
i.e., smaller. Therefore, a single chip may have dozens or even hundreds of cores on it. Moreover,
graphics computations can be easily parallelised in GPU work based on a SIMD (Single Instruction,
Multiple Data), or more precisely SIMT (Single Instruction, Multiple Thread) architecture, where the

Figure 2. The difference in parallel architecture between CPU (Intel i7) and GPU (Nvidia GTX 580).
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same instruction can be applied to numerous subsets of data, in effect allowing a large dataset to be
processed rapidly. This allows a much higher number of operations per second than can otherwise
be achieved on a CPU. Many time consuming computations can now run in close to real-time with a
smaller investment in hardware compared to before the advent of GP GPU.

A real breakthrough in the ease-of-use of GP GPU came with the introduction of Nvidia CUDA
(Compute Unified Device Architecture) in 2007 (http://docs.nvidia.com). Programmers could then
use generic software libraries to exploit the potential of the massively parallel GPU architecture
and reduce the running time of many algorithms (http://docs.nvidia.com/cuda/cuda-c-programming-
guide/). Nevertheless, GPU computation is not without its limitations. One of the key challenges is that
GPUs were originally designed for parallel operations, and as such they will not do well on sequential
tasks, or those that involve a lot of branching [30].

In this work, the AccelerEyes Jacket GPU processing toolbox is used to run the calculations in
parallel. The Jacket GPU library is a mature solution that uses Nvidia’s CUDA parallel computing
libraries and enables the writing and running of code on the GPU in a way similar to how it would
be done in the Matlab language. Jacket accomplishes this by automatically wrapping the M-language
into a GPU CUDA-compatible form by adapting input data to Jacket’s GPU data structure, Matlab
functions can be easily transformed into GPU functions. Jacket also preserves the interpretive nature
of the M-language by providing real-time transparent access to the GPU compiler, which increases the
efficiency of parallel computing code. A new GPU computing library is also available to be embedded
in the standard Matlab engine; however, it is currently at an early stage of development and therefore
relatively limited.

2.3.2. GPU Accelerated MIT forward Solver

High time consumption due to the expensive computation of the solving process has put constraints on
the CPU-based MIT forward solver (Equations (3) and (5)). The magnetic field and magnetic vector
potential need to be calculated for every single tetrahedral element, and then integrated over all the
elements for a given mesh. This needs to be repeated for every single coil in the MIT forward model
(Figure 3). This is a very repetitive process, particularly for a very dense mesh, and as such is both
time consuming and computationally expensive. However, all other steps of the MIT forward solution
can be efficiently accelerated using a Matlab GPU-based approach.

In this work, a new hybrid type of Biot-Savart equation-solving infrastructure is developed which
performs parallel computations using a GPU. The Biot-Savart calculations for Equations (3) and (5) are
computed for each individual tetrahedral element in the MIT finite element model without depending
on the results of other elements and therefore these can be performed in parallel. Figure 3 depicts this
process using a flow chart. Note that there are three main, but completely different in their nature,
sequential loops. To properly adapt this kind of iterative algorithm into a GPU parallel scheme, one first

Figure 3. The flow diagram showing the main steps performed while solving MIT Biot-Savart
equations.
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needs to consider the limitations of using the Jacket GPU library. The major drawback is that nested
loops are not currently supported. This means that the selection of each loop must be done according
to the GPU highly scalable parallel architecture to achieve computational gain. The outermost loop
(Steps 1–2) represents a typical CPU-type loop. It computes n number of coil segments for an assigned
index, where n is typically much smaller than the total number of elements in a given mesh. In this case,
the use of Matlab native CPU vectorisation is an optimal approach because the expense of marshaling
the data onto the GPU and retrieving it would not be paid off for a small number of segments (e.g.,
2000–5000 segments).

There are two remaining loops that can be adapted into a Jacket parallel scheme (Steps 3–7). The
outer loop iterates over the number of coils — here called the “coils” loop — with the number of coils
defined as Nc (Step 3). This loop includes a second inner loop — called the “edges” loop — defined as
a stream of matrix linear algebra computations (additions, subtractions and multiplications) that need
to be calculated for a given mesh geometry for a given coil number from the outer loop. The edges loop
iterates over a large number of tetrahedral edges that correspond to the density of a given mesh.

There are two choices to accelerate the computation: parallelising either the coils loop or the edges
loop. Parallelising the coils loop is an inefficient means of acceleration as each coils loop contains
embedded edges loops. In our MIT system, the number of coils, Nc, is 16, but there are hundreds of
thousands of edges. Parallelising the coils loop in this manner can be accomplished just as efficiently as
using CPU vector operations. As the GPU computing architecture is internally optimised for a large
number of parallel calculations (many cores and many threads), the inner edges loop is selected for
GPU parallelisation.

With regards to selecting the edges loop for parallelisation, there are two methods to achieve this
goal. One solution is to predefine a Jacket GPU type index variable that iterates over the number of
edges, using this predefined index for all variables that need to be iterated in this way. The Jacket GPU
vectorisation mechanism is able to use this index to parallelise all algebraic functions and process edge
data by hundreds of separate computing threads (and physical cores). Another solution is the use of the
in-built Jacket GPU type loop, which looks similar to classic Matlab “for-end” type loop. The difference
is that all the GPU loop iterations will run in separate computing threads. To use the GPU loop, all
the internal MIT physics functions (Steps 4–7, A, B magnetic field properties computing, edge-based
function specified in Figure 3) and edge data must use the same loop (edge number) iterator, which
must be defined as a GPU type variable at the beginning of the loop. This approach is the most efficient
way of using GPU parallel architecture. One difficulty associated with implementing this innovative
computation method is that the GPU code requires that all processing data be transferred into GPU
memory at the beginning of the computation, and transferred back to CPU memory at the end of
the computation. Repetitious conversion of variables between CPU and GPU type “on-the-fly” (inside
loops) is computationally inefficient and can significantly increase the processing time according to the
scale of MIT forward and inverse mesh. To avoid this problem, the GPU memory needs to be cleaned
and all the data that are going to be parallelised need to be preloaded once into GPU memory before
any loop starts.

Table 1 shows the comparison of MIT forward problem processing times for CPU (Inter Core i7
2.8 GHz) and Tesla C2070 GPU. For a mesh geometry composed of 167,488 tetrahedral elements, we
achieved a 200x speedup when using a GPU compared to using a CPU alone. It is important to note
that these speedups (shown in Table 1) were critically evaluated with careful profiling of CPU and GPU
programs and in particular in comparison with multi-CPU systems. This way the computational gain
of using GPU can be illustrated, and this speedup increases for denser meshes. In this study, the coil
arrangement is fixed, thus the Biot-Savart calculation for the free space field is calculated once; however,
for a MIT system where the coil geometry is changing, such as in a rotational MIT system, the coils are
rotated according to the rotational scheme, and the forward model needs to be updated accordingly. In
this context, the implementation of GPU techniques becomes more advantageous. It is also favorable
to use GPU-accelerated Biot-Savart calculations in the forward model when a MIT system has a large
number of coils, for instance, 256 coils.

Another computational challenge is in solving the linear system equation (Equation (15)), especially
for large scale MIT meshes. This matrix equation is part of the edge FEM algorithm and its solution
requires matrix inversion, a time consuming process for sequentially operating processors. The desire
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Table 1. Time consumption using CPU and GPU for Biot-Savart calculation for different mesh
densities.

Nmb. Mesh density
Biot-Savart Law

Intel Core i7, 2.8 GHz
Elapsed time (s)

Biot-Savart Law
Tesla C2070

Elapsed time (s)
Gain

1 1797 13.96 0.45 31.02
2 119280 1571.30 11.24 139.80
3 167488 3374.82 16.75 201.48

Table 2. Processing times for solving MIT linear system equation using CPU and GPU.

Nmb.
MIT computational

Model mesh
Number of voxels

LUPIV method
Intel Core i7, 2.8 GHz

Elapsed time (s)

LUPIV method
Tesla C2070

Elapsed time (s)
Gain

1 8488 35.26 6.54 5.39
2 20499 49.75 14.35 3.47
3 60896 179.25 38.64 4.64
4 87172 352.08 54.75 6.43
5 157264 1051.42 101.49 10.36

for reduced computational times for calculations involving a large number of matrix inversions has
motivated the adaption of numerical methods for parallel computing architectures [30], including some
for GPU architectures.

Applicable techniques for our method include the BiConjugate Gradients Stabilized Method
(BICGS) [33], LU factorisation with partial pivoting (LUPIV) [34] and Gaussian elimination (GE) [35].
The BICGS is optimised for solving large-scale linear system equations in which the system matrices
are sparse. This approach is therefore the most efficient for MIT problems whose system matrices are
sparse. However, at this stage of research, it is not feasible to use the dense algebra library (Jacket
DLA), which leads to the choice of either the LUPIV or GE method to solve Equation (15). We use the
built-in Jacket CUDA-optimised LUPIV implementation to maximise performance when running on a
GPU to minimize power usage. The comparison of MIT forward problem processing times for CPU and
Tesla C2070 GPU are presented in Table 2.

As seen in Table 2 the use of the GPU-adapted LUPIV results in an increase in speed compared to
an equivalent CPU implementation. To perform LUPIV computations using the GPU Jacket library,
the system matrix needs to be converted from a sparse type to a full type. As the number of system
matrix elements is defined by the square of the number of mesh vertices, the full representation of the
system matrix can consume gigabytes of memory. For instance, a full representation of the system
matrix using mesh model number 5 (Table 2) consumes approximately 4.6 GB of memory. Therefore
the Jacket-based LUPIV memory consumption is the major drawback of using this algorithm for a
large scale MIT mesh model and it can seriously limit its application. To avoid the problem of memory
consumption, the sparse linear algebra and GPU-adapted BICGS algorithm (as stated in Section 2.2)
will be applied for further improvement.

2.3.3. GPU Accelerated MIT Inverse Problem

The inverse problem in MIT can be solved using various electrical tomography image reconstruction
techniques. As shown in Equation (22), in this study, we used the Tikhonov regularisation based method
to reconstruct images. The computational time and memory consumption depends on both the size
of the mesh in the forward problem and the complexity of the image reconstruction algorithm in the
inverse problem. The inverse problem of MIT can be time consuming when the Jacobian matrix is
large scale. The optimisation functions (Equation (22)) are composed of linear algebraic functions,
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performing addition, subtraction, multiplication and division for matrices. All these algebraic routines
are parallelisable, especially multiplication [14, 36]. To improve the efficiency of solving the MIT inverse
problem, we use the GPU Jacket library.

To apply GPU to the Tikhonov regularisation, we use a direct method, which is relatively easy to
convert to GPU-based structure because the use of the linear matrix equation (Equation (22)). The
CPU implementation is able to process this equation in its compact form; however, the GPU conversion
requires it be decomposed into fewer simpler and shorter lines. This concept of equation adaptation is
crucial for the management of Jacket GPU memory and data processing efficiency. A typical GPU data
processing pipeline is optimised using many small linear algebra routines, and as such the efficiency
of complex matrix operations is significantly improved. This approach is presented and discussed in
Table 3.

Table 3. Fully sequential CPU-based MIT inverse problem vs. hybrid parallel GPU-based MIT inverse
problem.

Sequential CPU implementation Parallel GPU implementation

x = (JT J + αR)−1JT b

AGPU = JT (∗)
AGPU = AGPUJ

AGPU = AGPU + αR

AGPU = inv(AGPU)(∗∗)
BGPU = JT

BGPU = BGPUb

x = AGPUBGPU(∗ ∗ ∗)
The above equation is solved

directly and sequentially from left
to right. All linear algebra routines:

multiplication,transposition
addition and inversion are

processed sequentially by CPU

The input is decomposed into
new A and B temporal variables.

Expressions are solved sequentially
from top to bottom. All simplified

linear algebra routines are
processed in parallel by GPU

Although the sequential CPU approach is simpler and more intuitive, the GPU-based reconstruction
is much faster. For example, the GPU-based transposition (*) occurs three orders of magnitude faster
than its CPU equivalent [37]. The speed of matrix inversion (**) has been already proved in Table 2.
The most efficient line is the last one (***). It includes the matrix multiplication process, which is
considered the most efficient parallelised linear algebra transformation [18]. The acceleration of matrix
multiplication is huge, up to several hundredfold. The same principles can be applied to other direct
reconstruction methods, for example, NOSER (Newton-one-step-error-reconstruction) [38]. There are
still no methods for the parallelisation of iterative reconstruction processes, such as the Landweber
technique or the Gauss Newton iterations. This is due to the fact that the iterations are not independent
of each other. Nevertheless, for an iterative process inside another iterative loop, it is still feasible to
accelerate the computation using GPU implementation.

3. RESULTS

The purpose of this section is to demonstrate the feasibility of implementing MIT in a biomedical
application, whereby both the solving processes of forward and inverse problems are accelerated using
GPU high performance computing technique.

3.1. Simulations

In the simulations, we are interested in measuring the voltage perturbations caused by the changing
properties of the non-conductive inclusion in a conductive background, including the locations and the
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Figure 4. Cross-section of inclusion region Ω1 in the sensing zone Ω2: Tx shows a transmitting coil,
Ra and Ro represent the locations of adjacent and opposite measuring coil in relation to Tx.
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Figure 5. (a) Normalised induced voltages vs. radius of the inclusion; (b) normalised induced voltages
vs. location of the inclusion along x-axis as shown in Figure 4.

volume of the inclusion. In the simulation model, an inclusion of 2 cm radius is located at the centre of
the imaging region at the initial state. The conductivity of the background is 1.58 S/m. In all cases, an
adjacent and an opposite measurement are simulated in order to show the changes in induced voltages.
All the measurements are normalised against the background measurement. The moving direction of
the inclusion and the locations of adjacent and opposite coils are shown in Figure 4.

The simulations presented in this section demonstrate the signal perturbations caused by changing
the characteristics of the inclusion. Figure 5(a) shows the changes in induced voltages versus the volume
of the non-conductive region. Note that the volume of the inclusion is approximated by the radius of
the inclusion as the axial direction is uniform. During the process of volume expansion, the inclusion
remains in the centre of the sensing zone. Figure 5(b) shows the induced voltage change versus the
location of inclusion along positive x-axis, where the inclusion is moving off the centre. In this case, the
induced voltages according to the adjacent measurement decrease as the inclusion moves away from the
adjacent coil pair, while the induced voltages according to the opposite measurement increase as the
distance between the inclusion and the opposite coil pair is reduced.
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3.2. Experimental Results

In order to investigate the feasibility of using the MIT technique for reconstructing conductivity contrasts
in biomedical applications, two sets of experiments are conducted (shown in Figure 6). Increasing
the radius of the inclusion in the sensing zone (Figure 6(a)) corresponds to the voltage perturbation
in Figure 5(a). The change in displacement of the inclusion from the centre of the sensing region,
(Figure 6(b)), corresponds to the voltage perturbation in Figure 5(b). For each case, four different sizes
of non-conductive bottle are tested, with diameters of 2, 6.5, 9.5 and 13 cm respectively. As this paper
is focused on static 2D reconstructions, the bottles are uniform in the axial direction; therefore, the
volume of the inclusion can be approximated by the cross-sectional area of the bottle.

(a) (b)

Figure 6. (a) Increasing the radius of the inclusion in the sensing zone; (b) the change in displacement
of the inclusion from the centre of the sensing region.

D = 2 cm D = 6.5 cm D = 9.5 cm D = 13 cm

Figure 7. Reconstructed images of a non-conductive inclusion located in the centre of the measuring
region filled with 0.9% saline solution (conductivity of 1.58 S/m). The diameters of the inclusions are
2, 6.5, 9.5 and 13 cm respectively, in columns left to right.

Figure 7 shows the first set of experiments, where the four different sizes of non-conductive bottle
are placed in the centre of the imaging region. It can be seen that for all cases, the system can
identify the non-conductive inclusion in the centre of the imaging region. Due to the low resolution of
the imaging system and modest image reconstruction technique, the differences in the dimensions of
the bottles cannot be easily distinguished from the reconstructed images; therefore, a post-processing
tool is applied to make the images more intuitive. A blue to red colourmap is defined to show the
conductivity contrast, with blue colour showing the conductive imaging region filled with 0.9% saline
solution (conductivity of 1.58 S/m), and red colour showing a non-conductive inclusion. Any colour
between blue and red represents an intermediate conductivity value. The reconstructed image data is
normalised against its maximum value in order to demonstrate the distribution of the non-conductive
inclusion in the same colour scale. This image reconstruction approach is adopted for the remainder of
the experimental results.



60 Ma, Banasiak, and Soleimani

x1 = 2 cm x2 = 4 cm x3 = 6 cm

Figure 8. Reconstructed images of three steps of moving direction of a non-conductive inclusion in
the measuring region filled with 0.9% saline solution (conductivity of 1.58 S/m). Reconstructions of
inclusion of diameters 13 and 9 cm are shown from the top to the bottom row.

x1 = 2 cm x2 = 4 cm x3 = 6 cm x4 = 7 cm

Figure 9. Reconstructed images of three steps of moving direction of a non-conductive inclusion in
the measuring region filled with 0.9% saline solution (conductivity of 1.58 S/m). Reconstructions of
inclusion of diameters 6.5 and 2 cm are shown from the top to the bottom row.

Figure 8 shows the reconstructed images of non-conductive inclusions moving increasingly off centre
in increments of 2 cm. Two different sizes of inclusion are tested — of diameters 13 cm and 9.5 cm —
reconstructions of which are shown from the top to the bottom row, of Figure 8 respectively.

Figure 9 shows the reconstructed images of four non-conductive inclusions off centre by 2, 4, 6 and
7 cm, shown in columns left to right, respectively. In addition, two different sizes of inclusion are tested
— of diameters 6.5 cm and 2 cm — reconstructions of which are shown from the top to the bottom row,
of Figure 9 respectively.

It can be seen from the experimental results presented in Figures 8 and 9 that as the inclusion moves
increasingly off centre, there is a tendency for the reconstructed images to become elliptical. This is due
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to the low resolution of MIT. Although both simulations and experimental results demonstrate that the
reconstruction of high conductive contrast is feasible, further development is essential to fully employ
MIT as a useful imaging technique in biomedical applications, where 3D dynamic reconstruction and
real-time monitoring are required. In this work, a linear reconstruction algorithm is used to solve
the inverse problem. As the experimental data are in 2D, the scale of this problem is relatively
small. In addition, the Jacobian matrix is calculated once and used in the inversion as a result of
implementing the one step reconstruction algorithm. The reconstructed images shown in Figure 8 and
Figure 9 are the proof of principle for potential medical imaging results. In practical cases, if higher
resolution of the reconstructed image is required, the Jacobian matrix needs to be updated in an iterative
reconstruction process. This way, the advantage of using GPU would be more beneficial in reducing the
time consumption. However adapting GPU implementation in an iterative reconstruction algorithm for
medical imaging is beyond the scope of this work.

4. CONCLUSION

In this study, a high frequency MIT system is used to study the reconstruction of conductive contrasts,
with Tikhonov regularisation used to reconstruct 2D static images. Due to the nature of eddy currents,
the MIT forward problem can be a large scale problem, and as such the forward solver is computationally
expensive using traditional CPU computation techniques. This problem becomes more severe if the
forward model is very dense, i.e., millions of elements, which is common in biomedical applications for
brain/lung function imaging. This is one of the key limitations in MIT research. For a 2D problem,
the inverse solver can usually be handled by a CPU, however, if the problem is 3D or involves a large
number of voxels, this could be inefficient for the solving process.

In this study, both forward and inverse solvers are developed in-house. There are two major
challenges in the program pipelines: the calculation of the Biot-Savart law and the calculation of
the system linear equation, both of which can be accelerated using GPU implementation. General
programming guidance of GPU implementation for Tikhonov regularisation is also presented, which
offers computational gain by using matrix decomposition. The overall performance of the GPU
implementation can be evaluated from a computational point of view. In order to reconstruct one
frame of image, a Biot-Savart law for magnetic field calculation, a linear system equation and an inverse
algorithm need to be solved. These take approximately 76%, 23% and < 1% of the total computational
time, respectively. These estimates are drawn from the last model of Tables 1 and 2, where the sizes
of both models are closer to those that would be used in a biomedical application. Considering the
gain achieved by using GPU techniques, it is reasonable to believe that high performance computing
techniques could reduce the overall processing time by 97%.

Due to the use of the accelerator package Jacket, some information relating to high performance
computing is not accessible; however, the parallel implementation of MIT data processing using high
level functions, such as transpose, multiplication, subtraction, addition and numerical API for inversion
are included.

The aim of this paper is to demonstrate a means by which high performance computing techniques
can be used for performance improvement of magnetic induction tomography, especially in the field
of medical imaging. Although the model used in this study is a relatively simple 2D model, both
the simulations and experimental results show that this GPU-based implementation can achieve
uncompromising performance. One could also argue that the performance of GPU-based implementation
in MIT would be further enhanced in more sophisticated 3D biomedical models. Future study will
expand the scope of this paper to include the implementation of GPU for: i) inverse solution to Krylov
subspace based methods, such as conjugate gradient and its preconditioning; ii) various regularisation
methods such as total variation for a large scale 3D MIT; iii) detailed profiling, parallelisation scheme,
and architecture for such implementations.
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