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A Fast Finite Difference Delay Modeling Solution of Transient
Scattering from Lossy Inhomogeneous Dielectric Objects

Ji Ding*, Yanfang Wang, and Jianfeng Li

Abstract—A fast finite difference delay modeling (FDDM)-based scheme is presented for analyzing
transient electromagnetic scattering from lossy inhomogeneous dielectric objects. The proposed scheme
is formulated in the region of the scatterers by expressing the total field as the sum of the incident field
and the radiated field due to both the polarization and conduction current density. The current density
is discretized in space by Schaubert-Wilton-Glisson basis functions and in time by finite differences.
Furthermore, the scheme is accelerated by the fast Fourier transform (FFT) algorithm, which can reduce
the memory requirement and computational complexity significantly. Numerical results are presented
to illustrate the accuracy and efficiency of the proposed method.

1. INTRODUCTION

Transient electromagnetic scattering from lossy inhomogeneous dielectric objects has received
considerable attention and has many applications including high-speed circuits, medical diagnostics,
electromagnetic coupling and interference, etc. Among the available transient solution techniques, time
domain integral equations (TDIE)-based methods are suitable to analyze electromagnetic scattering
problem. One of these methods to solve TDIE is the marching-on-in-time (MOT) algorithm [1, 2].
The MOT algorithm has been widely used in the last years, but this scheme suffers from late-time
instability in the form of high frequency oscillation which greatly limits its application. Recently, another
alternative method, viz. the finite difference delay modeling (FDDM) algorithm [3, 4], is developed. Its
temporal discretization is made based on a finite difference with a mapping from the Laplace domain
to the Z-transform domain. Temporal convergence is governed by the order of the finite difference
approximation. Due to the disposition of the left half plane of the Laplace domain after transformation
to the Z-domain, the FDDM algorithm appears absolutely stable for any structure and any time step
size.

The FDDM method has been successfully implemented for the analysis of electromagnetic
scattering from perfect electric conductor objects and homogeneous dielectric objects. For perfect
electric conductor objects, the FDDM method has been applied to solve the electric field integral
equation (EFIE), the magnetic field integral equation (MFIE), and the combined field integral equation
(CFIE) [3]. For homogeneous dielectric objects, the FDDM method has been applied to solve the
Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) equation [5]. In this paper, the FDDM method
is extended to solve the time-domain volume integral equation (TDVIE) for the analysis of transient
scattering from lossy inhomogeneous dielectric objects. The TDVIE are superior when the dielectric
material is inhomogeneous or complex such as the lossy and anisotropic media [6–9]. The use of
Green’s function and enforcement of the continuity condition between the normal component of the
electric flux density in the dielectric body ensure a good accuracy of the solution. Despite these
advantages, because VIE produces huge number of unknowns, the proposed FDDM-based scheme needs
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excessive memory requirement and computational complexity. To alleviate this problem, the FDDM-
based scheme is accelerated by the fast Fourier transform (FFT) scheme [10, 11], which can reduce the
memory requirement and computational complexity from O(KN2

v ) and O(KNtN
2
v ) to O(KNv) and

O(KNv(log Nv + log2
2 K)). Here, K is the truncation number, Nv is the total number of the spatial

basis functions, and Nt is the number of time steps in the analysis.
The remainder of this paper is organized as follows. Section 2 describes the FDDM-based scheme to

solve TDVIE and its acceleration. Section 3 gives several numerical results to demonstrate the accuracy
and efficiency of the proposed method. Section 4 presents our conclusions.

2. FORMULATIONS

2.1. FDDM Solution of Volume Integral Equation

Consider an inhomogeneous lossy dielectric scatterer with a volume V residing in free space, excited
by an incident electromagnetic field Ei(r, t) that are temporally bandlimited to a maximum frequency
fmax. It is assumed that frequency independent permittivity and conductivity of the scatterer are
characterized by ε(r) and σ(r), respectively. The electromagnetic fields in the dielectric body satisfy
Maxwell equation

∇× H(r, t) =
∂E(r, t)

∂t
+ J(r, t). (1)

Here, E(r, t) and H(r, t) are the total electric and magnetic fields, and the equivalent volume current
density J(r, t) is

J(r, t) = κ(r)
∂D(r, t)

∂t
+ ν(r)D(r, t), (2)

where D(r, t) = ε(r)E(r, t) is the electric flux density, κ(r) = (ε(r) − ε0)/ε(r), and ν(r) = σ(r)/ε(r).
The scattered field Es(r, t) from the inhomogeneous scatterer can be considered as the field radiated by
the equivalent volume current density J(r, t)

Es(r, t) = −μ0

4π
∂

∂t

∫
V

J(r′, t − R/c)
R

dr′ +
∇

4πε0

∫
V

∫ t−R/c

−∞

∇′ · J(r′, t′)
R

dt′dr′, (3)

where R = |r − r′| is the distance between the observation point r, and the source point r′. c is the
speed of light in free space. Since the total field is the sum of the incident field and scattered field

E(r, t) = Ei(r, t) + Es(r, t), (4)

substituting Eq. (3) into Eq. (4) and differentiating Eq. (4) in time domain, the time-domain volume
integral equation can be written as

∂Ei(r, t)
∂t

=
1

ε(r)
∂D(r, t)

∂t
+

μ0

4π
∂2

∂t

∫
V

J(r′, t − R/c)
R

dr′ − ∇
4πε0

∫
V

∇′ · J(r′, t − R/c)
R

dr′. (5)

The finite difference delay modeling (FDDM) method works on the Laplace transform of the above
equation. The Laplace transform of a function f(t) will denote by f(s). Thus, Eq. (5) transforms into

sEi(r, s) =
sD(r, s)

ε(r)
+

μ0

4π

∫
V

(
sκ(r′) + ν(r′)

)
D(r′, s)

s2e−sR/c

R
dr′

− 1
4πε0

∇
∫

V
∇′ · [(sκ(r′) + ν(r′)

)
D(r′, s)

] e−sR/c

R
dr′. (6)

For the spatial discretization, the unknown electric flux density D(r, s) in the Laplace domain can be
expanded by a set of Nv spatial basis functions

D(r, t) =
Nv∑
n=1

Dn(s)fn(r), (7)
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where fn(r) is the nth spatial basis function and Dn(s) the unknown expansion coefficient of fn(r). In
our implementation, fn(r) are chosen to be the Schaubert-Wilton-Glisson (SWG) basis functions [12].
By expanding the electric flux density as Eq. (7) and applying a spatial Galerkin testing procedure to
Eq. (6), the following matrix equation is obtained

Z(s)D(s) = V(s). (8)
Next, for the temporal discretization of Eq. (8), the Laplace variable s is replaced by with the

function f(z). Eq. (8) is transformed from the Laplace domain to the Z-domain. To ensure the late-
time stability, the first-order backward difference (BE) or the second-order backward difference (BDF2)
is employed to approximate s = f(z) = dkz

−k. The BE formula is given by s = (1 − z−1)/Δt and the
BDF2 formula is given by s = (3 − 4z−1 + z−2)/(2Δt). Thus, the terms sle−sR/c are expanded by the
Laurent series as

sle−sR/c|s=f(z) =
K∑

k=0

w
(l)
k z−k, (9)

where w
(l)
k is the expansion coefficients. Since w

(l)
k converge rapidly, we can truncate the summation at

some finite number K. The expansion coefficients for the BE formula are given by

w
(0)
k =

1
k!

(
R

cΔt

)k/2

e−R/cΔt, (10)

w
(l)
k =

1
Δt

[
w

(l−1)
k − w

(l−1)
k−1

]
, (11)

and the expansion coefficients for the BDF2 formula are given by

w
(0)
k =

1
k!

(
R

2cΔt

)k/2

Hk

(√
2R
cΔt

)
e−3R/2cΔt, (12)

w
(l)
k =

1
2Δt

[
3w(l−1)

k − 4w(l−1)
k−1 + w

(l−1)
k−2

]
, (13)

where Hk(·) is the kth-order Hermite polynomial. By taking inverse Z-transform of Eq. (9), the
multiplication in the Z-domain becomes a convolution in the time domain, the following matrix equation
is obtained

Z0Dj = Vj −
K∑

k=1

ZkDj−k, (14)

for 0 ≤ j ≤ Nt, where Nt is the number of the time steps. Dj is the unknown current vector and Vj the
voltage vector at jth time step, respectively. Assuming that the currents up to the (j − 1)th time step
are known, this equation permits the computation of the currents associated with the jth time step.
Therefore, the currents at all time steps can be computed recursively. The elements of the matrix Zk

can be computed as

Zk(m,n) = dk

∫
Vm

fm(r) · fn(r)
ε(r)

dr + Zκ
k(m,n) + Zν

k(m,n), (15)

where

Zκ
k(m,n) =

∫
Vm

∫
Vn

{
μ0w

(3)
k

4π
fm(r) · κ(r′)fn(r′)

+
w

(1)
k

4πε0
[∇ · fm(r) − n̂ · fm(r)][∇′ · κ(r′)fn(r′)]

}
1
R

dr′dr, (16)

Zν
k(m,n) =

∫
Vm

∫
Vn

{
μ0w

(2)
k

4π
fm(r) · ν(r′)fn(r′)

+
w

(0)
k

4πε0
[∇ · fm(r) − n̂ · fm(r)][∇′ · ν(r′)fn(r′)]

}
1
R

dr′dr. (17)
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In Eq. (14), the computational bottleneck is the matrix-vector multiplication of the right-hand side.
The memory requirement and computational complexity of the FDDM-based scheme are O(KN2

v ) and
O(KNtN

2
v ). Such memory requirement and computational complexity are highly excessive. In the next

section, the FFT scheme will be employed to alleviate this problem.

2.2. FFT Acceleration

To implement the FFT scheme to accelerate the matrix-vector multiplications of Eq. (14), the
entire scatterer must be enclosed within an auxiliary 3-D Cartesian grid with Nc = Nx × Ny × Nz

nodes. Assume the spacings of the auxiliary grid Δs are identical. The spatial basis functions
{fm(r), χ(r)fn(r),∇ · fm(r) − n̂ · fm(r),∇ · χ(r)fn(r)} (χ = κ, ν) are locally projected onto the auxiliary
grid and can be approximated as a linear combination of Dirac delta functions

fm(r) =
(M+1)3∑

u=1

[Γx
mux̂ + Γy

muŷ + Γz
muẑ]δ(r − ru)

χ(r)fn(r) =
(M+1)3∑

u=1

[Λχx
nux̂ + Λχy

nuŷ + Λχz
nuẑ]δ(r − ru)

∇ · fm(r) − n̂ · fm(r) =
(M+1)3∑

u=1

Γd
muδ(r − ru)

∇ · χ(r)fn(r) =
(M+1)3∑

u=1

Λχd
nuδ(r − ru). (18)

where M is the expansion order, and ru represents node u on the auxiliary grid. Γx,y,z,d
mu and Λχx,χy,χz,χd

nu

are the expansion coefficients which can be determined by using the multipole expansion [13]. When the
observation points are beyond a nominal distance from the primary source, the auxiliary basis function
can reproduce the equivalent transient fields of the primary source with high accuracy.

Once the spatial basis functions are projected onto the auxiliary grid, substituting Eq. (18) into
Eqs. (16) and (17), the matrix elements of Zk can be approximated by replacing the primary basis
functions with the auxiliary basis functions

Zκ
k(m,n) =

(M+1)3∑
u=1

(M+1)3∑
v=1

μ0w
(3)
k

4πR
[Γx

mux̂ + Γy
muŷΓz

muẑ] · [Λκx
nvx̂ + Λκy

nvŷ + Λκz
nvẑ] +

w
(1)
k

4πε0R
Γd

muΛκd
nv, (19)

Zν
k(m,n) =

(M+1)3∑
u=1

(M+1)3∑
v=1

μ0w
(2)
k

4πR
[Γx

mux̂ + Γy
muŷΓz

muẑ] · [Λνx
nvx̂ + Λνy

nvŷ + Λνz
nvẑ] +

w
(0)
k

4πε0R
Γd

muΛνd
nv, (20)

Here, R = |ru − r′v| is the distance between node u and node v. Thus, the far-field impedance matrices
Zfar

k can be expressed as

Zfar
k =

[
Γ†

x Γ†
y Γ†

z

]⎛⎜⎝
⎡⎢⎣G(3)

k Λκ
x

G(3)
k Λκ

y

G(3)
k Λκ

z

⎤⎥⎦+

⎡⎢⎣G(2)
k Λν

x

G(2)
k Λν

y

G(2)
k Λν

z

⎤⎥⎦
⎞⎟⎠+ Γ†

d

(
G(1)

k Λκ
d + G(0)

k Λν
d

)
, (21)

where † is the transpose of the matrix; Γx,y,z,d, Λκ
x,y,z,d and Λν

x,y,z,d represent the sparse projection
matrices of dimension Nc ×Nv, which contain (M +1)3 non-zero expansion coefficients in each column.
G(0),(1),(2),(3)

k are the 3D-Toeplitz matrices of dimension Nc × Nc whose elements are the free-space
Green’s function evaluated on the auxiliary grid{

G(0)
k (u, v),G(1)

k (u, v),G(2)
k (u, v),G(3)

k (u, v)
}

=

{
w

(0)
k

4πε0R
,

w
(1)
k

4πε0R
,
μ0w

(2)
k

4πR
,
μ0w

(3)
k

4πR

}
. (22)
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For the simplicity of discussion, we use ΓpGp
kΛ

p (p = 1, · · · , 8) to correspond to the eight matrix-vector
multiplications in Eq. (21). Since the 3D-Toeplitz nature enables the use of 3D-FFT to compute the
matrix-vector multiplication efficiently, the far-field interactions are expressed as the following unified
form

Zfar
k Dj−k =

8∑
p=1

ΓpGp
kΛ

pDj−k =
8∑

p=1

ΓpF−1
{
F{Gp

k} • F{ΛpDj−k}
}

, (23)

where F(·) and F−1(·) are the forward FFT and the inverse FFT, respectively. The dot represents
element-by-element multiplication.

For the far-field interactions, Zfar
k can provide good approximation. However, for the near-field

interaction, Zfar
k can not provide good approximation. The near-field impedance elements have to be

calculated directly through Eq. (15), and the erroneous contributions from Zfar
k needs to be removed

from the near-field interactions. Thus, the near-field impedance matrix is defined as

Znear
k (m,n) =

{
0, dmn > dnear

Zk(m,n) − Zfar
k (m,n), dmn ≤ dnear,

(24)

where dmn is the distance between the basis function m and n, and dnear is the near-field threshold.
Substituting Eqs. (23) and (24) into Eq. (14), Eq. (14) can be represented as

Z0Dj = Vj −
K∑

k=1

Znear
k Dj−k −

8∑
p=1

ΓpF−1

{
K∑

k=1

F{Gp
k} • F{ΛpDj−k}

}

= Vj −
K∑

k=1

Znear
k Dj−k −

8∑
p=1

ΓpF−1
{
V̂

p

j

}
. (25)

Here, the forward FFTs of the sequences Gp
k are pre-computed and stored before the simulation.

The forward FFTs of the vectors ΛpDj−k are computed and stored during the time-marching. For
1 ≤ p ≤ 8, one forward FFT of ΛpDj−1, one inverse FFT, and K element-by-element multiplication
operations are required per time step. These FFTs require O(Nc log Nc) operations per time step; the
multiplication of the two FFT sequences can take advantage of the temporal Toeplitz nature, which
costs O(Nc log2

2 K) operations per time step. Like the frequency-domain FFT-based algorithms [14, 15],
Nc is proportional to Nv. Hence, the total memory requirement and computational complexity are
O(KNv) and O(NtNv(log Nv +log2

2 K)), respectively. It should be noted that since all the elements are
real value, two real FFTs can be most efficiently performed using one complex FFT. In the practical
implementation, for the sequences Gp

k, only the forward FFT of G(0)
k needs to be stored, because the sum

of the element-by-element multiplication of G(l)
k can be evaluated recursively from the computations of

G(l−1)
k during the time-marching. For the BE formula, the sum of the element-by-element multiplication

can be represented as
K∑

k=1

F{G(l)
k } • F{ΛpDj−k} =

1
Δt

K∑
k=1

F
{
G(l−1)

k − G(l−1)
k−1

}
• F {ΛpDj−k}

=
1

Δt

{
V̂

(l−1)

j −
[
V̂

(l−1)

j−1 + F{G(l−1)
0 } • F{ΛpDj−1} − F{G(l−1)

K } • F{ΛpDj−1−K}
]}

, (26)

and for the BDF2 formula, the sum of the element-by-element multiplication can be represented as
K∑

k=1

F{G(l)
k } • F{ΛpDj−k} =

1
2Δt

K∑
k=1

F
{

3G(l−1)
k − 4G(l−1)

k−1 + G(l−1)
k−2

}
• F {ΛpDj−k}

=
1

2Δt

{
3V̂

(l−1)

j − 4
[
V̂

(l−1)

j−1 + F{G(l−1)
0 } • F{ΛpDj−1} − F{G(l−1)

K } • F{ΛpDj−1−K}
]
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+
[
V̂

(l−1)

j−2 + F{G(l−1)
0 } • F{ΛpDj−2} −

K∑
k=K−1

F{G(l−1)
k } • F{ΛpDj−2−k}

]}
. (27)

3. NUMERICAL RESULTS

This section presents numerical results that serve both to validate the above described scheme and
to demonstrate the accuracy and efficiency. All the simulations are performed on a shared memory
workstation equipped with Intel Xeon CPU E5-2603 1.8 GHz (using 4 processors in the OpenMP
parallelization) and 64 GB of RAM. The expansion order is M = 3, the truncation number is K = 120,
the auxiliary grid spacing is Δs = 0.08λmin, and the near-field threshold is dnear = 0.4λmin. The incident
wave is a modulated Gaussian plane wave parameterized as

Ei(r, t) = p̂ exp
[
− 1

2σ2
(τ − 8σ)2

]
cos(2πf0τ). (28)

Here, f0 is the center frequency, τ = t−r · k̂/c, and σ = 6/(2πfbw). fbw is the bandwidth of the incident
wave. k̂ and p̂ denote the travel direction and polarization direction of the incident wave.

Table 1. Comparison of the total CPU time and memory requirement.

Method Total CPU Time Memory Requirement
FDDM scheme (no acceleration) 3 h 55 s 52.8 GB

FDDM scheme 52 m 18.2 GB

In the first example, we consider a dielectric half-spherical shell. The inner and outer shell radius is
0.95 m and 1.0 m, respectively. The permittivity are ε1(r) = 2ε0 and ε2(r) = 1.5ε0, and the conductivity
are σ1(r) = 0.0055 s/m and σ2(r) = 0.0067 s/m. The incident pulse travels in k̂ = −ẑ direction and is
polarized along p̂ = −x̂. The center frequency and bandwidth are f0 = 200 MHz and fbw = 100 MHz.
The shell is discretized in terms of 10507 SWG basis functions. The time step size is Δt = 1/(20fmax),
and the number of time steps is Nt = 2000. The electric flux density for x̂ direction observed at the
point (0.0 m, 0.0 m, 1.0 m) computed using the BDF2 FDDM schemes are compared with those obtained
by the inverse discrete Fourier transform (IDFT) of the frequency-domain method-of-moments (MoM)
solution in Fig. 1. The back-scattered far-field signal for x̂ direction are compared in Fig. 2. The results
are in good agreement with each other. Table 1 exhibits the memory requirement and total CPU time
of the FDDM schemes. It can been seen that the FDDM scheme saves about 3 times memory and
4 times CPU time than that not accelerated by FFTs. With the size of the scatterer increasing, the
FDDM scheme will save further more CPU time and memory requirement.

Next, transient scattering from a homogenous dielectric almond with length of 2.52374 m is
analyzed. The permittivity is ε(r) = 2ε0 and the conductivity is σ(r) = 0.0055 s/m. The incident
pulse travels in k̂ = −ẑ and is polarized along p̂ = −x̂, has a center frequency of f0 = 200 MHz and
bandwidth of fbw = 100 MHz. The almond is discretized using 12918 SWG basis functions. The time
step size is Δt = 1/(20fmax), and the number of time steps is Nt = 2000. The electric flux density for x̂
direction at the point (−0.774 m, −0.135 m, −1.948 m) and the transient back-scattered far-field signal
computed using the BE and BDF2 FDDM schemes are shown in Fig. 3 and Fig. 4. The results also
agree well with those obtained by the IDFT of MoM solution.

Finally, transient scattering from 5-by-5 array of dielectric cubes is analyzed. The side length of each
cube is 0.15 m, and the distance between the centers of two adjacent cubes is 0.25 m. The permittivity
are ε1(r) = 2ε0 and ε2(r) = 3ε0, and the conductivity are σ1(r) = 0.0055 s/m and σ2(r) = 0.00255 s/m.
The incident pulse travels in k̂ = −ẑ direction and is polarized along p̂ = −x̂. The center frequency
and bandwidth are f0 = 400 MHz and fbw = 200 MHz. The array of dielectric cubes is discretized using
24808 SWG basis functions. The time step size is Δt = 1/(20fmax), and the number of time steps is
Nt = 4000. The temporal far-field signals are Fourier transformed into the frequency domain. The
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Figure 1. The electric flux density for x̂ direction
at (0.0 m, 0.0 m, 1.0 m) in a half-spherical shell.
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Figure 2. Transient back-scattered far-field
response scattered by a half-spherical shell.
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Figure 3. The electric flux density for x̂ direction
at the point (−0.774 m, −0.135 m, −1.948 m) in a
dielectric almond.

rE
x 

(V
/m

)

Time (ns)

0.2

0 50 100 150 250 300

0.6

0.4

-0.2

0.0

-0.4

-0.6

MoM
FDDM-based scheme (BE)

FDDM-based scheme (BDF2)

x

y

z

kinc

Figure 4. Transient back-scattered far-field
response scattered by a dielectric almond.
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Figure 5. Comparison of the bistatic RCS
obtained from the FDDM scheme and MoM for
a 5-by-5 array at 300 MHz.
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Figure 7. Comparison of the bistatic RCS obtained from the FDDM scheme and MoM for a 5-by-5
array at 500 MHz.

bistatic RCS was computed for φ = 0◦, and θ between 0◦ and 360◦. The RCS patterns at 300 MHz,
400 MHz, and 500 MHz obtained by the BDF2 FDDM scheme and MoM agree well with each other as
shown in Figs. 5–7.

4. CONCLUSIONS

In this paper, a fast finite difference delay modeling (FDDM)-based scheme for computing transient
electromagnetic scattering from lossy inhomogeneous dielectric objects is presented. This scheme is
formulated in the region of the scatterers by expressing the total fields as the sum of the incident field
and the radiated field due to both the polarization and conduction current density. The temporal
discretization based on first- and second-order backward difference makes the scheme absolutely stable.
Additionally, the memory requirement and computational complexity have been reduced remarkably
by using the fast Fourier transform algorithm. Numerical results about electromagnetic scattering from
lossy inhomogeneous dielectric objects are presented to illustrate the accuracy and efficiency of our
method. In our future work, the FDDM-based scheme will be developed to analyze transient scattering
from dispersive dielectric objects using integral equation.

ACKNOWLEDGMENT

This paper is supported by the Postdoctoral Science Foundation of China (Grant No. 2015M571654),
NSF-China and Guangdong Province Joint Project (Grant No. U1301252 ), and National Natural
Science Foundation of China (Grant No. 61272543).

REFERENCES

1. Rao, S. M. and D. R. Wilton, “Transient scattering by conducting surfaces of arbitrary shape,”
IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 56–61, 1991.

2. Shanker, B., A. A. Ergin, K. Aygun, and E. Michielssen, “Analysis of transient electromagnetic
scattering from closed surfaces using a combined field integral equation,” IEEE Trans. Antennas
Propagat., Vol. 48, No. 7, 1064–1074, 2000.

3. Wang, X. B., R. A. Wildman, D. S. Weile, and P. Monk, “A finite difference delay modeling
approach to the discretization of the time domain integral equations of electromagnetics,” IEEE
Trans. Antennas Propagat., Vol. 56, No. 8, 2442–2452, 2008.



Progress In Electromagnetics Research M, Vol. 45, 2016 25

4. Wang, X. B. and D. S. Weile, “Implicit Runge-Kutta methods for the discretization of time domain
integral equations,” IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4651–4663, 2011.

5. Wang, X. B. and D. S. Weile, “Electromagnetic scattering from dispersive dielectric scatterers
using the finite difference delay modeling method,” IEEE Trans. Antennas Propagat., Vol. 58,
No. 5, 1720–1730, 2010.

6. Gres, N., A. A. Ergin, B. Shanker, and E. Michielssen, “Volume integral equation based analysis
of transient electromagnetic scattering from three-dimensional inhomogeneous dielectric objects,”
Radio Sci., Vol. 36, 379–386, 2001.

7. Shanker, B., K. Aygun, and E. Michielssen, “Fast analysis of transient scattering from lossy
inhomogeneous dielectric bodies,” Radio Sci., Vol. 41, 39–52, 2004.

8. Kobidze, G., J. Gao, B. Shanker, and E. Michielssen, “A fast time domain integral equation based
scheme for analyzing scattering from dispersive objects,” IEEE Trans. Antennas Propagat., Vol. 53,
No. 3, 1215–1226, 2005.

9. Jung, B.-H., Z. Mei, and T. K. Sarkar, “Transient wave propagation in a general dispersive
media using the Laguerre functions in a marching-on-in-degree (MOD) methodology,” Progress
In Electromagnetics Research, Vol. 118, 135–149, 2011.

10. Yilmaz, A. E., D. S. Weile, J. M. Jin, and E. Michielssen, “A hierarchical FFT algorithm (HIL-FFT)
for the fast analysis of transient electromagnetic scattering phenomena,” IEEE Trans. Antennas
Propagat., Vol. 50, No. 10, 971–982, 2002.

11. Yilmaz, A. E., J. M. Jin, and E. Michielssen, “A fast Fourier transform accelerated marching-on-
in-time algorithm for electromagnetic analysis,” Electromagnetics, Vol. 21, 181–197, 2001.

12. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for
electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans.
Antennas Propagat., Vol. 32, No. 1, 77–85, 1984.

13. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive integral method for solving
large-scale electromagnetic scattering and radiation problems,” Radio Sci., Vol. 31, 1225–1251,
1996.

14. Zhang, Z. Q and Q. H. Liu, “A volume adaptive integral method (VAIM) for 3-D inhomogeneous
objects,” IEEE Antennas Wireless Propag. Lett., Vol. 1, 102–105, 2002.

15. Nie, X. C., L. W. Li, N. Yuan, T. S. Yeo, and Y. B. Gan, “Precorrected-FFT solution of the volume
integral equation for 3-D inhomogeneous dielectric objects,” IEEE Trans. Antennas Propagat.,
Vol. 53, No. 1, 313–320, 2005.


