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Simulating Wave Phenomena in Large Graded-Pattern Arrays
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Abstract—Efficient and accurate computer simulation of wave phenomena plays an important role in
invention, development, cost reduction and optimization of many systems ranging from ultra-high-speed
electronics to delicate nanoscale optical devices and systems. Understanding the physics of many modern
technological applications such as optical nanomaterials calls for the solution of very complex computer
models involving hundreds of millions to billions of unknowns. Integral equation (IE) methods are
increasingly becoming the method of choice when comes to numerical modeling of wave phenomena for
various reasons specifically since the introduction of FMM and MLFMA acceleration that tremendously
reduce the computational costs associate with naive implementation of IE methods. In this work,
a new acceleration technique specifically designed for the modeling of large, inhomogeneous, finite
array problems it introduced. Specifically we use the new method for modelling and design of some
metamaterial structures. At last, the presented method is used to study the some of the undesired
random effects that occur in metamaterial array fabrication.

1. INTRODUCTION

Wave phenomena and array structures are indispensable parts of today’s developments. The interest in
the study of waves in finite and infinite (pseudo-)array structures traditionally stemmed from crystal
physics and x-ray crystallography. Nonetheless, the advent of modern technologies such as optical
metamaterials (MMs), micro- and nano-electro-mechanical systems and acoustic MMs has boosted the
interest in efficient simulation methods for wave phenomena. Furthermore, many other applications,
such as the study of waves in complex and random media can also be formulated as wave phenomena
in randomly perturbed (pseudo-)array structures.

Unlike dissipative and local phenomena, waves are known for their ability to demonstrate
long distance interactions and to carry information encoded in their phase (latency) characteristics.
Computer modeling of continuum problems involves the discretization of geometrical models and
governing equations using various numerical techniques. Such numerical techniques are in general
classified into two major categories, differential-equation-(DE) and integral-equation-(IE) based
methods. In finite-difference time-domain (FDTD) methods, the time domain representation of the
governing partial differential equations is converted into a set of difference equations expressed over an
equally spaced grid [1, 2]. Other methods, such as the finite-element method (FEM), assign polynomial
representations [3] to the unknown physical quantity on an unstructured grid, such as a nonuniform
triangular/tetrahedral mesh and apply variational methods to find the optimal polynomial coefficients
that minimize the resulting residual in the governing equations [4]. Both FEM and FDTD are based
upon satisfaction of the governing equations in their DE form, and hence they are both regarded as DE
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based methods. On the other hand, IE based methods rely on the representation of the unknown physical
quantity in terms of unknown representative sources. Such representations are obtained by means of the
Green’s theorem and involve integral operators acting on the representative sources. Quite importantly
here, one must recognize that for wave phenomena the propagation delay is encoded in the Green’s
function (GF) of the problem [5, 6] in exact form. When it comes to computer modeling of waves, all
DE-based numerical simulation methods (FEM, FD) suffer from inaccuracies in modeling propagation
latency when numerically emulated waves travel in the model over increasingly long distances. This is
due to the fact that emulated waves exhibits different propagation characteristics, e.g., speed, depending
on the size and shape of the discretization used in the computer model, as well as on the propagation
direction of the wave. Due to this effect, also known as numerical dispersion [2, 7], waves in the computer
model tend to propagate faster or slower than they should. The situation becomes more pronounced
when structured grids are used, e.g., in the FDTD method with a uniform rectangular grid, since the
rectangular elements in the model are all of the same size and have the same orientation, resulting in a
coherent accumulation of error in the propagation delay. When the mathematical description of a wave
problem is Fourier-transformed into its equivalent frequency domain representation, the propagation
latency is transformed into a harmonic phase and thus it is customary to speak about the phase error
instead of the propagation latency error. Proper retrieval of phase information is key to the correct
modeling of wave phenomena for large domains [8] and this is one of the most prominent reasons that IE-
based techniques are favored over DE-based methods in computer modeling of light-matter interaction.
Many of the fundamental properties of waves, as opposed to local or diffusive phenomena like heat, can
be discerned by analyzing the behavior of the so-called free-space GF associated with the governing
partial differential equations. The GF for a scalar phenomenon in an isotropic medium is usually of the

form e−ȷkr

r , where for waves ℜk > 0 (this is also regarded as hyperbolic PDE with an oscillatory kernel),
and where for other local or diffusive phenomena one encounters ℜk ≤ 0 [8].

In essence, an IE-based method solves a linear system of equations where the system matrix inherits
many of its properties directly from the underlying GF of the problem. In a naive implementation,
computations with such a system of equations results in a computational complexity of O(N)2 just for
the construction and storage of the system of equations, where N is the number of discretization
elements. This is so, since one has to consider all possible interactions between all N discrete
components of the computer model. Nonetheless, modern computational techniques such as the fast
multipole method (FMM) [9–11], multilevel fast multipole method (MLFMM) [12], and FFT-based
accelerators [13, 14] have significantly reduced the computational costs to nearly linear functions of the
number of system unknowns N .

In this work, we present the application of a recently introduced method regarded as ‘Array Integral
Equation Fast Fourier Transform’ (A-IE-FFT) method [28], to some representative examples that
highlight the importance of the technique in the above-mentioned modeling applications. Moreover,
we will provide proof-of-concept simulation examples demonstrating its feasibility and highlighting its
remarkable computational efficiency in problems involving large arrays. A main advantage of this
approach is that in many problems it yields O(1) storage complexity for all near interactions, the
importace of which may be appreciated from the example problems presented in this work.

2. MATHEMATICAL FORMULATION

The numerical examples of presented in this work are based on IE solution of Maxwell’s equations. For
this purpose, an integral equation representation of the problem must be adopted. Since these examples
involve wave scattering in penetrable media, a JMCFIE formulation is adopted for this purpose [28, 29].
The formulation is briefly stated here for the sake of consistency. Using equivalence principle and field
representation formula, The following two equations each specify the total field balance on a closed
surface Γ separating two subdomain Ω1 and Ω2:
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In these equations, L −
i and K −

i are the limit of the electric and magnetic field operators as the

observation points approach, from outside of Ωi, the surface Γ enclosing Ωi and where ηi , µi/ϵi is
the impedance of the homogeneous medium Ωi. Here Ωi is a homogeneous and simply connected sub-
domain of the problem. Also, E inc

i and H inc
i are the electrical and magnetic components of the incident

fields. The electric field integral operator L ± is defined as
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where R⃗±
h , r⃗o − r⃗s ± hn̂i(r⃗o) is the vector connecting a source point at r⃗s to an observation point at r⃗o

(in the limit of h → 0), where g(R) , e−ȷk|R⃗|/(4π|R⃗|) is the homogeneous media GF with a wavenumber
k, and where n̂i is the surface normal on ∂Ωi pointing into Ωi at r⃗o. Similarly the magnetic field integral
operator K ± is defined as
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i J )(r⃗o) = lim
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With these definitions in place, the JMCFIE formulation is obtained from adding up the two
Equations (1) and (2) with two coefficient matrices as[

1 η1n̂1×
n̂1× +η1

]
A1 +

[
1 η2n̂2×

n̂2× +η2

]
A2. (5)

Since this the focus of this article is more on the new applications of the array-IE-FFT (A-IE-FFT)
method, we refrain from diving too deep into the method itself and refer the interested reader to [28].
However, with (5) at hand, similar to other IE solvers a surface discretization of the integral equation
results in a matrix equation of the form [Zij ][xj ] = [yi]. Therefore, the solution of problems involving
complex geometries leads to the solution linear system with large number of unknowns. Using direct
factorizations methods, the cost associated with solving this system will become prohibitively expensive,
i.e., proportional to the cubic power of the number of unknowns. Hence, the solution has to be found
by means of iterative (optimization) methods. Loosely speaking, in an iterative method, each iteration
requires calculating the action of on a given guess solution. In essence, this is equivalent to observing the
field due to every source on every observation basis. Thus, using iterative matrix solvers, the solution
process boils down to calculating the action of [Zij ] on a sequence of guess vectors, and hence, being
able to efficiently calculate the action of [Zij ] on a given guess vector will be critical. Using the A-IE-
FFT [28] method, this is achieved extremely efficiently for an important class of array-like problems as
it is evident from the examples presented in this work. A detailed discussion on the A-IE-FFT method
will deviate the discussion from the main intent of this article, i.e., important application of the method
in large array MM design. The following section, however, the cons and the pros of this method are
briefly discussed. A detailed presentation on the A-IE-FFT method can be found in [28].

3. PROS AND CONS OF A-IE-FFT METHOD

The A-IE-FFT method is a hybrid surface integral equation method specifically designed for fast
and efficient modeling of MM array problems. Naive implementation of the IE methods results in
undesired computational complexity of O(N2) and O(N3). However, this problem has been resolved
with the introduction of fast multiple method (FMM) [9–11] followed by multi-level versions of FMM
that can deliver O(N log(N)) complexity. Other IE acceleration techniques based on FFT, low rank
representation and hierarchical matrices [18, 19] were also developed in parallel to FMM. Obviously
enough, each of these methods offer superior performance over the others when applied to the right
type of problem. It is the job of the computer analyst to identify, develop and implement the most
suitable tool or method for a given problems. In this spirit, successful application of a computational
electromagnetic simulation tool to full-scale MM problems requires the observation of certain critical
aspects associated with class of problems:

(i) Pronounced level of near field interactions as opposed to far field interactions.

(ii) Sub-wavelength size building blocks.
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(iii) Deep sub-wavelength size features.

(iv) Geometry repetition and (pseudo-)array structure.

(v) Large aperiodic structures consisting of tens of thousands of MM cells or building blocks.

The A-IE-FFT method, is a hybrid accelerated surface IE method that uses a hybridization of
the hierarchical matrix method with a novel FFT accelerator that is built around the above-mentioned
aspects of MM problems. A key in A-IE-FFT’s efficiency is the use of a 6-level Toeplitz matrix instead
of the conventionally known 3-level Toeplitz matrix used in FFT based IE accelerators [14]. Here, the
extra three levels in the construction of the Toeplitz matrix correspond to the dimensions of the array
structure as depicted in Fig. 1. This modification, eliminates the need for the near-field correction
encountered in conventional IE-FFT method [14]. Moreover, observing that MM building blocks are
essentially designed to measure smaller than the wavelength, the near field matrices used to represent
the coupling between neighbouring building blocks are subject to the low frequency condition that
allows for their efficient compression using the hierarchical matrix method [19]. Finally, the building-
block based construction of the problem allows for recycling of building block information. This last
feature, is of course a common advantage of many domain decomposition techniques. Another important
feature that is integrated into the A-IE-FFT solver is the use of the equivalent surface (ES) method
to encapsulate the building block details (without loss of accuracy) into the minimal set of unknowns
that can determine the array-wide interactions [16, 17] and often significantly reduces the cost of Krylov
iterations.

As depicted in Fig. 1, in A-IE-FFT method first the object of interest is dissected into small
pieces and each piece is wrapped in an ES, on which, it is possible to solve the scattered field from
the sub-scatterer solely in terms of the incident field distribution on the ES. Hence, by eliminating the
unknowns associated with scatterer parts encapsulated in ESs, the calculation of the action of [Zij ]
will be equivalent to coupling the field from every ES box into every ES box, which means that the
computational cost of order O(N2) the operation is of order, N being the number of sub-scatterers.
Similar to other IE acceleration methods including FMM [10–14], the couplings then can be classified into
two groups, near (in this case between immediate neighboring boxes) and far: Fig. 1(b) symbolically
depicts how one near coupling is done from one cell to another immediately neighboring cell while
Fig. 1(c) shows how far coupling are implemented from individual sub-scatterers (or cells) to the A-IE-
FFT grid and then back the cells. Although the sub-scatterers may have totally different geometries,
the ESs can be chosen such that they look identical from outside. This choice, with respect to solution
of array problems, leads to very important advantages if we classify the interactions between system
components at the ES-to-ES level:

• FFT has been traditionally used to reduce the cost associated with handling of matrices arising
from IE methods. An issue with FFT-based acceleration of IE methods is the loss of accuracy
for near interactions, which has to be compensated by some other correction method [13, 14]. The
presented A-IE-FFT method utilizes a six-level Toeplitz matrix structure [15] to eliminate the need
for this near correction.

• Quite often, a large array problem consists of a small set of building blocks. Therefore, a small
number of matrix blocks specifying the interaction of an ES with various building blocks need to
be calculated; Fig. 2, shows a model of random media consisting of randomly distributed spherical
cavities inside a denser medium. A very large random array of such media can be realized from a
finite number of building blocks and the random nature of the model can be preserved by a random
placement of the building blocks in the array. Thus, the self matrix storage can often be constant
with respect to array size. Fig. 2, presents a typical example for problems in which a random
media can be realized as the result of randomly concatenating instances of a fixed set of building
blocks. The importance of such problems, however, is better understood when we realize that such
problems are encountered in various fields, ranging from the study of optical diffusers used in LCD
backlighting to propagation of seismic wave in porous media.

• By means of a fictitious enclosing boundary or an ES, the coupling between each box and its
immediate neighbors needs to be calculated and stored only for 26 = 3 × 3 × 3 − 1 cases as it is
independent of its enclosed sub-scatterer [16, 17]. This is in contrast with other methods such as
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(a)

(b)

(c)

Figure 1. Block diagram representation of the
A-IE-FFT method, (a) fictitious boxes signifying
the subdivision of the problem in A-IE-FFT.
The arrows are showing some of the ES-to-ES
couplings that occur in the array. (b) Handling
of near interactions in A-IE-FFT. The number
of these is proportional to the number of boxes
since every box has finite number of neighbors.
(c) Handling of far interactions in A-IE-FFT.
The number of coupling operations from building
blocks to ES’s (and vice-versa) is equal to the
number of boxes.

(a)

(b)
(c)

(d)

(e)

(f)

(e)

Figure 2. Random porous media with
114.8million unknowns consisting of randomly
sized and distributed air bubbles in a dense dielec-
tric background medium with a dielectric constant
of ϵr = 9. The field is excited with an electric
dipole perpendicular to the plane of the image.
(a) The complete model. (b) A slice of (a). (c) A
smaller portion of (b). (d) One of the spheres in
the model depicting the higher-order curvilinear
mesh. (e) Normalized real part of the tangential
magnetic field plotted on a section of the media
as depicted in (a). (f) The twelve random build-
ing blocks use for the construction of the complete
model.

MLFMA where the near-field coupling storage grows linearly, i.e., with N being the number of
MLFMA boxes [12].

• As depicted in Fig. 1, usually only the interactions between immediate neighbouring boxes must
be treated as near interactions. This implies that, given that all ES boxes are the same, only 26
(3 × 3 × 3 − 1) types of neighboring box-to-box coupling matrices need to be computed. These
matrices can be highly processed and compressed using methods such as the hierarchical matrix
representation [18, 19] thus reducing the cost of their storage and application. The choice of
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identically shaped ES comes as a natural consequence of the array-like nature of the problem.
This is particularly straightforward when the problem is made from disjoint scatterers. However,
this restriction can also be alleviated by means of (touching) domain decomposition techniques as
well as the use of a dual coarse-fine discretization grid for the ESs.

4. RESULTS

4.1. Metamaterial Lens

The concept of digital MM is an analogue to the ideas behind Boolean algebra that lead to the invention
and development of the digital computer, which despite the systematic complexity, operate on the
incredibly simple concepts of Boolean algebra and digital logic. It is envisioned and shown that limiting
the choices of materials used in the design and fabrication of MM systems, leads to an analogous
simplicity that is key to the successful realization and fabrication of complex MM systems. Specifically,
a proper mixture of only two elemental materials can lead to effective material parameters different
from the original ones. Hence, we use the concept of digital MMs to the realization of an optical lens
at the nanometer length-scale. The optical lens is essentially a means to perform Fourier transforms
(FFTs) to real time optical signals and hence the merits of realizing a lens at this scale is directly
tied to the importance of Fourier transform in performing various computational and signal processing
tasks. The lens design presented here achieves desired material parameters by means of manipulating
the geometric configuration of subwavelength inclusions made from two materials, i.e., silver and a
moderate dielectric material. A 2D equivalent of this concept has already been introduced in [20]
but a 3D version had not been examined due to the lack of efficient computational tools that made

(b) (a)

(d)(c)

Figure 3. The process for numerical retrieval of equivalent material properties using (a) a numerical
solver capable of solving doubly periodic infinite problems, (b) extraction of reflection and transmission
data over a frequency range, (c) matching the reflection and transmission data to that of an analytical
infinite slab model and finally obtaining the equivalent constitutive parameters as obtained in (d).
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such numerical analysis nearly impossibly to archive. Using the A-IE-FFT solver, however, a full-wave
analysis of the complete structure can be carried out, allowing for detailed examination of potential
design challenges and bottlenecks. The 3D digital MM building blocks used in this design are made
from two possible configurations of spherical core-shells, i.e., silver-coated dielectric cores and and
dielectric-coated silver cores.

4.1.1. Bulk Properties

Bulk material properties for core-shell arrays can be obtained via analytical methods provided that
building block dimensions are sufficiently smaller than the operation wavelength. In this design,
however, a lattice periodicity of dx = dy = dz = 92nm is used which at the operating frequency of
f = 640THz measures 1

5λ0, λ0 = 468 nm being the free space wavelength. Hence, the constitutive
material parameters of the equivalent bulk matter shall be obtained by means of numerical retrieval,
i.e., matching the transmission and reflection of infinite periodic arrays of the individual building blocks
to that of an infinite slab with the same thickness to seek out constitutive material parameters. Here, as
depicted in Fig. 3, the transmission and reflection for a periodic configuration of a 6 layer periodic array

(a)

(b)

(c)(d)

(e) (f)

(g)

Figure 4. Digital lens, 346.6million unknowns. (a) The complete core-shell lens excited with a dipole
source on the axis of the lens, (b) a quarter of the lens enlarged, (c)–(e) as depicted in B, these are small
segments of the lens cut open to reveal the core-shell construction. The green surfaces are the outside
boundary to metal region and the red surface are the outside boundary to the dielectric region. (f) A
different cut of E also depicting the high-order curvilinear mesh, a key to reducing computational cost
(g) real part of the y-component of magnetic field in a constant x plane a indicated in A, (h) general
construction of a core-shell building block.
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Table 1. Numerically retrieved material properties for various core-shell configurations at f = 640THz.
Note that negative imaginary parts imply losses due to the choice of eȷωt ansatz. rc signifies core radius.

rc Core Shell ℜϵr ℑϵr ℜµr ℑµr

31.99 Die Ag 1.17 −4.7E-3 0.978 3.4E-3

30.44 Die Ag 1.06 −3.0E-3 0.982 3.7E-3

29.35 Die Ag 0.96 −1.6E-3 0.988 4.7E-3

28.54 Die Ag 0.86 3.5E-3 0.991 5.8E-3

13.83 Die Ag 2.66 −0.1172 0.283 1.8E-2

12.72 Die Ag 1.62 −0.2593 0.420 7.5E-2

27.27 Die Ag 0.66 1.2E-2 0.970 −7.3E-3

4.910 Die Ag 3.42 1.5E-2 0.752 9.6E-4

26.61 Ag Die 3.08 3.7E-2 0.782 −1.9E-3

23.40 Ag Die 2.78 4.2E-2 0.806 −3.1E-3

21.11 Ag Die 2.51 4.1E-2 0.829 −3.6E-3

19.31 Ag Die 2.28 3.7E-2 0.849 −3.9E-3

17.76 Ag Die 2.09 3.3E-2 0.866 −4.5E-3

16.28 Ag Die 1.94 3.1E-2 0.874 −5.7E-3

14.76 Ag Die 1.67 −4.4E-2 0.944 3.2E-2

13.04 Ag Die 1.56 2.1E-2 0.939 4.3E-3

10.90 Ag Die 1.42 7.8E-4 0.953 2.7E-3

7.56 Ag Die 1.28 −3.4E-3 0.969 2.9E-3

of core-shells with the fixed lattice size of 92 nm are obtained via full-wave simulation. For simplicity,
it is assumed that all building blocks are made of core-shells that share the same external radius of
33 nm while the core radius is varied as a control parameter to achieve the desired properties. Table 1
lists the achievable constitutive parameters by means of varying the core dimensions for two different
material configurations, one with silver-coated dielectric spheres and the other with dielectric-coated
silver spheres. For these models, the relative permittivity of silver and silica, ϵr,Ag = −6.55− ȷ0.08 and
ϵr,SiO2 = 2.24 were obtained from [21] and [22].

4.1.2. A 12-Layer Lens Design

This lens is realized using a 12 layer construction of core-shells with the same fixed lattice size of 92 nm
used in the retrieval process as mentioned in the previous section. The phase profile of the lens follows

∆ϕ = 2π
λ0
(
√
ρ2 + F 2−F ) where F and ρ, respectively denote the focal distance of the lens and the radial

distance from the center of the lens. All of the core-shells used in this design are made from dielectric
coated silver cores. Fig. 4, depicts the details of the geometrical design of the lens. At λ0 = 468 nm,
the lens is designed to have a full phase cycle with the focal distance of F = 17λ0 and thus the lens
measures 61 building blocks in diameter and consists of 45136 core-shell particles. The computer model
used for this problem is constructed from 36 different types of building blocks to cover the 360◦ phase
cycle with a resolution of 10◦. Depicted in Fig. 4(g), is the real part of the electrical field induced by an
x̂-oriented dipole source located at the focal point of the lens in the lower z < 0 half space. Fig. 4(g)
compares the induced field in presence and absence of the lens. As expected from the design, the digital
MM lens transforms the curved wavefront of the dipole source into a flat wavefront and this can be
confirmed by looking at the phase distributions at the input and output planes of the lens as it is shown
in Fig. 5. The numerical simulation in this section uses a set of 36 building blocks each consisting of
three core-shells arranged in a 61 × 61 × 4 lattice filled with 11284 cells (33852 core-shells). The final
linear problem involves solution of a linear system with 34, 664, 448 ES unknowns or total of 93, 184, 896
surface unknowns.
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(a) (b) (c)z = 0 nm z = 12×2 nm legend

Figure 5. Plot showing the phase of total Ex on the two planes right before and after the the 12 layer
lens. The tiny red arrow on the top signifies x̂ direction.

a(x)
b(y)

c(z)

Figure 6. Core-shell construction of a thin slice of the 6 layer lens starting from the center of the lens
(left) all the way to the outside edge. The green surfaces signify the exterior boundary of dielectric and
green surface signify the exterior boundary of silver. The upper three layers have been sliced through
to reveal the interior details. The a, b and c axes are parallel to x̂, ŷ and ẑ unit vectors. The figure
shows the evolution of building blocks starting from the center of the lens (on the left) all the way to
the outmost radius (on the right). See how the lens begins (at the center) with dielectric-coated silver
spheres and ends with silver-coated dielectric spheres.

4.1.3. A 6-layer Lens Design

The amount of phase variation one can achieve across a flat lens is a direct function of the range of
effective refractive index and the thickness of the lens. In an attempt to reduce the thickness of the flat
lens, one can extend the variety of building blocks by including silver-coated dielectric cores as it can
be seen from the thin slice shown view in Fig. 6. As evident from Table 1, this can extend the range
of achievable constitutive parameters and hence allow for achieving a complete 360◦ phase cycle while
reducing the thickness of the lens from 12 to 6 layers. The lens design attempted here consists of 6
layers of core-shells and measures 65 building blocks in diameter. Moreover, to examine how rapidly
the material properties can be varied before violating the local periodicity condition, a shorter focal
distance of F = 9λ0 is used for the design. The shorter focal distance results in a Fresnel type lens in
which more than one 360◦ phase cycles are covered. It is worthwhile mentioning that the shorter focal
distance results in more rapid phase variation particularly as we depart from the central portion of the
lens. Using the A-IE-FFT solver, a full wave simulation is adopted in which the lens is excited with
an x̂-oriented dipole source at the focal point in the lower z < 0 half space. Fig. 7, depicts the phase
distribution on the two planes right before and after the lens. By looking at the phase distribution on



136 Ansari Oghol Beig et al.

(a) (b) (c)z = 0 nm z = 12×2 nm legend

Figure 7. Plot showing the phase of total Ex on the bottom and top planes of the 6 layer lens. On the
bottom, the input phase due to the dipole covers two complete 360◦ phase cycles as expected from the
location of the dipole with respect to the lens. On the top plane, i.e., the output of the lens, the lens
has failed to produce the expected constant phase. The tiny red arrow on the top signifies x̂ direction.

the top plane of the lens, it is evident that the desired phase transformation has not been achieved. This
can be attributed to the rapid variation of building blocks which in turn violates the local periodicity
assumption. Referring to Fig. 7, two circular regions of undesired phase fluctuation are depicted by
white dashed lines (labeled as A and B). Strong undesired phase deviations occur in these two regions
that correspond to a rapid change in the core radius of the core-shell building blocks. Closer examination
reveals that A, corresponds to a change of core radius from 28 nm to 14 nm as one moves towards the
outer radius of the lens. Similarly in B, a core radius variation from 13 nm to 9 nm has occurred. One
possible remedy to this problem is, of course, to reduce the building block dimensions which is, among
other things, subject to limitations in nanometer scale fabrication. Nevertheless, using the A-IE-FFT
method, the designs can be easily examined and studied prior to investment in the fabrication of the
device.

4.2. Beam Tilting Metasurface

Metasurfaces are receiving widespread attention due to their ease of fabrication in planar structures
that lend themselves to existing fabrication tools and techniques. As a general guideline, metasurfaces
are designed to control or transform phase and/or amplitude of waves as the waves travel through a
sheet of finite thickness that often measures considerably smaller than the incident wavelength. The
finite thickness factor, is another practical merit in metasurface design that makes them amenable to
stacking allowing for realization of complex transformational optics systems.

4.2.1. Building Blocks

The metasurface presented in this section is operated at 200THz and consists of building blocks that
are arranged in a square lattice with lattice constant dx = dy = 400 nm (see Figs. 8(a)–(d)). The entire
structure is assumed to live in a background medium with ϵr = 2.25. As depicted in Figs. 8(g)–(h),
building blocks of the metasurface are made from single or concentric double loop configurations of
silver lying in the xy. In the initial model, the rings are designed to exhibit a 20 nm thickness along
the z direction. The inner and outer diameter of the loops are used as control parameters to achieve
desired phase and amplitude response. Hence, four control parameters (D1, D2, D3, D4) are given
per building blocks consisting of two concentric loops and two control parameters (D1, D2, 0, 0) are
given for building blocks consisting of a single loop. Since the individual building blocks measure much
shorter than the wavelength along the propagation direction of the incident field ẑ, they can be treated
as lumped elements with given admittance that can be controlled via the control parameters. The
correspondence between the control parameters and the effective admittances is obtained by means
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(a)

(b)

(c)

(d)

(e)

(f)

(h)

(g)

(i)

Figure 8. Beam tilter, 462–518million unknowns (a) Shadow view of the top layer of the three layer
structure of the beam-tilter, (b)–(c) zooming into smaller portions of the top layer, (d) the 3D view
corresponding to a smaller fraction of B (use of color only to enhance visibility), (e) zooming into a
smaller fraction of D while displaying the mesh on the rings and the ES, (f) further zooming into an
even smaller fraction of E to reveal the mesh on one of the building blocks, (g)–(h) basic concentric and
single ring building blocks, (i) far field intensity of the scattered field in the ϕ = 225◦ plane.

of numerical simulation of infinite periodic configurations of the individual loops. Hence, once again,
the assumption of local periodicity, which may be violated when the building blocks are integrated
into the final array, is key to the design procedure of the beam tilter. An initial examination of
the plasmonic rings using an infinite periodic lattice, indicates that a limited range of transmission
phase can be achieved using the single and double ring topologies [23, 24] depicted in Fig. 8(g) and
Fig. 8(h). Therefore, as shown in Fig. 8(D), a three-layer cascaded combination is used to realize a
complete 360◦ span of phase transmission while maintaining minimal return losses and high transmission
intensities [25–27]. Since a single layer of such loop array is not sufficient to provide the desired
transmission phase while maintaining a high level of transmission. Thus, three cascading layers of loop
configurations with a dielectric spacer medium and a spacing of λ/4 are used to achieve the desired
transmission phase and amplitude characteristics. The equivalent circuit model of one effective building
block is shown in Fig. 9. The equivalent circuit model is used to calculate the resulting transmission
phase and amplitude for a the given equivalent admittances of Y1, Y2 and Y3 = Y1 that can be controlled
via changing the geometric parameters of the individual (single/double) loop building blocks [25, 26].
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z z

Figure 9. Equivalent circuit model for the three
layer combination of λ

4 -separated building blocks.

ˆ(a)

(b)

transverse φ component

φ̂ component

Figure 10. Total electrical field above the beam
tilter on ϕ = 225◦ plane. The lens sits in a
−0.2µm < x < 40.2µm, −0.2µm < y < 40.2
region. Therefore, on the ϕ = 225◦ plane, the
region −0.282µm < ρ < 56.85µm is right above
the lens. Therefore, some unperturbed plane wave
propagating along ẑ can be observed on the left
and right tails of the image.

4.2.2. Array Design

Denoting the intended beam direction by means of spherical coordinates θ = θt = 30◦ and ϕ = ϕt = 225◦

and assuming λ is the propagation wavelength in the background medium, the intended beam must
exhibit a phase profile of γ = 2π

λ (sin(θt)∗cos(ϕt)+sin(θt)∗sin(ϕt))·(x, y) when observed on a z = constant
plane. Thus, the intention is to have the building blocks, i.e., the three layer combination, that reproduce
the aforementioned phase. Assuming the the local periodicity condition used in the design of the
building blocks is not going to be severely violated, the building blocks are selected and placed in a
finite 101 × 101 × 3 array where a small portion of the array is visualized in Fig. 8. The A-IE-FFT
solver is used to find the solution of the array in response to a plane incident field propagating along
θinc = 0 and ϕinc = 0. Fig. 10 depicts the resulting total and scattered field. As it can be in Fig. 8,
the peak at (kx, ky) = k0(± sin(θt) cos(ϕt),± sin(θt) sin(ϕt)) which is 8 dB above the other three bragg
modes, corresponds to the intended beam. The half power beam width along θ is as small as 1.5◦ as the
array measures 40× 40× 1

2λ
2 where λ is the propagating wavelength in the background medium. The

final simulation uses a set of 48 building blocks arranged in 101×101×3 = 30603 cells. The final linear
problem involves solution of a linear system with 94, 012, 416 ES unknowns or total of 462, 459, 664
surface unknowns.

4.2.3. Modeling Random Defects

The satisfactory results of Fig. 8 suggest that the proposed design can be a good candidate for actual
fabrication. However, regardless of the techniques used for fabrication, accurate fabrication of large scale
is prone to a variety of inaccuracies and defects the nature of which is highly tied to the actual method
of fabrication. Therefore, proper yield analysis is key to the actual verification of the design if it is
intended for real world fabrication. Without getting into fabrication specific details, here we perturbed
the initial design of the beam tilter as listed below. In the following, three important building block
design parameters, i.e., h or the thickness of the metal rings along ẑ, a = D1 and b = D2 in single
ring building blocks and a = D1 and b = D3 for double ring building blocks are perturbed while the
building blocks are deterministically and randomly displaced in the xy plane to account for fabrication
inaccuracy and inter-layer registration issues. Note that the sequence of the following perturbations
follows the sequence of their actual imposition.

(i) To account for registration inaccuracy, the center of all building blocks in the bottom layer, i.e.,
layer 0, is shifted by (∆x,∆y) = (−5 nm,−5 nm), the center of all building blocks in layer 1 is
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shifted by (∆x,∆y) = (−5 nm,+5nm) to account for registration inaccuracy and the center of
all building blocks in layer 2 is shifted by (∆x,∆y) = (+5nm,+5nm) to account for registration

inaccuracy. The shifts on layers 0 and 2 are along the x-y components of k⃗t while the shift in layer

1 is orthogonal to the x-y component of k⃗t, where k⃗t is the desired propagation vector for the tilted
beam.

(ii) In all of the building blocks of all three layers, h is randomly perturbed by 5%.

(iii) The initial a and b dimensions of all of the building blocks in layer 1 and 2, are respectively scaled
by a factor of 0.95 and 1.05 to reflect the fact that a separate process is used for their construction.

(iv) In all of the building blocks in layer 1 and 2, a and b are perturbed by 2.5%.

The far-field plot in Fig. 8, depicts the scattered far field intensity, i.e.,

10 log10

(
lim
r→∞

( r

e−ȷkr

)2
||Esca||2

)
,

plotted in a set of ϕ = constant planes. Obviously the strongest peak occurs in ϕ = 225◦ plane at θ = 30◦

and the two peaks at θ = 0◦ and θ = 180◦ correspond to the forward and backward scattered field.
The four peaks at θ = 30◦ and θ = 150◦ correspond (kx, ky) = k0(± sin(θt) cos(ϕt),± sin(θt) sin(ϕt)).
Obviously the peak at (kx, ky) = k0(± sin(θt) cos(ϕt),± sin(θt) sin(ϕt)) corresponds to the intended tilt
angle. Most importantly, this figure compares the far field response of the beam tilter under both the
perfect and the above-mentioned randomly perturbed design, indicating that such perturbations are
unlikely to have a major impact on the expected performance. From the view-point of computational
expense, however, the modeling of the randomness was achieved with a moderate increase in the overall
cost of the computation, since the randomness is directly translated to the presence of multiple, randomly
perturbed, realizations for each building block. As a result of these perturbations, the final problem
will use a set of 3 × 48 building blocks arranged in 101 × 101 × 3 = 30603 cells. The final linear
problem involves solution of a linear system with 94, 012, 416 ES unknowns or total of 518, 977, 696
surface unknowns.

5. COMPUTATIONAL STATISTICS

All numerical results presented in this work reflect highly challenging numerical problems that can be
handled using the A-IE-FFT method. Making direct comparison with other computational methods
and tools can be a difficult task. Thus, it is important to emphasize that the presented method is
aimed at improving the computational modeling for a specific class of problems, namely array-based
structures. In order to shed some light on the numerical complexity and the cost of solving these model
problems we enlist some of the associated computational statistics. All problems were solved on a dual
Xeon workstation with 16 physical CPU cores and the iterative solution process was terminated with a
residual error in the order of 10−5. Other detailed statistics can be found in Table 2 below. Note that
Krylov Dim is a parameter associated with the iterative solver that determines the dimension of the
iterative search space for the problem solution. The larger the Krylov Dim the better the convergence,
however, this comes at the cost of requiring more memory.

Table 2. Comparison of some computational statistics.

Problem
ES

Unknowns
cells

total

unknowns

solve

time

max

memory
iterations

Krylov

Dim

porous media 17,743,872 19× 19× 8 114,800,448 34 92GB 190 30

12 layer lens 93,184,896 12× 61× 61 346,64,448 20 85GB 120 20

beam tilt 58,757,760 101× 101× 3 462,459,664 170 138GB 620 45

beam tilt

(randomized)
94,012,416 101× 101× 3 518,013,552 219 125GB 665 30
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6. CONCLUSION

The A-IE-FFT is used for analysis and design of a family of optical MM structures for which the A-
IE-FFT method is expected to deliver high computational efficiency. Exploiting this efficiency, we have
been able to study and design complex MM systems. The concept of digital MM [20] design is thus,
for the first time, applied to 3D structures. Also using the A-IE-FFT method, we have been able to
conduct a basic study on the effects of random imperfections introduced in MM fabrication of a large
and complex MM lens consisting of tens of thousands of building blocks.
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