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Ke Xiao*, Huiying Qi, Sheng Shui Wang, Ying Liu, Liang Ding, and Shun-Lian Chai

Abstract—In this paper, we introduce an efficient algorithm to analyze metamaterials (MTM), which
can be finite periodic structures with tight coupling between nearby cells. Firstly, the algorithm,
based on method of moments (MoM), uses hybrid volume-surface integral equation (VSIE) to analyze
composite dielectric-conductor objects, then, the characteristic basis function method (CBFM) and
precorrected-fast Fourier transform (p-FFT) algorithm are combined to accelerate the calculation
of equations, based on which, metamaterials composed of connected periodic cells can be analyzed
efficiently.

1. INTRODUCTION

Metamaterials are defined as a class of electromagnetic materials which may take artificial structures in
form or exist in natural composites, in which, left-handed media, photonic band gap (PBG) materials
and anisotropic media have attracted considerable attention in the past one or two decades, these
MTMs have been widely utilized in microwave and optical applications including circuit, waveguide and
antenna designs.

Many methods based on Floquent’s theorem have been applied to analyze MTMs, where the
periodic structures are assumed to be infinitely periodical, then, dispersion relations and Bloch
impedance are obtained to describe the characteristics of MTMs. However, infinite periodic structures
do not exist, and dimensions of periodic cells are finite. In order to capture the mutual couplings and the
fringe effects accurately, full-wave numerical methods should be applied, such as MoM, finite-difference
time-domain method (FDTD), and finite element method (FEM). To calculate fields existing in an
unbounded region, MoM is usually the preferred choice, because only region with current distribution
need be considered, so that fewer unknowns are needed. Among integral equations solved by MoM,
hybrid volume-surface integral equation (VSIE) [1] is a popular numerical method to consider composite
objects. But to solve a dense matrix equation, the conventional MoM requires O(N3) computational
complexity and O(N2) memory, which is inefficient for electrically large targets.

To render large problems manageable, fast solvers have been utilized to reduce the requirement
of memory and CPU time to an extent, such as conjugate gradient fast Fourier transform method
(CG-FFT), fast multipole algorithm (FMM) or multilevel fast multipole algorithm (MLFMA), adaptive
integral method (AIM) and p-FFT. Among them, when the VSIE together with p-FFT is used, the
complexity and memory are on the order of O(N) ∼ O(N1.5) and O(N log N) ∼ O(N1.5 log N),
respectively.

However, MTMs are always composite structured materials composed of subwavelength building
blocks [2]. When MoM is applied to analyze MTMs, it is difficult to capture the objects using RWG
or SWG basis functions with typical dimensions on the order of λ/10 ∼ λ/20. In order to analyze such
problems accurately, dense meshes should be applied which may lead to an ill-conditioned problem [3].
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The method of using high-level basis function provides a fast and stable way to solve the large-
scale and ill-conditioned problems, such as macro basis function (MBF), synthetic basis function (SBF),
Shannon basis functions, sub-entire domain (SED) [4], characteristic basis function (CBF) proposed by
Prakash and Mittra [5]. Many studies have been carried out for improvement of the CBFM in recent
years [6–8]. In [9, 10], CBFM was combined with fast solvers such as AIM and MLFMA, and applied to
analyze the scattering of dielectric finite periodic arrays; however, the space between nearby dielectric
balls is always set larger than 0.2λ0, which is beyond the distance of the near-far field threshold, where
the correction of coupling between nearby cells is not needed to be considered. In [11], Xiao et al. used
a near-correction model to describe the interaction between nearby cells of periodic arrays, then finite
arrays with dense coupling between cells can be analyzed efficiently and accurately; however, models
composed of cells connected with each other without any gaps in both dimensions, as shown in Fig. 1(b),
cannot be considered properly [11].

(a) (b)

Figure 1. (a) Periodic structure with gaps between nearby cells. (b) Periodic structure without gaps
between nearby cells.

In this paper, an algorithm combining CBFM and p-FFT (P-CBFM/p-FFT) is applied to analyze
periodic arrays with no gaps between cells. Because MTMs can be decomposed to periodic sub-
wavelength cells with tight coupling between nearby cells, P-CBFM/p-FFT algorithm can be applied
to analyze the scattering and transmission characteristics of some typical finite photonic crystal. The
results of synthetic study show that the algorithm has good performance in accuracy and efficiency.

2. P-CBFM/P-FFT ALGORITHM TO ANALYZE METAMATERIALS

2.1. Metamaterials Problems

MTMs are always composed of periodic subwavelength cells. Due to coupling between nearby cells,
there are two main forms of MTMs as shown in Fig. 1, where Fig. 1(a) shows MTMs with gaps between
cells, and Fig. 1(b) depicts MTMs without gaps between cells. Boundary condition between nearby
cells should be considered.

2.2. P-CBFM/p-FFT Algorithm

To analyze MTMs composed of periodic cells shown in Fig. 2(a), uniform grids are employed to cover
the whole object after being discretized into elements. It should be noted that the positions of grid
points are required to be periodic compared to cells. It is suggested to chose less than λ/7 spacing
between grid points. For simplicity, only sparse grid points are plotted here.

The common flow of the algorithm can be expressed in a series of steps shown in Fig. 2(b) and
listed below.
1) Firstly, we follow the CBFM algorithm to generate the CBFs of unit-cell [3]. The original geometry

for solution is decomposed to smaller periodic cells. For each cell, a set of plane waves incident
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Figure 2. (a) Periodic cells in uniform grids. (b) Steps of the P-CBFM/p-FFT algorithm.

from overestimated angles are applied, and singular value decomposition (SVD) is used to derive
the CBFs of each cell.

2) Projection: The second step is the construction of the grid projection operator, using which, virtual
currents and charges distributed on generated CBFs are projected to auxiliary uniform grid.

3) Convolution: The vector and scalar potentials at uniform grid points are efficiently computed by
Fourier transform method.

4) Interpolation: After potentials on the auxiliary grid are calculated, the virtual potentials on CBFs
can be obtained through interpolation.

5) Precorrection: The above process is only accurate for far-field interactions, and for nearby
interactions, it is necessary to implement the precorrection on nearby CBFs. For this periodic
problem, the procedure can be simplified, as shown in Section 2.4.

At last, the generalized minimum residual method (GMRES) and the incomplete LU factorization
with thresholding (ILUT) preconditioner are combined and applied to get the solution of matrix
equation.

2.3. Generation of CBFs

When CBFM is applied, we should firstly decompose the whole object into periodic cells as shown in
Fig. 1, then CBFs are specially constructed to represent the electromagnetic characteristic of each cell,
where plane waves incident from different angles are applied [3].

Consider metamaterials with 2-direction (2-D) periodical cells. The near correction model is applied
here to retrieve CBFs [11], as shown in Fig. 3(a), and nine types of basis functions are defined according
to their relative positions in the 2-D periodical structure. Then all types of CBFs can be obtained by
solving a single small problem as shown in Fig. 3(b) [4] by considering the effects of nearby cells.

2.4. Calculation of Matrix-Vector Multiplication Using P-FFT Algorithm

To consider the scattering of a periodic array with M elements, the number of unknowns for one unit
cell is assumed to be Ns. A set of incident plane waves from NPO angles are utilized as excitations,
and a response matrix JCBFs can be obtained, of which, the redundant information can be eliminated
by using singular value decomposition (SVD) as

JCBFs = LDRT (1)

where the columns of L are called left singular vectors, and the columns of R are depicted as right
singular vectors of JCBFs. D is a diagonal matrix containing singular values in the diagonal elements
in decreasing order. Then, since values in D typically span over several orders of magnitude, we define
a threshold to retain the singular values with number of K. Now, we use the first K columns of L as
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(a) (b)

Figure 3. (a) Typical basis functions in the periodic structures. (b) Nine kinds of basis functions [11].

the novel generated basis functions (CBFs) and denoted as B (a form of matrix), so the response of
mth unit-cell under any excitation can be expressed as

Jm ≈ BmIC
m (2)

in which, IC
m denotes the unknown coefficients according to the novel constructed CBFs, and Bm depicts

the CBFs matrix of mth unit-cell. Then, the solution of the original problem can be expressed as

[I]N×1 =

⎡
⎢⎢⎣
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... 0

. . .
...
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(3)

where, N denotes total unknowns of the original problem, while Nc = M ×K depicts the sum of CBFs
of the equivalent problem.

The matrix equation depending on novel constructed CBFs can be written as⎡
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where
1) ZC

mn denotes the mutual coupling matrix of mth cell and nth cell.
2) [IC ] = [ (IC

1 )T (IC
2 )T · · · (IC

M )T ]T is the unknown coefficients of CBFs of the entire problem.
3) [V C ] = [ (VC

1 )T (VC
2 )T · · · (VC

M )T ]T is the novel exciting vector related to CBFs, in which
if the original exciting vector to mth cell is Vm, then, the virtual exciting vector to CBFs can be
expressed as VC

m = BT
mVm.

However, it is inefficient to calculate the impedance matrix in Eq. (4) directly by MoM. In order to
utilize the periodical features, p-FFT algorithm is applied to calculate the matrix-vector product, and
the procedure can be expressed as

ZC
mn = SC

mHCWC
n + PC

mn (5)
in which, based on CBFs, WC

n is the projection matrix of nth cell, HC the convolution operator, SC
m

the interpolation matrix of mth cell, and PC
mn the precorrection operator between cells m and n. They

are derived as follows
WC

n = WnBn (6)

HC = H (7)

SC
m = BT

mST
m (8)

PC
mn = BT

mPmnBn (9)
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where, based on the original basis functions (such as RWG, SWG), Wn denotes the original projection
matrix of nth cell, H the convolution operator, Sm the interpolation matrix of mth cell, and Bn the
CBFs matrix of nth cell defined in Eq. (2). However, it requires a lot of memory and CPU time
to calculate Bn, WC

n , SC
m and PC

mn one by one to different cells, and accordingly, we introduce the
procedure as follows for the simplification:

1) At most nine types of Bn are needed to be calculated and saved, shown in the last section;
2) Since Wn and Sm are independent of n and m, it is only needed to calculate WC

n and SC
m once;

3) If there are only sparse coupling between nearby cells of the periodical array, it is only needed to
consider the near-field correction between nearby elements in one cell, so PC

mn is non-zero only
if m = n and is unchangeable with the sequence number. However, if dense coupling exists
between nearby cells, near-field correction between them should be considered, which will be further
discussed in the next section, and similar to the calculation of CBFs matrix Bn, nine types of PC

mn
should be considered.

Using the properties enumerated above, the calculation requirements in projection, interpolation,
and precorrection procedures can be reduced efficiently.

2.5. Near-Field Correction between Nearby Cells

Similar to the generating of CBFs as shown in Fig. 3, near-field correction model to nearby cells can
be constructed. To a 2-D periodic array, there are nine types of near-zone interactions between cells
according to the relative positions [11] as shown in Fig. 4, where, all the near-cell interactions can be
included in Fig. 4(c), hence only 9 types of precorrection operator are demanded to be calculated and
stored.

(a) (b) (c)

Figure 4. Nine kinds of near-cell relationship, in which, observation point is in (a) corner cell (4 cases),
(b) edge cell (4 cases), and (c) interior cell (1 case).

2.6. Consideration of Periodic Arrays with No Gaps

To consider periodic structures with no gaps between nearby cells, the normal component of electric
displacement D should be continuous through the boundary, then SWG basis functions whose common
faces located on the boundary should be analyzed particularly. Fig. 5 shows two conjoined tetrahedrons
Tn and T′

n, located in periodic nearby cells A and B, respectively, and the common face an is located
on the boundary “S” of nearby cells.

Ordinarily, basis functions belonging to cell A and cell B are defined separately, and two SWG basis
functions are applied in Tn and T′

n, respectively. However, when we consider periodic cells with no
gaps, the normal component of D in the two basis functions should be continuously through boundary
“S”, which means that the two basis functions are not independent. Hence, when we calculate the
interaction between nearby cell A and cell B, the electric displacement D of them should be assumed
continued, which is taken into account in the process of near-field correction as discussed in Section 2.3.
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Figure 5. SWG defined on the boundary between nearby cells.

Figure 6. Geometry of the 4 × 4 array.

3. EXAMPLES

Firstly, let us investigate the scattering properties of a 4 × 4 array located in the x-y plane due to the
incidence of plane wave, and the incident angle is along φ = 90◦ and θ = 150◦, with the electric field
polarized in x-direction. As shown in Fig. 6, each cell is a mushroom-like structure, with a relative
permittivity of the substrate equal to 2.6. Two square patches are mounted on the top and bottom
of the substrate, connected by a center-located via. Dimensions of the unit-cell include h = 0.05λ0,
L = 0.3λ0, R = 0.05λ0 (λ0 is the wavelength in vacuum). The calculated results are compared with the
one from p-FFT. The bistatic RCSs are compared in Fig. 7(a), while Fig. 7(b) and Fig. 7(c) compare
the magnitudes of Poynting vector in a plane located at a distance of z = 0.1λ0 above the object. Good
agreements confirm the accuracy of the P-CBFM/p-FFT algorithm for the problem. Additionally,
Table 1 shows the resources for the calculation, where, the P-CBFM/p-FFT needs only 3.1% of the
p-FFT memory and takes 12.86 minutes of computation time. Additionally, Fig. 8 records the relative
errors against the iterative times, in which, the convergence speed of P-CBFM/p-FFT is better than
that of p-FFT, and only 7 times are needed for convergence.

Table 1. Resources for the calculation of example I.

Method
Number of
unknowns

Per iteration
(sec.)

Total memory
(Mb)

Total time
(min.)

P-FFT 12,400 3.91 207.42 23.59
P-CBFM/p-FFT 2.78 6.47 12.86

Secondly, we further investigate the scattering of a photonic-crystal superlenz (PSS) presented
in [12] and analyze the PSS using algorithm of this paper. Its dimensions are shown in Fig. 9, where
a = 0.192λ0, as =

√
2a, R = 0.3a. The operation frequency is 300 MHz, and the height of every
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(a)

(b) (c)

Figure 7. RCS and magnitude of Poynting vector calculated for array shown in Fig. 6. (a) Bistatic
RCSs in x-z plane and y-z plane. (b) Magnitude of Poynting vector calculated by p-FFT. (c) Magnitude
of Poynting vector calculated by P-CBFM/p-FFT.

dielectric cylinder is 2a, with a relative dielectric constant equal to 14.
The near-field distribution of a 5 × 3 (x × y) array is calculated to illustrate the accuracy of the

algorithm, as shown in Fig. 10, where the observation plane is located at the plane of z = 0.42 m. Good
agreements are obtained. Then, a 20×4 (x×y) array is analyzed according to the effect of a z-axial line
source, which is located at a position of (x = 2.7134 m, y = −0.06715 m). Table 2 shows the calculation
resources of the two algorithms, where for the 5×3 array with 118,082 unknowns, the P-CBFM/p-FFT
yields a memory saving of more than 98%, and the CPU time is reduced to only 8.26% that of the
p-FFT method without loss of accuracy. The distinction is more obvious in favor of P-CBFM/p-FFT
when the number of unknowns increases.

Table 2. Resources for the calculation of example II.

Method Number of unknowns Total Memory (Mb) Total time (hour)
p-FFT (5 × 3 array) 118,082 1,200 3.39

P-CBFM/p-FFT (5 × 3 array) 118,082 20.93 0.28
P-CBFM/p-FFT (20 × 4 array) 701,760 161.15 2.26

Then, we investigate the field distribution at the plane z = 0.2 m. In Fig. 11, the sampled Poynting
energy (in dB) is shown, and we can see that in the other side of the array, a focus point exists, which
is also the conclusion in [12].

All the examples are calculated by Fortran in a computer with 32 bit windows system, four Inter(R)
Core(TM)2 Quad CPUs, and memory of 4GB.
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Figure 8. Relative error against the iterative
times for example I.

(a)

(b)

Figure 9. Geomerty of the PSS. (a) Planform.
(b) 3-D view.

(a) (b)

Figure 10. Magnitude of Poynting vector calculated for 5 × 3 array shown in Fig. 9. (a) Magnitude
of Poynting vector calculated by p-FFT. (b) Magnitude of Poynting vector calculated by P-CBFM/p-
FFT.

Figure 11. Magnitude of Poynting vector calculated by P-CBFM/p-FFT for the 20 × 4 array.
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4. CONCLUSIONS

In this paper, an effective algorithm, based on integral equation named VSIE, is provided to analyze
typical MTMs. The periodic feature of the MTMs can be utilized to construct the CBFs, and the near
interaction part is considered to correct the coupling between nearby cells, so that the dense coupling
between nearby cells and the fringe effect can be considered correctly. At the same time, p-FFT solver
can be combined to analyze the interactions between CBFs quickly, and the periodicity is applied to
construct the projection, interpolation, and precorrection operator of p-FFT. Additionally, the electric
displacement is set to be continuous through the boundary between touched cells. Based on the above
improvements, MTMs with touched dielectric between nearby periodic cells can be analyzed quickly
and accurately. At last, two examples are provided and analyzed, in which the accuracy and efficiency
of P-CBFM/p-FFT are demonstrated.
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