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A New Class of Adaptive CFAR Methods for
Nonhomogeneous Environments

Anatolii A. Kononov*, Jin-Ha Kim, Jin-Ki Kim, and Gyoungju Kim

Abstract—The paper introduces a new class of adaptive CFAR methods to cope with the problem of
outliers due to the presence of clutter edges and interfering targets. A fundamental distinction between
the proposed approach and existing adaptive CFAR approaches is that in order to maintain robust
performance the former uses information on positions at which estimated outlier-free cells appear in the
full reference window and the statistics of the sample in the cell under test. The performance of one
of the possible implementations of new adaptive CFAR methods is studied and compared with that of
an existing adaptive CFAR approach. The results show significant advantages of the proposed class of
adaptive CFAR methods in both the false alarm regulation property and detection performance.

1. INTRODUCTION

Constant false alarm rate (CFAR) methods are widely adopted in radar target detection when all
the parameters in the statistical distributions characterizing background are not known and may be
nonstationary. To maintain the false alarm rate at specified constant level CFAR methods set the
detection threshold on a cell-by-cell basis using estimates of total interference (noise-plus-clutter) power
in the vicinity of the cell under test (CUT). These estimates are derived by processing a set of samples
of the background in the range interval surrounding the CUT. Such a group of samples is herein
referred to as reference samples or full reference window. Under the assumption that the background is
homogeneous, i.e., represented by samples that are statistically independent and identically distributed
random variables, the basic method, known as cell averaging (CA) CFAR, is to set a detection threshold
based on averaging the samples from a predetermined full reference window centered on the CUT. As
is well known when the background is not homogeneous the detection and false alarm performance of
the CA-CFAR method are seriously degraded [1, 2].

Two major operational environments, when the assumption of homogeneous reference window is
violated, are those presented by regions of clutter power transition (clutter edges) and by interfering
targets (multiple target environments). The presence of interfering targets or clutter edges is known to be
a particular problem in CFAR processing because of lack of homogeneity in the reference window [1, 2].
The samples that appear in the reference window due to the presence of clutter or interfering targets
and destroy the homogeneity are hereinafter referred to as outliers.

Various modifications have been applied to the CA-CFAR method to improve the detection and
false alarm performance in nonhomogeneous environments. One class of such modifications is known
as robust CFAR methods that are devised to achieve acceptable CFAR performances under specific
heterogeneous conditions [1, 2]. This class includes widely known CFAR methods such as greatest-of
CA-CFAR, smallest-of CA-CFAR, trimmed mean (TM) or censored (CS) CFAR, and order statistics
(OS) CFAR. The robust CFAR methods have a significant shortcoming: they rely heavily on a priori
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knowledge of the interference environment, which is required for determining the most suitable CFAR
method and its parameters.

More attractive class of CFAR techniques that are devised to overcome the problem of a prior
uncertainty includes adaptive CFAR methods [1], which adaptively adjust CFAR parameters based on
the measured data rather than on the assumptions concerning the environment. Over the past three
decades, quite a number of adaptive CFAR methods have been reported in the literature. Analysis of
the published adaptive methods shows that the majority of them completely ignore information on the
positions of reference samples representing homogeneous background around the CUT while others use
rough form of this information. Thus the approaches proposed in [3–6] are based on estimating the
position of only one of the reference samples which indicates the location of a possible clutter edge or
a group of the samples due to interfering targets.

This paper introduces an approach that gives rise to a new class of adaptive CFAR methods. A
distinctive feature of this approach is that it is essentially based on using all available information
on the positions at which the estimated outlier-free samples appear in the full reference window
and the statistics of the sample in the test cell. We analyze the performance of one of the possible
implementations of the proposed approach and demonstrate its advantages against an adaptive CFAR
detector suggested in [3]. That adaptive detector is only one of the known adaptive CFAR schemes
employing coarse information on location of the outlier-free reference samples, which addresses both the
clutter edge and interfering targets problem.

Generally speaking, three modifications of adaptive CFAR methods have been proposed in [3]. First
one, which is referred to as GO/SO CFAR detector (it selects either a group of the smallest samples
or a group of the largest samples in the full reference window), is designed to address the clutter edge
problem. Second one, which is referred to as ACMLD (automatic censored mean level detector), is
designed to address the problem of interfering targets. Third modification that is referred to as GTL-
CMLD (generalized two-level censored mean level detector) addresses both clutter edge and interfering
targets problem.

The methods proposed in [3] operate on the measured data with no assumption concerning the
number of outliers in the full reference window. To estimate the number of outliers and to determine
whether the CUT is in the outlier or in the clear (noise) region all these methods employ an automatic
censoring procedure that operates on the ordered sequence of the reference samples, which are ranked
in ascending order according to their magnitudes.

With the GO/SO CFAR detector the following decision rule is used to determine whether the
CUT is in the clutter or in the clear, provided that the total number of reference samples M is even:
if the estimated number of outliers r̂ < M/2 the CUT is decided to be in the clear, otherwise the
CUT is decided to be in the clutter. If the CUT is declared to be in the clear, the samples that
supposedly represent the clutter region are censored. Otherwise, if the CUT is declared to be in the
clutter, the samples that supposedly represent the clear region are censored. The uncensored samples,
which supposedly represent the homogeneous noise background around the CUT, are then combined to
estimate the average background power that is used to generate the adaptive detection threshold. It
should be noted that the decision rule used in GO/SO CFAR detector and that in other adaptive CFAR
detectors proposed in [3] assumes that only one clutter edge is present in the full reference window.

The ACMLD uses the same censoring procedure to estimate the number of outliers; however, in
this case the higher ordered samples are always censored since the CUT sample is assumed in [3] to be
identically distributed with the noise in all other reference samples.

To cope with both of the clutter edge and interfering targets problem the GTL-CMLD detector
combines the decision rules of the GO/SO CFAR and the ACMLD detector. So, in case of the GTL-
CMLD the censoring procedure may run two times. If on the first run the estimated number of outliers
r̂ < M/2, the decision rule of the GO/SO CFAR detector is applied, i.e., the CUT decided to be in the
clear, then M − r̂ samples (that supposedly are from the clear) are used in computing the detection
threshold and the censoring procedure stops, otherwise, i.e., if r̂ ≥ M/2, the censoring procedure runs
again using the r̂ ordered samples (that supposedly represent all outliers) as a new censoring window
and the decision rule of the ACMLD is applied. That is, if the censoring procedure determines that
these r̂ samples contain q̂ outliers, i.e., samples that are drawn from a distribution with higher average
power, then all these q̂ outliers are censored and only r̂ − q̂ samples from a distribution with lower
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average power are used in computing the detection threshold since the CUT is assumed to be always
from the distribution with lower average power. If the censoring procedure determines that all the r̂
samples are drawn from one distribution then no samples are censored and all these r̂ samples are used
in computing the detection threshold.

Although the GTL-CMLD detector, as well as the GO/SO CFAR and ACMLD detector, operates
with no a priori information on the number of outliers these techniques are not free of disadvantages.
In this Section we discuss these CFAR detectors upon ideal condition that the number of outliers is
estimated with no errors. Further in Subsection 2.3 we prove that the errors in estimating the number
of outliers may result in serious degradation of the false alarm regulation property of the GTL-CMLD
detector.

The ACMLD is impractical in scenarios when clutter edge is present in the reference window. Since
this detector always selects the samples from a distribution with lower average power its false alarm
performance in clutter may seriously be degraded if the number of outliers due to clutter in the reference
window exceeds M/2 (one of the possible scenarios is shown in Figure 1). In this scenario the CUT is in
clutter but with high probability the detection threshold is computed using the samples from the clear.
Hence, the detection threshold is unacceptably lowered and the false alarm probability is significantly
increased.

The detection and false alarm performance of the GO/SO CFAR detector may also degrade
seriously. For instance, in multiple target environments its detection performance degrades unacceptably
when the number of outliers exceeds M/2 and the CUT is in the clear as is shown in Figure 2(a). This
scenario is typical for marine radars operating in fishing areas overcrowded with small ships and boats.
From Figure 2(b), it is seen that the GO/SO CFAR detector declares with high probability that the

A
v
er

ag
e 

p
o
w

er
 

M+1 range cells 

Clear

Clutter (r+1 cells) 

Range

– CUT position
– CUT-adjacent cell on the left (index M/2)

– CUT-adjacent cell on the right (index M/2+1)

M/2 M/2+1
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CUT is in the outlier region. Hence, the outliers are used to estimate the average background power.
The average power of outliers may be significantly higher than that of the CUT. Thus, the threshold is
raised unnecessarily and therefore the probability of detection as well as the false alarm probability is
significantly lowered.

It is also clear from the previous discussion that the detection and false alarm performance of
the GO/SO CFAR detector are seriously degraded when two clutter edges are present in the reference
window, the number of outliers exceeds M/2 and the CUT resides in the clear. This kind of scenario is
shown in Figure 3(a). Moreover, the false alarm probability of the GO/SO CFAR detector is intolerably
increased in case of two clutter edges even when the number of clutter samples in the reference window
is less than M/2 and the CUT is in the clutter as shown in Figure 4(a).

In this scenario, the censoring algorithm with high probability decides that the CUT is in clear
although the CUT is actually in the clutter. This is obvious from Figure 4(b) representing the ordered
reference samples that used as an input to the censoring algorithm. Hence, the noise samples are used
to estimate the average background power. The average power of noise samples may be significantly
lower than the actual clutter power in the CUT. Thus, the threshold is significantly lowered and the
false alarm probability is increased intolerably.

The GTL-CMLD detector is free of the disadvantages of the ACMLD and GO/SO CFAR detector
in scenarios similar to that shown in Figure 1 (on the assumption that the number of outliers is estimated
with no error) but it has the other disadvantages of the GO/SO CFAR detector in scenarios similar
to those shown in Figure 2(a), Figure 3(a) and Figure 4(a). For example, consider scenario depicted
in Figure 5(a), where the interfering targets are present in the full reference window in addition to the
clutter. From Figure 5(b), it is seen that according to the decision strategy adopted for the GTL-CMLD,
the CUT is decided to be in the clutter even if it actually is in the clear. Thus, the threshold is raised
unnecessarily and the detection probability, as well as the probability of false alarm, is significantly
lowered.

The main idea of this paper originates from the intention to get rid of disadvantages of the GTL-
CMLD detector by incorporating in CFAR detection process such additional information that allow
ensuring robust false alarm and detection performance in the presence of two or more clutter edges
and/or in multiple target environments. Obviously, for achieving robust false alarm performance it
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is necessary to find within the full reference window a subset of homogeneous (outlier-free) reference
samples having a distribution which is equal to that of the CUT and to use that subset for computing
the adaptive threshold. This subset of reference samples is referred to as adaptive reference window.

To determine the proper adaptive reference window our approach suggests using the magnitude of
the sample in the test cell and all the subsets of outlier-free samples along with corresponding subsets
that represent the positions (indices) at which the samples of each subset appear in the full reference
window. For this reason, CFAR methods based on the proposed approach are referred to as adaptive
Outlier -Free Positions Identification CFAR (OFPI-CFAR) algorithms.

In Section 2, we introduce a concept of outlier-free (homogeneous) regions when the outliers
due to clutter and interfering targets are present in the full reference window and consider one
possible implementation of the proposed adaptive OFPI-CFAR. In Section 3, the performance of this
implementation is evaluated and compared with that of the GTL-CMLD detector. To evaluate the
performance we carry out statistical simulations using an approach suggested in Appendix D. Finally,
we conclude our discussions in Section 4.

2. ADAPTIVE OFPI-CFAR PROCESSING

2.1. Possible Implementation

The main concept of the adaptive OFPI-CFAR is to employ the statistics of the CUT sample and all
available information on the positions of the homogeneous (outlier-free) samples around the CUT in
order to properly identify an adaptive reference window which is free of outliers due to clutter edges
and/or interfering targets. It is clear that using outlier-free adaptive reference window allows eliminating
the detrimental effect of outliers on the adaptive CFAR threshold and, finally, on the detection and false
alarm performance. To characterize the homogeneity of the full reference window we use the notions of
the noise (clear), clutter, and interferer regions for the reference samples, which we denote by Sn, Sc,
and Si, respectively. Figure 6 illustrates these regions using a sequence of sorted reference samples with
no samples intermixing between different regions for the general case when the outliers due to clutter
edge and interfering targets are present in the full reference window; r denotes the true total number of
outliers (clutter plus interfering targets) and q is the true number of outliers due to interfering targets
(average clutter power is assumed to be lower than that of interfering targets). In particular cases, e.g.,
when only clutter outliers are present the homogeneity of the full reference window is characterized by
the clear and clutter regions Sn and Sc. Obviously, that if no clutter samples and interfering targets are
present in the full reference window its homogeneity region is represented by all the reference samples.

Figure 7 shows a possible implementation of the adaptive OFPI-CFAR. The input samples xi,
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(i = 1, 2, . . . , Nr) are a succession of Nr samples of radar return signals, representing successive range
cells in a scene or successive range cells and Doppler cells associated with each range cell if information
on a scene is presented in the form of range-Doppler data matrix. Each of these return signals may be
optionally the result of “within beam integration”, whereby samples in each range or range-Doppler cell
resulting from successive radar returns within the radar antenna dwell time are integrated.

In Figure 7, the CUT is at the center of a group of M + 2G + 1 cells, where G is the number of
optional guard cells on either side of the CUT, the purpose of the guard cells being to avoid the spill-over
of the target signal in the full reference window. The samples from 2G guard cells and the CUT sample
Xo are not included in the full reference window, while the M samples from the reference cells represent
the full reference window X = {X1, X2, . . . , XM}, where Xi are assumed to be independent random
values, but not identically distributed when outliers are present, and the CUT sample Xo is assumed
to be statistically independent with all Xi, i = 1, 2, . . . , M .

The OFPI-CFAR detector in Figure 7 includes ordering procedure that generates a vector of
reference samples sorted in ascending order according to their magnitudes Xord = [X(1), X(2), . . . , X(M)],
X(1) ≤ X(2) ≤ . . . ≤ X(M), and a set of indices B = {b1, b2, . . . , bM}, which indicates the positions of the
ordered samples in the full reference window before ordering, i.e., X(i) = Xbi

, 1 ≤ i ≤ M . To implement
the ordering procedure the OFPI-CFAR detector can use any of widely known sorting algorithms [7],
for example, so-called “quicksort” algorithm. These sorting algorithms are also known to provide an
index set indicating the positions of sorted numbers in an initial unsorted array.

The vector Xord and the set B are further used to estimate the number of outliers r and q in the
full reference window and to retrieve from the set B the following subsets of indices (r̂ and q̂ stand
for the estimates of r and q, respectively): a) Bn = {b1, b2, . . . , bM−r̂} that supposedly contains the
indices (positions) of the reference samples in the region Sn; b) Bc = {bM−r̂+1, bM−r̂+2, . . . , bM−q̂} that
supposedly contains the positions of the samples in the region Sc; c) Bi = {bM−q̂+1, bM−q̂+2, . . . , bM}
that supposedly represents the positions of the samples that belong to the Si. The subsets Bn, Bc

and Bi are used to generate the corresponding vectors Zn, Zc and Zi from the vector Xord. The
vector Zn of length Ln = M − r̂ is determined as Zn = {X(1), X(2), . . . , X(M−r̂)}, hence it supposedly
represents the reference samples from the region Sn. The vector Zc of length Lc = r̂ − q̂ is determined
as Zc = {X(M−r̂+1), X(M−r̂+2), . . . , X(M−q̂)}, hence it supposedly represents the reference samples
from the region Sc. The vector Zi = {X(M−q̂+1), X(M−q̂+2), . . . , X(M)} of length Li = q̂ supposedly
represents the reference samples from the region Si.

The CUT sample Xo, estimated number of outliers r̂ and q̂, and the subsets Bn, Bc and Bi

are sent to the decision procedure for determining which of the vectors Zn, Zc and Zi represents the
homogeneous background in the vicinity of the CUT. After making a decision an adaptive reference
window Z = [Z1, Z2, . . . , ZL] is generated as that one of the vectors Zn, Zc and Zi, which is declared to
represent the homogeneous background around the CUT.

The adaptive detection threshold T is computed as T = αP̂av, where P̂av is an estimate of the
average background power derived from the vector Z and α is the threshold multiplier (CFAR constant)
extracted from a stored look-up table containing the values of the threshold multipliers which are
precomputed for the predetermined false alarm probability PFA as a function of the length of adaptive
reference window L and in concordance with statistical distribution of the estimate of the average
power derived from the adaptive reference window Z. A non-zero output detection signal is generated
whenever Xo ≥ T .

2.2. Estimating the Number of Outliers

Various approaches can be used for the purpose of estimating the number of outliers r and q that appear
in the full reference window due to the clutter and interfering targets (see Figure 6). A straightforward
way is to use the statistical hypothesis testing. This approach can be implemented by using the
step-by-step censoring procedures introduced in [3] for the GTL-CMLD detector and in [5] for the
generalized CMLD detector. Other attractive approach, proposed in [6] for estimating the number of
interfering targets, is based on the information theoretic criteria principle. In the present paper, we
use an estimation algorithm employing a step-by-step censoring procedure, which is similar to that
suggested in [3, 5]. In contrast to [3, 5], where the censoring procedure uses the CA-CFAR principle, in
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the present paper this procedure is based on the OS-CFAR principle. The algorithm for estimating the
number of outliers is further referred to as (r, q)-estimation algorithm.

Figure 8 shows flow-chart of the (r, q)-estimation algorithm. As can be seen, this algorithm operates
on the ordered sequence of the reference samples X(1) ≤ X(2) ≤ . . . ≤ X(M). Firstly, the algorithm
estimates the total number of outliers r in the full reference window using the following step-by-step
censoring procedure. At the m-th step of the censoring procedure, m = 1, 2, . . . , M − 1, the (m + 1)-th
ordered sample X(m+1) is compared against the censoring threshold Tm = βmX(Rm), where βm is the
censoring threshold multiplier at the m-th step, X(Rm) is the Rm-th sample selected from the censoring
reference window X(1), X(2), . . . , X(m+1), and Rm is the representative sample rank at the m-th step.
If for the first m − 1 steps the adaptive censoring thresholds Ti = βiX(Ri), i = 1, 2, . . . , m − 1 have
not been exceeded and at the m-th step X(m+1) ≥ Tm = βmX(Rm) then the total number of outliers is
estimated as r̂ = M −m. It is clear that r̂ = 0 and q̂ = 0 when the procedure reaches the last step,
i.e., m = M − 1 and X(M) < TM−1. If r̂ >0, the (r, q)-estimation algorithm proceeds to the estimation
of q using as an input the vector Yord = [Y1, Y2, . . . , Yr̂], where Yi = X(m+i), i = 1, 2, . . . , r̂, instead of
the vector Xord and the same censoring procedure. The number of outliers q is estimated as q̂ = r̂ − k,
where k is that first integer at which Yk+1 ≥ βkYRk, k = 1, 2, . . . , r̂ − 1.

The subsets Bn, Bc, Bi and the vectors Zn, Zc, and Zi are computed from the following equations


if r̂ = 0
Bn =B, Bc =∅, Bi =∅
Zn =Xord, Zc =∅, Zi =∅,

else


if q̂ = 0
Bn = {b1, . . . ,bM−r̂}, Bc = {bM−r̂+1, . . . , bM}, Bi =∅
Zn = {X(1), . . . ,X(M−r̂)}, Zc = {X(M−r̂+1), . . . , X(M)}, Zi =∅

else
Bn = {b1, . . . ,bM−r̂}, Bc = {bM−r̂+1, . . . , bM−q̂}, Bi = {bM−q̂+1, . . . , bM}
Zn = {X(1), . . . ,X(M−r̂)}, Zc = {X(M−r̂+1), . . . , X(M−q̂)}, Zi = {X(M−q̂+1), . . . , X(M)}

end
end

(1)

where the symbol ∅ stands for the empty set. The length (number of elements) of the vectors Zn, Zc,
and Zi is given by Ln = M − r̂, Lc = r̂ − q̂, and Li = q̂, respectively.

The censoring threshold multipliers βm, m = 1, 2, . . . ,M − 1 are precomputed as OS-CFAR
constants for the predetermined probability of false censoring Pfc and corresponding values of Rm

assuming homogeneous censoring reference window with exactly m + 1 samples, i.e., assuming that the
outliers are infinitely strong and Xm+1 is the last outlier-free sample. This assumption has also been
used in [5] for deriving the censoring threshold multipliers based on the CA-CFAR principle. The values
of Rm, m = 1, 2, . . . , M − 1 are specified based on the optimum representative rank corresponding to
the minimum of the average decision threshold (ADT) [8]. The ADT values are computed under the
condition that the false alarm probability is equal to the probability of false censoring Pfc. Equation for
computing the optimum representative rank is derived in Appendix A. The derivation of the censoring
threshold multipliers βm based on the OS-CFAR principle is given in Appendix B, where the values of
Rm and corresponding values of βm are summarized in Table B1 for M = 32, Pfc = 10−3 and 10−4.

2.3. Decision Strategy

To maintain robust false alarm and detection performance any adaptive CFAR detector has to identify
the true homogeneous region in the vicinity of the CUT. Once such a region is determined, an adaptive
reference window Z properly representing homogeneous background can be selected and, therefore, the
robustness of CFAR performance is achieved.

The GTL-CMLD detector [3] uses the following decision strategy

if r̂ < M/2 → Xo ∼ Ŝn else → Xo ∼ Ŝc (2)

where Ŝn and Ŝc are the estimated clear and clutter regions, respectively, which are represented by the
corresponding vectors Zn and Zc, and the notation X ∼ S reads as “X is in S” and means that the
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Figure 9. Clutter patch of a limited extent in the
full reference window. (a) True number of clutter
samples r < r1 < Lcl

min. (b) Reference samples
after sorting, r̂ = r and q̂ = 0. (c) Reference
samples after sorting, r̂ > r and q̂ = r. (d)
Reference samples after sorting, r̂ = r and q̂ < r.

distribution of a random variable X is supposedly identical to that of samples in a vector Z associated
with the region S (the samples in Z are assumed to have identical distributions). Formula (2) represents
the decision strategy from [3] in terms of the estimate r̂; in [3] this strategy is formulated in terms of
the index of the test m. The relationship between m and r̂ is given by m = M − r̂. As follows from
(2) the decision strategy adopted in the GTL-CMLD detector is to declare Xo ∼ Ŝn whenever r̂ < M/2
and Xo ∼ Ŝc whenever r̂ ≥ M/2. Declaring the CUT is in Ŝc for r̂ = M/2 is suggested in [3] in order to
avoid the situation when excessive number of false alarms may result if the CUT is actually in clutter
but it is declared to be in the clear. The decision strategy represented by formula (2) is further referred
to as the CMLD-DS.
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A critical issue for the GTL-CMLD detector based on the CMLD-DS is significant degradation in
the false alarm regulation property for a clutter power transition with very large clutter-to-noise ratio
CNR (CNR À 1) when r ≥ M/2 (in this case the CUT resides in the clutter). To prove this we consider
the scenario depicted in Figure 1, where M = 32 and r = 20. Since very large CNR is assumed, with
probability one the clutter samples occupy the 20 top ranks after ordering. Obviously, because of false
censoring the number of clutter samples in the full reference window is not always estimated correctly
(since CNR À 1 errors caused by failure in clutter edge detection can be neglected). Let’s assume
that only one false censoring occurs when the censoring procedure runs for the noise samples occupying
the lowest 12 ranks. Then, with some probability P1 that is close to the probability of false censoring
(P1 ≈ Pfc) the censoring procedure stops at some m (1 ≤ m ≤ 11), and we get r̂ = M −m > 20. Then,
the procedure continues and with probability one (CNR À 1) the censoring procedure declares q̂ = 20.
Therefore, we obtain the following three estimated regions Ŝn, Ŝ c and Ŝ i represented by the vectors
Zn = {X(1), . . . , X(m)}, Zc = {X(m+1), . . . , X(12)} and Zi = {X(13), . . . , X(32)}, respectively. These
three estimated regions incorrectly represent the true homogeneous regions Sn and Sc represented by
the vectors Zn = {X(1), . . . , X(12)} and Zc = {X(13), . . . , X(32)}, respectively. As one can see, due to
false censoring the true clear region Sn is incorrectly represented by the two estimated regions Ŝn and
Ŝ c, while the true clutter region Sc is identified as Ŝ i. Since r̂ > M/2 = 16 the CMLD-DS declares that
Xo ∼ Ŝc. The corresponding vector Zc = {X(m+1), . . . , X(12)} contains samples from the clear region
Sn, hence, the CFAR threshold is incorrectly lowered and the corresponding conditional probability of
false alarm Pfa1 ≈ 1 because the CUT is in clutter and CNR À 1.

If no false censoring occurs when the censoring procedure runs for the noise samples occupying the
lowest 12 ranks the following two outcomes for the estimation results are possible: i) r̂ = 20 and q̂ = 0
in case of no false censoring when the censoring procedure tests the clutter samples, which occupy the
top 20 ranks after sorting, and ii) r̂ = 20 and q̂ = k <20 if the false censoring occurs for the clutter
samples with probability P3, where P3 ≈ Pfc. For the case i), we have correctly estimated homogeneous
regions Ŝn = Sn and Ŝ c = Sc. Hence, the threshold is properly computed from the clutter samples
and the corresponding conditional probability of false alarm Pfa2 is equal to the design probability of
false alarm, Pfa2 = PFA. For the case ii), we have three estimated regions represented by the vectors
Zn = {X(1), . . . , X(12)}, Zc = {X(13), . . . , X(M−k)} and Zi = {X(M−k+1), . . . , X(32)}, respectively. In
this case the vector Zc contains a subset of clutter samples from the true region Sc, hence, the CFAR
threshold is properly estimated and the corresponding conditional probability of false alarm Pfa3 = PFA.
Taking into account that no false censoring occurs with probability P2 = 1 − P1 − P3 ≈ 1 − 2Pfc and
using the law of total probability yields for the overall probability of false alarm P o

FA

P o
FA = P1 × Pfa1 + P2 × Pfa2 + P3 × Pfa3 ≈ Pfc + (1− 2Pfc) · PFA + Pfc · PFA.

As follows from this equation,P o
FA ≈ Pfc when PFA ¿ Pfc, i.e., the overall probability of false alarm

P o
FA increases significantly with respect to the design value PFA. For instance, assuming Pfc = 10−4

and PFA = 10−6 yields P o
FA ≈ 10−4 + 0.9998 · 10−6 + 10−4 · 10−6 ≈ 10−4 À 10−6. Thus, the false alarm

regulation property of the CMLD-DS significantly degrades, especially if PFA ¿ Pfc, in the presence of
clutter edge when CNR À 1, r ≥ M/2 and the CUT is in clutter.

The CMLD-DS decision strategy, which is used by GTL-CMLD detector, does not employ any
detailed information on the positions of the outlier-free reference samples. As discussed previously,
ignoring this information may result in serious performance degradation (see also Subsection 3.2). In
contrast to the GTL-CMLD detector, this information is essentially employed by the OFPI-CFAR
methods.

This subsection is not intended to derive a kind of optimum decision strategy to be used in the
OFPI-CFAR for identifying the true homogeneous regions in the full reference window. Rather, it
illustrates some possible ways of using the sample in the test cell and information provided by the
estimates r̂, q̂ and the subsets Bn, Bc, and Bi in order to define such a decision strategy that ensures
the robustness of the OFPI-CFAR performance in spite of inevitable errors in estimating the number



154 Kononov et al.




1 [if r̂ < r1 → Xo ∼ Ŝn

else if r̂ ≥ r2

2




if q̂ = 0 → Xo ∼ Ŝc

else

3




if Xo ≤ Zn(Ln) and [(M/2) ∈ Bn or (M/2 + 1) ∈ Bn] → Xo ∼ Ŝn

else

4




if(M/2) ∈ Bn and (M/2 + 1) ∈ Bn → Xo ∼ Ŝn

else if [(M/2) ∈ Bn and (M/2 + 1) ∈ Bi]
or [(M/2) ∈ Bi and (M/2 + 1) ∈ Bn] → Xo ∼ Ŝn

else if(M/2) ∈ Bc or (M/2 + 1) ∈ Bc → Xo ∼ Ŝc

else → Xo ∼ Ŝi

end
end

end
else

5




if Xo ≤ Zn(Ln) and [(M/2) ∈ Bn or (M/2 + 1) ∈ Bn] → Xo ∼ Ŝn

else

6




if(M/2) ∈ Bn and (M/2 + 1) ∈ Bn → Xo ∼ Ŝn

else if [(M/2) ∈ Bn and (M/2 + 1) ∈ Bi]
or [(M/2) ∈ Bi and (M/2 + 1) ∈ Bn] → Xo ∼ Ŝn

else if(M/2) ∈ Bc or (M/2 + 1) ∈ Bc → Xo ∼ Ŝc

else → Xo ∼ Ŝi

end
end

end

(3)

of outliers. It is clear that any reasonable decision strategy has to aim for maximizing the probability
of correct decision on which one of the estimated homogeneous regions adequately represents the true
homogeneous background around the CUT. In this paper we propose one of the reasonable decision
strategies, which is given by a set of rules presented in formula (3), where r1 and r2 are fixed integers.
The decision strategy given by formula (3) is further referred to as the OFPI-DS. Having decided which
one of the estimated regions Ŝn, Ŝ c or Ŝ i represents the homogeneous background around the CUT the
adaptive reference vector Z of length L is readily determined using the following rule

if Xo ∼ Ŝn → Z = Zn, L = Ln = M − r̂

if Xo ∼ Ŝc → Z = Zc, L = Lc = r̂ − q̂

if Xo ∼ Ŝi → Z = Zi, L = Li = q̂

(4)

Including in formula (3) the rule Xo ≤ Zn(L), which uses the CUT sample Xo, is motivated by the
following reason. Strictly speaking, the estimates r̂, q̂ and the subsets Bn, Bc, and Bi do not contain
information that explicitly indicates whether or not the CUT sample Xo is in Ŝn. To increase the
probability of correct decisions on which one of the estimated regions adequately represents the true
homogeneous background around the CUT it is reasonable to use information that directly indicates
whether Xo ∼ Ŝn or Xo /∈ Ŝn. Such information can be obtained simply by performing statistical
hypothesis test used in the (r, q)-estimation algorithm

if Xo < βmX(Rm) → Xo ∼ Ŝn else Xo /∈ Ŝn (5)

where m, βm, and Rm correspond to the m-th step at which X(m+1) ≥ βmX(Rm) when the (r, q)-
estimation algorithm estimates the total number of outliers r. Other simple way is to use the following
test

if Xo ≤ Zn(Ln) → Xo ∼ Ŝn else Xo /∈ Ŝn (6)
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where Zn(Ln) = max(Zn) is the maximum element in Zn. The rule given by (6) is stronger than that
given by (5) because Zn(Ln) < βmX(Rm). The rule from Equation (6) is included in the OFPI-DS
decision strategy given by formula (3).

In this paper, the OFPI-DS is designed heuristically by analyzing several typical scenarios (those
depicted in Figures 1–5 and some additional scenarios) with the purpose of finding such a set of decision
rules that properly identifies the homogeneous region around the CUT even if the number of outliers
is estimated incorrectly. Our design assumes that the parameters r1 and r2 can be set within the
following limits 0 ≤ r1 ≤ M/2 and M/2≤ r2 ≤ M . As shown in Subsection 3.2, the rationale for using
the parameter r1 in (3) is that setting r1 closer to its lower limit provides significant reduction in the
false alarm rate with respect to that of the CMLD-DS in case of extended clutter edge with moderate
CNR level (about 10 dB) when the number of clutter samples r >M/2. It is also shown that setting the
parameter r2 closer to M allows the OFPI-CFAR detector to maintain robust detection performance in
multiple target environments even if the number of outliers due to interferers is greater than M/2. Our
heuristic design also assumes that the clutter-to-noise ratio CNR À 1, the interfering target-to-noise
ratio INR À CNR, and only one false censoring can occur during the censoring procedure.

In Appendix C, our design of the OFPI-DS is illustrated with an additional example. In this
Section we discuss the OFPI-DS for the case of limited clutter extent shown in Figure 9(a). According
to formula (3), whenever r̂ < r1, the OFPI-DS always declares that the CUT is in Ŝn without taking
into account the information in the subset Bn. The rationale for this decision is to allow the primary
target to be reliably detected in the presence of closely spaced neighboring targets with no risk of
increasing the false alarm probability. This rule can be confirmed based on the following physically
justified assumption: the extent of a continuous clutter patch is limited from below by some value
Lcl

min < M/2 that is the minimum clutter extension in range expressed in the number of samples, for
example Lcl

min = M/4+1. This means that even when the whole clutter patch entirely resides in the full
reference window there must be present at least Lcl

min clutter outliers. Let’s assume that r1 meets the
inequality r1 < Lcl

min = M/4 + 1 and the true number of clutter outliers in the full reference window is
r < r1 and no interfering targets are present. Since the clutter extent r < r1 < Lcl

min the only situation
when the clutter occupies r < Lcl

min cells is shown in Figure 9(a) where the number of clutter cells c1

and c2 meet the conditions 0 ≤ c1 ≤ r, 0 ≤ c2 ≤ r, c1 + c2 = r < r1.
Figure 9(b) shows the estimated homogeneous regions Ŝn, Ŝ c and Ŝ i along with corresponding

subsets Bn, Bc, Bi and vectors Zn, Zc and Zi for the case when the number of outliers is correctly
estimated. Figure 9(c) and Figure 9(d) represent similar data for the cases when the number of outliers
is incorrectly estimated due to false censoring. Analyzing Figure 9(b), when r̂ = r < r1 and q̂ = 0,
yields that according to the rule if r̂ < r1 → Xo ∼ Ŝn as predefined by formula (3), the vector Zn is
selected as the adaptive reference vector Z, i.e., Z = Zn. Since Zn exactly represents the homogeneous
background around the CUT the OFPI-CFAR threshold is properly computed (CUT is in the clear)
and the conditional false alarm probability corresponding to this case is equal to the design probability
of false alarm PFA. Consider the case shown in Figure 9(c), when r̂ > r and q̂ = r. Obviously, if r̂ < r1

then again Z = Zn and the corresponding conditional false alarm probability is equal to the design
PFA. If r̂ ≥ r1 then according to formula (3) irrespective of which one is true, r1 ≤ r̂ < r2 or r̂ ≥ r2,
only the following two decisions are possible: 1) Z = Zn when both of the indices M/2 and M/2 + 1
are in the subset Bn, i.e., M/2 ∈ Bn and M/2 + 1 ∈ Bn, and 2) Z = Zc because when M/2 /∈ Bn or
M/2 + 1 /∈ Bn then at least one of these indices is in Bc because with probability one the integers M/2
and M/2 + 1 belong to the sum of subsets Bn and Bc. Since each of the vectors Zn and Zc contains
only noise samples the OFPI-CFAR threshold is properly computed and the corresponding conditional
false alarm probability is equal to PFA. Analyzing Figure 9(d) readily shows that in this case the only
decision Z = Zn is possible because r̂ = r < r1; therefore, the corresponding conditional false alarm
probability is equal to PFA.

Combining the results of analysis for scenario shown in Figure 9(a) in terms of the law of total
probability one can conclude that the overall false alarm probability is equal to the design PFA. Thus, in
this scenario the false alarm performance of the OFPI-CFAR based on the OFPI-DS given by formula (3)
remains robust even in the presence of errors in estimating the number of outliers.
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2.4. Adaptive CFAR Threshold

The adaptive CFAR threshold is computed as T = αP̂av, where α is the threshold multiplier (CFAR
constant), which is precomputed for the predetermined false alarm probability PFA, and P̂av is an
estimate of the average background power around the CUT. The precomputed threshold multipliers are
extracted from the stored look-up table accordingly to the length L of the adaptive reference window
Z (see Figure 7).

The OFPI-CFAR estimates the average power P̂av from the adaptive reference window Z (see
Figure 7), which supposedly represents the homogeneous background in the vicinity of the CUT. Recall
that Z is defined according to formula (4) after taking decision on which one of the estimated regions Ŝn,
Ŝ c or Ŝ i represents this homogeneous background. At least two methods can be used to estimate P̂av.
The method suggested in [3, 5] is based on the CA-CFAR principle, i.e., P̂av is computed by using a
sum of all the samples in Z. The present paper considers a procedure based on the OS-CFAR principle.
To compute P̂av the procedure extracts from a stored look-up table the precomputed value of the
representative rank K corresponding to L, 1 ≤ L ≤ M , and then extracts the K-th ordered sample
ZK from the adaptive reference window Z = {Z1, Z2, . . . , ZK , . . . , ZL}. As known from the OS-CFAR
theory [8, 9] ZK can be treated as an estimate of the average background power, i.e., P̂av = ZK , under
assumption that the reference window is homogeneous. In this paper the value of K is precomputed for
each L = 1, 2, . . . , M as an integer that minimizes the average decision threshold (ADT) according to
the definition in [8]. Equations for computing the optimum K and corresponding OS CFAR constant α
are derived in Appendix A; for M = 32, numerical results are summarized in Table A1 at PFA = 10−4

and 10−6.

3. PERFORMANCE ANALYSIS

In this Section we study the false alarm and detection performance of the adaptive OFPI-CFAR that
employs the OFPI-DS decision strategy given by formula (3). To evaluate the performance improvement
we also compare the OFPI-CFAR with the GTL-CMLD detector that uses the CMLD-DS given by
formula (2).

In this study we assume that the input data xi (Figure 7) represent a sequence of independent
random values resulted from noncoherent integration of N independent samples taken at the output
of a square-law detector for every range cell. Both the noise and clutter samples are assumed to obey
zero-mean Gaussian distribution at the input of a square-law detector. Hence, at the output of the
square-law detector both the noise and clutter samples are governed by an exponential distribution.
The statistical independence of clutter samples before noncoherent integration is merely assumed in our
analysis for the sake of simplicity. However, this assumption is reasonable, for example, in radar systems
employing frequency agility and/or time diversity in order to circumvent the deep fade of return echo
on a single transmission which results in poor system performance [1]. To simplify the performance
analysis we also assume the Swerling II fluctuation model for both the primary target and interfering
targets. Recall that for this model the N target samples at the output of the square-law detector are
independent identically distributed random variables governed by an exponential distribution.

Under these assumptions each sample xi obeys a gamma distribution as a result of noncoherent
integration of N independent exponentially distributed samples. Hence, the probability density function
(PDF) p(x) and the cumulative distribution function (CDF) P (x) of xi are given by

p(x) = DN xN−1

(N − 1)!
exp(−Dx), x ≥ 0 (7)

P (x) = 1− exp(−Dx)
N−1∑

k=0

(Dx)k

k!
, x ≥ 0 (8)

The parameter of the distribution D depends on the contents of the range cell associated with xi. If
the range cell contains noise alone D = 1/(2σ2), where σ2 is the variance of noise. If the range cell
contains clutter D = 1/[2σ2(1+CNR)], with CNR being the clutter-to-noise power ratio at the input of
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the square-law detector. For the range cells containing interfering targets D = 1/[2σ2(1 + INR)], with
INR being the interfering target-to-noise power ratio at the input of the square-law detector. When the
range cells contain both the clutter and interfering targets D = 1/[2σ2(1+CNR+INR)] since the radar
returns due to clutter and interfering or primary targets are assumed to be statistically independent.
When the primary target is present in the CUT then D = 1/[2σ2(1 + SNR)], where SNR is the signal-
to-noise ratio at the input of the square-law detector. Therefore, for the CUT the parameter D can be
specified according to the following formula

D =
{

1/[2σ2(1 + SNR)] for clear background
1/[2σ2(1 + CNR + SNR)] for clutter background (9)

where SNR = 0 if the CUT contains noise alone or noise plus clutter, and SNR > 0 if the primary
target is assumed to be present. Without loss of generality we assume 2σ2 = 1.

3.1. Simulation Procedure

Explicit equations for the false alarm and detection performance of the adaptive OFPI-CFAR are difficult
to derive because they require knowledge of the PDF pT (x) of the adaptive threshold T . Unfortunately,
we have not found any closed-form expression of this PDF for both the OFPI-CFAR and the GTL-CMLD
detector. Examining the principle of operation of the proposed adaptive OFPI-CFAR implementation
shows that the distribution of T is given by a finite mixture distribution. The partial distributions of
the mixture are the distributions of the k-th order statistics that are randomly selected according to
the OFPI-DS decision strategy from a group of M non-identically distributed reference samples. The
derivation of a closed-form equation for the PDF pT (x) is a complicated problem because these order
statistics are conditioned by the selection of the adaptive reference window, which is in an intricate
nonlinear dependence on the decision making process. In order to circumvent this difficulty, we have
resorted to statistical simulations using a version of Monte-Carlo method described in Appendix D
in terms of the false alarm probability PFA estimation. However, the method is not restricted to the
estimation of PFA since it can be equally well used to estimate the detection probability after appropriate
substitution for the CDF of the CUT sample.

In the course of simulations we compute the relative standard deviation STD γ (see Appendix D)
of the Monte-Carlo estimator and compare γ with required value γreq = 10%. If γ ≥ γreq the number
of trials Nis is doubled, then a new set of statistically independent random samples T1, T2, . . . , TNis is
generated and the estimation procedure is repeated until the condition γ < γreq is met. In estimating
the false alarm performance Nis = 8000 is used as an initial setting when the estimated false alarm
probability is greater than or equal to 10−6. When the estimated PFA is less than 10−6 and in situations
when the problem of gross bias error may occur (see Appendix D) the simulations are carried out with
initial setting Nis = 105. If the current number of trials Nis exceeds NisMax = 800000 the estimation
procedure is terminated irrespective of the achieved STD value γ. To estimate the probability of
detection the initial setting Nis = 2000 and NisMax = 2000 are used in all scenarios related to the
evaluation of the detection performance.

Throughout the simulations the number of reference samples is set at M = 32 and the number of
noncoherently integrated samples is set at N = 6 for all cases.

The precomputed values of the optimum ranks K and corresponding threshold multipliers α for
both of the GTL-CMLD and OFPI-CFAR detectors are taken from Table A1 in Appendix A. The
censoring procedure is implemented using the precomputed values of Rm and βm, m = 1, 2, . . . , M − 1
from Table B1 in Appendix B.

3.2. Numerical Results

In Figure 10 we compare the false alarm regulation property of the proposed version of the OFPI-CFAR
(denoted by OFPI-DS) and that of the GTL-CMLD detector (denoted by CMLD-DS) versus the true
number of clutter samples r when one clutter edge with CNR À 1 is present in the full reference
window. It is assumed that the design probability of false alarm and false censoring is PFA = 10−4 and
Pfc = 10−3, respectively, for the noise distribution D = 1 and the clutter-to-noise ratio CNR = 20 dB,
and r1 = 9, r2 = 22 > M/2 for the OFPI-DS. For r ≥ M/2 = 16 the simulations are carried out
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with initial setting Nis = 105. The plots in Figure 10 clearly demonstrate an essential advantage of
the OFPI-DS. It is seen that the OFPI-DS maintains the false alarm probability at the specified design
value independently on r, while the CMLD-DS seriously fails for r ≥ M/2 = 16. The CMLD-DS curve
in Figure 10 confirms our analysis in Subsection 2.3, where we prove that for PFA ¿ Pfc the false alarm
regulation property of the CMLD-DS significantly degrades in the presence of a region of clutter power
transition with CNR À 1 when r ≥ M/2 and the CUT resides in the clutter.

Figures 11 and 12 compare the false alarm performance of the OFPI-DS and that of the CMLD-DS
in the presence of one clutter edge at CNR = 5 and 10 dB, respectively, as a function of the true number
of clutter samples r assuming PFA = 10−4, Pfc = 10−4, and r1 = 9, r2 = M/2 = 16 for the OFPI-DS.
The simulations are carried out using initial setting Nis = 105 at point r = M/2 = 16. Analyzing these
figures yields that for relatively small value of the CNR (about 5 dB) the false alarm performance for
both of the CFAR approaches are quite similar while for moderate CNR (about 10 dB) the false alarm
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regulation property of the OFPI-DS is evidently superior to that of the CMLD-DS.
Figure 13 shows the effect of r1 (r1 = 9, 13, 15) at fixed r2 = M/2 = 16 and Figure 14 shows the

effect of r2 (r2 = 16, 20, 24) at fixed r1 = 9 on the false alarm performance of the OFPI-DS depending
on the true number of clutter samples r in case of one clutter edge for CNR = 10 dB, PFA = 10−4,
Pfc = 10−4. At point r = M/2 = 16 the simulation is carried out with initial setting Nis = 105. The
false alarm performance of the CMLD-DS does not depend on r1 and r2 and is merely plotted here
for the purpose of comparison. From Figure 13, it is seen that decreasing r1 from 15 to 9 significantly
reduces the false alarm probability for the OFPI-DS with respect to that of the CMLD-DS within the
interval 17 ≤ r ≤ 20.

For the CMLD-DS, the relatively high level of false alarm rate within the interval 17 ≤ r ≤ 20,
when the CUT is in the clutter, can be explained as follows. For moderate CNR, the (r, q)-estimation
algorithm relatively frequently underestimates the number of outliers, so that for 17 ≤ r ≤ 20 the
probability of the event r̂ < M/2 is relatively high especially when r is close to M/2 + 1. Therefore,
the CMLD-DS, which takes decisions based on the inequality r̂ < M/2, relatively frequently selects
improper adaptive reference window that contains all the noise samples and only some small part of
the clutter samples. Thus, the adaptive detection threshold is unacceptably lowered and the false alarm
probability is increased. When r increases the probability of the event r̂ < M/2 decreases, so that the
CMLD-DS properly estimates the detection threshold more frequently and the false alarm probability
gradually decreases to the specified design value PFA. In contrast to the CMLD-DS, the OFPI-DS uses
additional information that results in increasing the probability of correct decisions on the selection of
the adaptive reference window. For the OFPI-DS, improvement in the false alarm regulation property
is especially prominent when the parameter r1 is set at a lower level. Using low values of r1 results in
extending the lower portion of the interval [r1, r2) of possible values for r̂, within which the OFPI-DS
can compensate the underestimation errors due to its enhanced capability to take correct decisions.
This confirms that the reasonable choice for r1 is to define it based on the minimum clutter extension
in range r1 = Lcl

min < M/2, as discussed in Subsection 2.3.
The plots in Figure 14 show that increasing r2 for the OFPI-DS leads to extending the interval for

the true number of outliers (for r ≥ 17), within which the false alarm probability remains nearly some
constant level. Nevertheless, this level does not exceed the maximum value at a point r = M/2+1 = 17
when the setting r2 = M/2 = 16 is used. Such behavior of the OFPI-DS curves depending on r2 is
caused by extending the upper portion of the interval [r1, r2). This extending leads to increasing the
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probability that the decisions are taken through the chain of rules marked in formula (3) by numbers
5-6 and decreasing the probability that the chain 2-3-4 is used for taking decisions. For the chain 5-6 the
probability of declaring that Xo ∼ Ŝn is higher than that for the chain 2-3-4. Thus, the maximum level
of the false alarm probability at point r = 17 extends within the interval [M/2+1, r2). The simulations
for CNR ≥ 15 dB have shown that the false alarm performance of the OFPI-DS with M/2 < r2 < M
and r1 < M/2 does not depend on r2 and is very similar to that plotted in Figure 10. It is shown
further (see Figure 18) that using large values of r2 results in essentially robust detection performance
of the OFPI-DS in multiple target environments even when the number of outliers exceeds M/2.

Figure 15 demonstrates the clear superiority of the OFPI-DS over the CMLD-DS in terms of the
false alarm regulation property in scenario shown in Figure 4(a), where r+1 = 13 clutter samples occupy
the cells from 14 to 26, therefore, the CUT and its two adjacent samples are in the clutter. The curves in
these figures are plotted against the clutter-to-noise ratio CNR at the design PFA = 10−6, Pfc = 10−4,
and using the setting r1 = 9 and r2 = 22 for the OFPI-DS. For CNR ≥ 15 dB the simulations are
carried out with initial setting Nis = 105. From Figure 15, it is seen that for CNR ≥ 15 dB the false
alarm probability for the OFPI-DS is very close to the design value PFA, while for the CMLD-DS the
false alarm probability intolerable increases starting from CNR = 10 dB.

Figure 16 compares the false alarm regulation property of the OFPI-DS and CMLD-DS in scenario
shown in Figure 4(a), when the CUT moves through the clutter patch consisting of r + 1 = 13 clutter
samples. The false alarm probability is computed for PFA = 10−6 and CNR = 15 dB and plotted against
the distance d expressed as the number of range cells between the CUT and leading edge of the clutter
patch. For points d = −12,−11, . . . , 0, 1, the simulations are carried out with initial setting Nis = 105.
From Figure 16, the definite advantage of the OFPI-DS over the CMLD-DS is evident.

We now turn to the detection performance evaluation. In Figure 17 the detection probability is
plotted as a function of the primary target SNR for scenarios shown in Figure 3(a) and Figure 5(a),
where 20 clutter samples occupy the cells 1, 2, . . . , 10 and 23, 24, . . . , 32 in the full reference window.
The graphs in Figure 17 are plotted for two cases: when no interfering targets are present, i.e., r = 20,
q = 0, and when q = 10 samples due to the interfering targets are in the clutter. The clear superiority
of the OFPI-DS over the CMLD-DS is evident from Figure 17.

Next, we analyze the detection performance in scenario depicted in Figure 2, where the primary
target is to be detected in multiple target environments. In Figure 18 the probability of detection is
plotted versus the number of outliers q due to interfering targets; for the OFPI-DS the parameter r1 is
fixed (r1 = 9) and the parameter r2 is sequentially set at 18, 22, and 26. It is seen in Figure 18 that a
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remarkable feature of the OFPI-DS is its ability to maintain essentially robust detection performance
even when the number of outliers exceeds M/2, i.e., q > M/2. As expected, the CMLD-DS detector
collapses when q ≥ M/2.

The simulation results in Figure 19 and Figure 20 correspond to scenario shown in Figure 2. In
Figure 19 the estimated detection probability PD is plotted versus the primary target SNR and in
Figure 20 the PD is plotted versus the interfering target-to-noise ratio (INR) for the fixed primary
target SNR = 10 dB. The graphs in Figure 19 are computed at q = 14, 20 (r = q) and in Figure 20 at
q = 8, 12, 16, and 20 (r = q). From these figures, when q < M/2 = 16 the detection performances of
the CMLD-DS and the OFPI-DS are identical and demonstrate good target detection ability of these
methods. However, when q ≥ M/2 the CMLD-DS collapses, while the OFPI-DS is able to maintain
reliable target detection.
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4. CONCLUSIONS

In this paper, a new class of adaptive CFAR methods intended for achieving robust performance in the
presence of clutter edges and interfering targets has been proposed. This class of CFAR methods is
referred to as the OFPI-CFAR. A fundamental distinction of the OFPI-CFAR methods is that in order
to maintain robust false alarm and detection performance these methods essentially use information on
positions at which estimated outlier-free samples appear in the full reference window and the statistics
of the sample in the cell under test. This information and the magnitude of the sample in the test cell
are used by a decision procedure, which attempts to identify such a subset of reference samples that
most adequately represent homogeneous background around the test cell.

One version of the OFPI-CFAR based on a heuristically designed decision strategy has been
suggested in the present paper. The performance of this version has been evaluated and compared
with that of the well-known GTL-CMLD detector. It has been shown through statistical simulations
that the suggested OFPI-CFAR is superior to the GTL-CMLD detector in the false alarm regulation
property and target detection performance in nonhomogeneous environments.

The results of simulations have shown that in the presence of one clutter edge with CNR À 1
the suggested OFPI-CFAR is able to perfectly maintain the false alarm rate at the specified design
level independently on the number of clutter cells in the full reference window, while the CMLD-DS
seriously fails in regulating the false alarm rate when the number of clutter cells exceeds half of the
number of reference samples. The proposed OFPI-CFAR has also demonstrated the clear superiority
over the GTL-CMLD in terms of the false alarm regulation property in situations with two clutter
edges. For example, when clutter patch of a limited extent, which does not exceed half of the number
of reference samples, is present in the full reference window and CNR ≥ 15 dB the false alarm rate for
the OFPI-CFAR is maintained at the specified design level, while for the GTL-CMLD the false alarm
rate intolerably increases.

It has also been shown that the OFPI-CFAR exhibits excellent detection performance in multiple
target environments. In particular, the attractive feature of the proposed OFPI-CFAR is its ability to
maintain essentially robust detection performance even when the number of outliers due to interfering
targets exceeds half of the number of reference samples, whereas the GTL-CMLD detector fails
drastically.

In conclusion, it should be stated that using information on the positions, at which outlier-free
samples appear in the full reference window, and the statistics of the test cell can be regarded as
one of the basic CFAR principles for achieving essentially robust performance in nonhomogeneous
environments. This principle can be used for designing of various modifications of adaptive OFPI-
CFAR algorithms for a wide range of practical applications in which the outliers due to clutter edges
and interfering targets can be present.
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APPENDIX A. COMPUTING OPTIMUM REPRESENTATIVE RANK AND
OS-CFAR CONSTANT TO BE USED IN DETERMINING ADAPTIVE DETECTION
THRESHOLD

In this appendix we compute the optimum representative rank K and the corresponding OS-CFAR
constant to be used in determining the adaptive detection threshold T , which is computed as T = αZK ,
where α is the OS-CFAR constant and ZK is the K-th ordered sample ZK from the adaptive reference
window Z = [Z1, Z2, . . . , ZK , . . . , ZL] of length L. The OS-CFAR constant α is precomputed for
the predetermined design PFA as a function of L = 1, 2, . . . , M , and in accordance with statistical
distribution of the K-th order statistic in homogeneous reference window of length L. For each L the
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rank K is defined as an optimum value corresponding to the minimum of the average decision threshold
(ADT) [8].

At first, we present the computation of the optimum rank K. Since we consider the homogeneous
reference window without loss of generality we can assume D = 1 for the gamma distribution given by
formulae (7) and (8). Then, according to [8] the ADT corresponding to the K-th order statistic in a
reference window of length L is defined as the normalized quantity

ADTL,K = αL,KE (ZK) (A1)
where L = 1, 2, . . . ,M−1, K = 1, 2, . . . , L; αL,K is the OS-CFAR constant computed for to the specified
PFA at fixed L and K; ZK is the K-th order statistic, and E denotes the expectation. The optimum
K as a function of L is determined by minimizing ADTL,K

Kopt(L) = arg min
K

(ADTL,K) (A2)

To obtain equation for computing the scalar factors αL,K let’s consider the following definition for
the probability of false alarm PFA

PFA =

∞∫

0

[1− PCUT (αL,Kx)] p(K)(x, L)dx (A3)

where PCUT (x) is the CDF of the CUT under hypothesis Ho (no target) and p(K)(x, L) is the PDF of
the K-th order statistic out of L independent and identically distributed continuous random variables
with CDF P (x) and PDF p(x)

p(K)(x, L) = K

(
L
K

)
[P (x)]K−1 [1− P (x)]L−K p(x) (A4)

Substituting p(x) from Equation (7), P (x) and PCUT (x) from Equation (8) with setting D = 1 into
Equations (A4) and (A3) yields the following formula that has been earlier derived in [9, Eq. (49)]

PFA = K

(
L
K

) ∞∫

0

[
exp(−αL,Kx)

N−1∑

i=0

(αL,Kx)i

i!

]
×

[
1− exp(−x)

N−1∑

i=0

xi

i!

]K−1

×
[
exp(−x)

N−1∑

i=0

xi

i!

]L−K
xN−1 exp(−x)

(N − 1)!
dx (A5)

The right hand side of Equation (A5) has to be integrated numerically. For given PFA we compute the
scalar factors αL,K using (A5) iteratively.

By definition, E(ZK) is the first non-central moment

E (ZK) =

∞∫

0

x p(K)(x, L)dx (A6)

Substituting, as before, p(x) and P (x) given by Equations (7) and (8) with D = 1 into (A4) we get
from (A6) the following formula for computing E(ZK) using numerical integration

E (ZK) = K

(
L
K

) ∞∫

0

x

[
1− exp(−x)

N−1∑

i=0

xi

i!

]K−1 [
exp(−x)

N−1∑

i=0

xi

i!

]L−K
xN−1 exp(−x)

(N − 1)!
dx (A7)

In Figure A1, the average decision threshold ADTL,K is plotted as a function of the representative
rank K for M = 32 and PFA = 10−6 at L = 2, 4, . . . 30, 32.

For M = 32, PFA = 10−4 and 10−6 the optimum values of K and corresponding OS-CFAR constants
α are given in Table A1. This table represents the basic format of the look-up table that is used in the
adaptive OFSI-CFAR detector (Figure 7) for computing the adaptive OFSI-CFAR threshold T = αZK .
The value of optimum rank K and α is read from the cell corresponding to the predetermined PFA and
the estimated length L of the adaptive reference window.
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Table A1. Optimum rank K and corresponding OS-CFAR constant α.

L

PFA

10−4 10−6

K α K α

1 1 11.1442823 1 26.0693626
2 2 5.1914721 2 8.9223852
3 3 3.9299157 3 6.1689768
4 4 3.3739879 4 5.0767136
5 4 3.8451512 4 5.6949706
6 5 3.4691186 5 5.0198216
7 6 3.2184007 6 4.5876164
8 6 3.4931202 6 4.9417629
9 7 3.2915020 7 4.6098990
10 8 3.1366208 8 4.3603625
11 8 3.3319728 8 4.6112447
12 9 3.1979785 9 4.4013758
13 9 3.3572233 10 4.2307620
14 10 3.2395649 10 4.4257936
15 11 3.1403217 11 4.2752819
16 11 3.2695820 12 4.1472464
17 12 3.1796234 12 4.3070564
18 13 3.1012287 13 4.1908250
19 13 3.2100844 14 4.0889997
20 14 3.1375825 14 4.2244911
21 15 3.0729787 15 4.1303024
22 15 3.1670306 16 4.0460768
23 16 3.1064601 16 4.1637359
24 17 3.0516102 17 4.0847993
25 17 3.1344218 17 4.1913629
26 18 3.0824881 18 4.1171470
27 19 3.0348816 19 4.0493398
28 19 3.1088638 19 4.1445889
29 20 3.0634546 20 4.0802817
30 20 3.1316690 21 4.0209270
31 21 3.0882902 21 4.1070480
32 22 3.0479753 22 4.0503807

APPENDIX B. COMPUTING THRESHOLD MULTIPLIERS FOR CENSORING
PROCEDURE

This Appendix derives equation for computing the censoring threshold multipliers to be used in the
censoring procedure that is an essential part of the (r, q)-algorithm for the estimating the number of
outliers in the full reference window.

As discussed in Subsection 2.2, the (r, q)-algorithm operates on the ordered sequence of the reference
samples X(1) ≤ X(2) ≤ . . . ≤ X(M) and at the m-th step of the censoring procedure, m = 1, 2, . . . ,M−1,
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Figure A1. ADT versus representative rank K at different L for M = 32 and PFA = 10−6

the (m + 1)-th ordered sample X(m+1) is compared against the censoring threshold Tm = βmX(Rm),
where βm is the censoring threshold multiplier at the m-th step, X(Rm) is the Rm-th sample selected
from the censoring reference window X(1), X(2), . . . , X(m+1), and Rm is the representative sample rank
at the m-th step.

According to the approach we follow in the present paper the βm, m = 1, 2, . . . , M − 1
are precomputed as OS-CFAR constants for the predetermined probability of false censoring Pfc

and corresponding values of the representative rank Rm. In computing βm we assume that
X(1), X(2), . . . , X(m+1) originate from the m+1 independent samples Xi representing homogeneous
background and the remaining M − m − 1 samples in the full reference window are due to infinitely
strong outliers. Hence, X(m+1) is the last outlier-free sample. The probability of false censoring Pfc is
the probability of making wrong decision at the m-th step on the condition that the censoring procedure
reaches the m-th step

Pfc = Pr
(
X(m+1) ≥ βmX(Rm)|X(i+1) < βiX(Ri), i = 1, 2, . . . ,m− 1

)
(B1)

Under the above assumption Pfc can be represented as

Pfc =

∞∫

0

∞∫

βmx

p(Rm)(m+1) (x, y) dydx (B2)

where p(Rm)(m+1)(x, y) is the joint PDF of the Rm-th and (m + 1)-th order statistics, 1≤ Rm < m + 1
in the homogeneous censoring window of length m + 1, m = 1, 2, . . . , M − 1.

To derive a closed-form equation for Pfc we consider a general expression for the joint PDF of the
R-th and S-th order statistics generated from M independent and identically distributed random values
Xi. This general expression is given by [10]

p(R)(S)(x, y)=
M !

(R−1)!(S−R−1)!(M − S)!
PR−1(x)p(x)×[P (y)−P (x)]S−R−1 p(y)[1− P (y)]M−S

1 ≤ R < S ≤ M, x ≤ y (B3)

where P (x) and p(x) denotes the CDF and PDF of Xi, respectively.
Assuming S = M, i.e., S is always defined to be equal to M , we get from (B3)

p(R)(S)(x, y) =
S!

(R− 1)!(S −R− 1)!
PR−1(x)p(x) [P (y)− P (x)]S−R−1 p(y)

1 ≤ R < S, x ≤ y (B4)
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Setting R = Rm and S = m+1 in Equation (B4) yields the following representation for Pfc in Equation
(B2)

Pfc = c1

∞∫

0

∞∫

βmx

PRm−1(x)p(x) [P (y)− P (x)]m−Rm p(y)dydx

x ≤ y, c1 = (m + 1)!/[(Rm − 1)!(m−Rm)!], 1 ≤ Rm < m + 1 (B5)

Making in Equation (B5) the substitutions u = P (x) and v = P (y) yields

Pfc = c1

1∫

0

1∫

a

[v − u]m−RmdvuRm−1du, a = P [βmP−1(u)] (B6)

The inner integral in Equation (B6) is simply
1∫

a

[v − u]m−Rmdv =
(v − u)(m−Rm+1)

m−Rm + 1

∣∣∣∣∣
1
a

=
1

m−Rm + 1
[
(1− u)m−Rm+1 − (a− u)m−Rm+1

]
(B7)

Substituting Equation (B7) into Equation (B6) and turning back to the argument x yields

Pfc = c

∞∫

0

{
[1− P (x)]m−Rm+1 − [P (βmx)− P (x)]m−Rm+1

}
[P (x)]Rm−1 p(x)dx

c = Rm
(m + 1)!

Rm! (m + 1−Rm)!
, 1 ≤ Rm < m + 1

(B8)

Thus, using Equation (B8) for the distribution specified by Equations (7) and (8) the censoring
constants βm, m = 1, 2, . . . ,M − 1 can be computed iteratively for the specified Pfc and Rm from

Pfc = c

∞∫

0

{
[Q(x)]m−Rm+1 − [Q(x)−Q(βmx)]m−Rm+1

}
[P (x)]Rm−1 p(x)dx

c = Rm
(m + 1)!

Rm! (m + 1−Rm)!
, 1 ≤ Rm < m + 1

(B9a)

or

Pfc = c

∞∫

0

{
[Q(x)]S−Rm − [Q(x)−Q(βmx)]S−Rm

}
[P (x)]Rm−1 p(x)dx

c = Rm
S!

Rm! (S −Rm)!
, 1 ≤ Rm < S, S = m + 1

(B9b)

where

Q(x) = exp(−Dx)
N−1∑

k=0

(Dx)k

k!
, x ≥ 0 (B10)

P (x) = 1− exp(−Dx)
N−1∑

k=0

(Dx)k

k!
, x ≥ 0 (B11)

p(x) = DN xN−1

(N − 1)!
exp(−Dx), x ≥ 0 (B12)

The censoring procedure suggested in the present paper possesses CFAR property in homogeneous
background. To prove this it suffices to show that Pfc given by (B9) does not depend on the power of
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homogeneous background. The proof readily follows from (B9) using the substitution y = Dx. So, in
computing βm we use the setting D = 1.

The value of Rm to be used in computing βm is specified as Rm = m, for m = 1, 2, 3 and
Rm = Km+1, for m = 4, 5, . . . , M − 1, where Km is the optimum representative rank computed as
described in Appendix A for the probability of false alarm PFA that is equal to the specified probability
of false censoring Pfc. For M = 32, Pfc = 10−3 and 10−4 the values of Rm and corresponding OS-CFAR
constants βm are given in Table B1. This table represents the basic format of the look-up table that
is used in the censoring procedure (see Figure 8). The values of Rm and βm are read from the cell
corresponding to the step index m, m = 1, 2, . . . , M − 1, and specified Pfc.

Table B1. Optimum rank R and constant β for censoring procedure.

m

Pfc

10−3 10−4

R β R β

1 1 8.0908442 1 12.7304287
2 2 4.4214940 2 5.9604211
3 3 3.5431964 3 4.5491714
4 4 3.1412344 4 3.9365087
5 5 2.9060557 5 3.5884402
6 5 3.3547122 6 3.3608418
7 6 3.1540599 6 3.8205051
8 7 3.0086222 7 3.6197772
9 7 3.2903523 8 3.4678102
10 8 3.1604650 8 3.7651880
11 9 3.0570035 9 3.6277099
12 9 3.2645779 9 3.8620894
13 10 3.1694176 10 3.7380822
14 11 3.0895393 11 3.6344821
15 11 3.2546461 11 3.8205087
16 12 3.1798072 12 3.7247710
17 13 3.1148708 13 3.6419663
18 13 3.2523072 13 3.7965963
19 14 3.1907141 14 3.7188613
20 14 3.3123474 15 3.6500168
21 15 3.2539563 15 3.7825451
22 16 3.2016466 16 3.7172070
23 16 3.3078361 17 3.6583412
24 17 3.2578149 17 3.7744331
25 18 3.2123585 18 3.7181208
26 18 3.3066747 19 3.6667249
27 19 3.2629285 19 3.7700963
28 20 3.2227333 20 3.7206354
29 20 3.3076265 20 3.8158655
30 21 3.2687538 21 3.7682567
31 22 3.2327216 22 3.7241662
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APPENDIX C. AN ADDITIONAL EXAMPLE TO ILLUSTRATE DESIGN OF THE
OFPI-DS

In this Appendix our heuristic design of the OFPI-DS decision strategy given by formula (3) is illustrated
with an example in addition to that discussed in Subsection 2.3. This additional example addresses the
detection performance of the OFPI-CFAR when the primary target is to be detected near the clutter
edge in the presence of interfering targets. An example of this scenario is shown in Figure C1(a), where
the full reference window of length M = 32 contains r = 12 outliers due to clutter and two groups of
outliers (4 samples per group) due to interfering targets. Thus, the total number of outliers is r = 20
including q = 8 outliers due to interfering targets. It is assumed that the following setting is used for
the OFPI-DS: r1 = 9 and r2 = 22.

From Figures C1(b) and (d) representing the cases when r̂ = r = 20, it is seen that the OFPI-DS
always takes the decision Z = Zn (only noise samples) since in any event with probability one the index
M/2 = 16 belongs to the subset Bn and the index M/2 + 1 = 17 belongs to Bi. For the case shown in
Figure C1(c), when r̂ = 26 > r2 = 22, the only two decisions are possible: 1) Z = Zn when 16 ∈ Bn,
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nŜ
iŜ

nB iB

6 samples 

(noise)

Zn

cŜ
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Figure C1. Detecting target near clutter edge in the presence of interfering targets. (a) Target near
clutter edge and interfering targets. (b) Reference samples after sorting, r̂ = r = 20 and q̂ = q = 8. (c)
Reference samples after sorting, r̂ = 26 and q̂ = 20. (d) Reference samples after sorting, r̂ = 20 and
q̂ = 16.
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and 2) Z = Zc when 16 ∈ Bc; in either case the adaptive reference window Z contains noise samples. In
Figures C1(c) the dotted double arrow between the black triangles indicates that the position (index)
marked by the triangle appears only in one of the subsets where the triangle is placed (Bn or Bc) but
not simultaneously in both of them.

As follows from formula (3), if the estimated number of outliers r̂ were less than r2 (20 < r̂ <
r2 = 22), the OFPI-DS would take exactly the same decisions. Combining the results of this analysis in
terms of the law of total probability readily yields that the OFPI-CFAR detection performance remains
robust in scenario shown in Figure C1(a).

APPENDIX D. ESTIMATING PROBABILITY OF FALSE ALARM

The method proposed in this Appendix for estimating the false alarm probability is based on using the
knowledge of the distribution of the CUT sample: the CDF of the CUT sample is assumed to be given
by Equation (8). This fact allows computing the probability of the CUT exceeding any given adaptive
threshold. Thus, if we carry out Nis Monte-Carlo trials, and therefore generate a set of adaptive
thresholds T1, T2, . . . , TNis (for each of the CFAR methods in question), the estimated probability of
false alarm is given by the following unbiased Monte-Carlo estimator

P̂FA =
1

Nis

Nis∑

k=1

Pr{Xo > Tk} =
1

Nis

Nis∑

k=1

G(Tk, DCUT ) (D1)

where G(x,DCUT ) = 1 − P (x,DCUT ), with P (x,DCUT ) being the CDF of the CUT sample Xo given
by Equation (8), where the parameter D is substituted with DCUT = 1 if the CUT contains noise alone
or withDCUT = 1/(1 + CNR) if the CUT contains noise plus clutter.

The sample variance of the estimator (D1) is given by

V ar{P̂FA} =
1

Nis

(
1

Nis

Nis∑

k=1

[G(Tk, DCUT )]2 − [P̂FA]2
)

(D2)

In the course of estimation procedure we compute the relative standard deviation STD γ using the
estimate given by Equation (D1) and the sample variance given by Equation (D2) as

γ =
√

V ar{P̂FA}/P̂FA (D3)

and compare computed value of γ against a required value γreq = 10%. If γ ≥ γreq the number of trials
Nis is doubled, then a new set of statistically independent random samples T1, T2, . . . , TNis is generated
and the estimation procedure is repeated until such a number of trials Nfin

is (final number of trials) is
reached at which the condition γ < γreq is met for the first time.

It should be noted that the problem of gross bias error may occur in estimating false alarm
probability for the adaptive CFAR methods even if Nis is defined from the condition γ < γreq. This
problem arises from the fact that the distribution of the adaptive CFAR threshold is inherently a finite
mixture distribution with unknown weighting coefficients. Some terms in this mixture distribution
have relatively small weighting coefficients which values are on the order of the probability of false
censoring Pfc and lower. The weighting coefficients represent the probabilities with which corresponding
terms appear in the mixture. If the conditional probability of false alarm associated with one of such
terms is close to unity then the contribution of this term into the overall probability of false alarm
may become dominant. An example when the problem of gross bias error may occur is discussed in
Subsection 2.3. That example proves that the GTL-CMLD [3] may suffer significant degradation of
false alarm performance in case of clutter power transition with CNR À 1 when r ≥ M/2 and the CUT
is in the clutter.

If the number of independent statistical trials Nis is on the order of or less than 1/Pfc, then
the terms making significant contribution into the overall probability of false alarm may insufficiently
be represented in the sequence of independent random samples T1, T2, . . . , TNis that simulate the
adaptive threshold T . The shortage of statistically significant terms results in an estimate of the
false alarm probability, which is significantly different from that when they appear in the sequence
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T1, T2, . . . , TNis in sufficient quantity. However, even though these two estimates may differ significantly
their corresponding γ may simultaneously meet the condition γ < γreq. This is possible because γ
characterizes the precision of the Monte-Carlo estimator (D1) taking into account only those components
of the mixture distribution of the adaptive CFAR threshold T that are actually present in the sequence
T1, T2, . . . , TNis .

To illustrate the problem of gross bias error we consider scenario shown in Figure 1 assuming that
r = 20 and the clutter-to-noise ratio CNR = 25dB. Table D1 compares the P̂FA estimates obtained for
the CFAR methods under study at M = 32, r1 = 9, r2 = 22, PFA = 10−4, Pfc = 10−4 and γreq = 10%
using initial settings Nis = 1000 and 100000.

From Table D1, it is seen that for the GTL-CMLD algorithm the relative difference between the
P̂FA estimates obtained with initial settings Nis = 1000 (Nfin

is = 1000) and 100000 (Nfin
is = 400000) is

93.43%, while their γ meet the condition γ < 10%. However, one can assume that only the estimate
obtained with Nis = 100000 (Nfin

is = 400000) is free of the gross bias error because in this case the
estimator (D1) takes into account, with high probability, considerably greater number of the mixture
components that make principal contributions into the overall probability of false alarm. For the OFPI-
CFAR, the P̂FA estimates obtained simultaneously with the corresponding estimates for the GTL-CMLD
are very close (relative difference is 1.54%), so one can assume that both of these estimates are free of
the gross bias error.

Table D1. Illustration of gross bias error by comparing false alarm probability estimates.

CFAR Method Nis Nfin
is P̂FA γ (%)

GTL-CMLD
1000 1000 1.01546× 10−4 8.51

100000 400000 1.94974× 10−4 7.91

OFPI-CFAR
1000 1000 1.01546× 10−4 8.51

100000 400000 1.00002× 10−4 0.42
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