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A Frequency Band Reconfigurable UWB Antenna
for High Gain Applications

Ritesh K. Saraswat1, * and Mithilesh Kumar2

Abstract—An octagonal shape patch antenna with switchable inverted L-shaped slotted ground is
designed for frequency band reconfigurable and experimentally validated. The antenna is capable
of frequency band switching at five different states including an ultra wideband (UWB) state, two
narrowband states and a dual-band state by using RF switching element p-i-n diodes. In the case of
ultrawide band (UWB) state, the proposed antenna operates over impedance bandwidth of 141% (2.87–
16.56 GHz) under simulation and 139% (2.85–15.85 GHz) in measurement with return loss S11 < −10 dB.
For two narrowband states, 10 dB impedance bandwidth achieved is 16% (5.05–5.91 GHz) and 11%
(8.76–9.80 GHz) under simulation and 14% (5.01–5.79 GHz) and 10% (8.68–9.69 GHz) in measurement,
respectively. For the dual band state, 10 dB impedance bandwidth of 2.21–2.52 GHz (13%) & 5.07–
5.89 GHz (15%) and 2.18–2.52 GHz (14%) & 8.78–9.71 GHz (10%) under simulation and 2.20–2.50 GHz
(12%) & 5.05–5.90 GHz (15%) and 2.19–2.50 GHz (13%) & 8.70–9.60 GHz (9%) in measurement with
return loss S11 < −10 dB. The proposed antenna is capable to serve in different wireless communication
applications such as WLAN [802.11b/g/n (2.4–2.48 GHz), 802.11a/h/j/n (5.2 GHz), ISM band (2.4–
2.5 GHz)], Bluetooth (2400–2484 MHz), WiMAX (2.3–2.4 & 5.15–5.85 GHz), WiFi (2.40–2.48, 5.15–
5.85 GHz) and UWB (3.1–10.6 GHz). It also works at 9.2 GHz where airborne radar applications
are found. Next, the antenna gain is improved with the help of a circular loop frequency selective
surface (FSS) and a PEC (perfect electric conductor) sheet. Measured peak gain represents average
improvements about 4 dB–5 dB over the UWB band. Experimental results seem in good agreement
with the simulated ones of the proposed antenna with and without the frequency selective surface.

1. INTRODUCTION

In recent years, due to rapid development in the field of wireless communications, the demand with
mobile devices operating under different standards or applications is extending. The wireless systems
are evolving in the direction of multi-functionality. For multi-functionality, antenna parameters such
as operating frequency, radiation pattern, impedance bandwidth and polarization are reconfigured in
order to fulfill the current or future demand [1]. Cognitive radio system is one of the future wireless
communication systems, where a sensing antenna with the capability of monitoring the spectrum is
required, and that can be reconfigured to communicate over a chosen frequency band. In this system, a
frequency reconfigurable antenna is required either for spectrum sensing or communication [2]. Most of
the frequency-reconfigurable antennas are capable to operate only for narrowband switching modes [3–
5]. A switchable quad-band antenna has been proposed by using microelectromechanical systems
(MEMS) switch [3]. The microstrip patch antenna can operate in four different frequency modes by
controlling the states of switches [4]. Recently, a number of frequency band reconfigurable antennas have
been designed, which combine the narrowband and wideband functionalities [6–11]. In [6], a Vivaldi
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antenna design has been proposed, providing the wideband mode and narrowband mode switching. A
frequency band reconfigurable antenna with switching between an ultrawideband (UWB) mode and
three narrowband modes has been designed, by using four photoconductive switches [7]. In [9], two
reconfigurable monopole antennas are proposed, which provide the combination of narrowband and
wideband functionalities, where the first one uses p-i-n diode switches, and the second uses varactor
diodes for switching operation. The Field-Effect-Transistor (FET) active switching devices are used in
different types of tunable EBG structures where the FET switches are modeled as ideal conductors for
determining the transmission of the structure [12]. By changing the electromagnetic bandgaps (EBGs),
the bandstop behavior of multistate periodic microwave circuit with very wide stopbands is observed
for different states [13].

In this paper, we propose a novel frequency-band reconfigurable antenna with switching facility
among UWB, narrowband and dual-band modes. The proposed antenna has five different switchable
states: 2.87–16.56 GHz in UWB mode; 5.05–5.91, and 8.76–9.80 GHz in narrowband mode; 2.21–
2.52 GHz & 5.07–5.89 GHz and 2.18–2.52 GHz & 8.78–9.71 GHz in dual-band mode. The proposed
antenna uses a switchable slotted ground structure for reconfigurability and has a simple structure
and the smallest size in comparison to antennas reported in literature [6–11]. To improve the gain
of the antenna, a circular loop frequency selective surface is designed and implemented. The FSS is
placed beneath the antenna to act as a reflector [14]. The average gain improvement with the FSS
antenna combination is around 4 dB. The CST Microwave Studio (CST MWS) software [16] is used
for simulation while the measurements are taken using a E5071C (300 kHz–20 GHz) ENA series Agilent
Technologies Vector Network Analyzer. The antenna and FSS structure are fabricated with the help
of PCB prototype machine Caddo-71. In the following section, the antenna geometry is described in
frequency band reconfigurable modes with simulated and measured results. Thereafter, the circular loop
FSS and PEC sheet design is described, and the enhancements in the gain and the radiation patterns
are discussed. Finally, conclusions are made.

2. ULTRAWIDEBAND (UWB) ANTENNA DESIGN

An octagonal shape monopole antenna is chosen as a basic structure to operate over wide bandwidth
and has good radiation characteristics. The configuration of the proposed UWB monopole antenna is
shown in Figure 1. The antenna is constructed on a Roger RT 5880 substrate with relative permittivity
2.2 and thickness 0.40 mm. The size of the substrate is 40 × 40 mm2. The radiating element is a
octagonal shape patch with dimensions ab = ef = 10 mm, bc = ha = 5.14 mm, cd = gh = 6.0 mm
and de = fg = 5.14 mm, which is fed with a 50 ohm microstrip feed line with length 22 mm and width
1.25 mm. On the bottom of the substrate, there is a ground plane with 21.1 × 40 mm2 dimensions and
height 0.01 mm, below the microstrip feed line.

As per the parametric study of the proposed antenna, variation in the antenna performance with

(a) (b)

Figure 1. Configuration of the UWB antenna. (a) Front view of structure, (b) back view of structure.
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Figure 2. Simulated reflection coefficient S11 of
the proposed antenna for different values of l1.

Figure 3. Simulated reflection coefficient S11 of
the proposed antenna for different values of W1.

change in length l1 and width W1 of the ground slot is shown in Figures 2–3. As seen, by varying the
slot dimensions (length l1 from 0 to 7 mm and width W1 from 0.6 to 1.4 mm), the impedance matching
with UWB is achieved at length l1 = 6.1 mm and width W1 = 1 mm.

It is also observed from Figures 2 and 3 that the impedance matching is improved at lower
frequencies (2–4 GHz) when the slot dimensions are reduced (either by reducing l1 or W1) whereas
at higher frequencies (above 5 GHz) it is improved when the slot dimensions are increased.

At the optimized value of l1 = 6.1 mm and W1 = 1mm, the input reflection coefficient S11 of UWB
antenna is below −10 dB with impedance bandwidth of 141% (2.87–16.56 GHz) under simulation and
139% (2.85–15.85 GHz) in measurement, shown in Figure 4.

3. NARROWBAND AND DUALBAND ANTENNA DESIGN

The UWB monopole antenna can be reconfigured to other frequency bands by using a inverted L and
rectangular-shaped slotted structure placed on the ground plane, as shown in Figure 5. This inverted

Figure 4. Simulated and measured reflection
coefficient S11 of the UWB antenna.

Figure 5. Slotted structure on ground plane.
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L-slotted structure acts as a filter, which is designed to suppress the frequencies outside the desired
frequency band. This embedded slot below the feed line is responsible for stopbands in the UWB range
and provides a passband between them [9]. This created passband can be controlled by varying the
length and shape of respective slot, as shown in Figure 6.

Figure 7 shows the input reflection coefficient S11 of the antenna below −10 dB for different filter
structures. Structures I and II create dual bands whereas structures III and IV are responsible for
obtaining the single bands only.

Figure 6. Filter structures placed on the ground
plane.

Figure 7. Simulated reflection coefficient S11 of
the antenna for filter structures in Figure 6.

Figure 8. Simulated reflection coefficient S11 of
the antenna for different values of l2 in structure-
III.

Figure 9. Simulated reflection coefficient S11 of
the antenna for different values of W2 in structure-
III.



Progress In Electromagnetics Research B, Vol. 64, 2015 33

Moreover, the bandwidth of each filtering structure in Figure 7 is controllable with changing the
length l2 and width W2 of parallel vertical arms (in Figure 5). By the variations of these arms dimensions,
impedance bandwidth changes accordingly, as shown in Figures 8–9. By increasing the slot length l2 and
width W2, bandwidth of the antenna decreases from 30% to 12% in structure III. Finally, the variations
in the impedance bandwidth with changes in the slot dimensions indicate the presence of optimal values
for the best performance.

4. RECONFIGURABLE ANTENNA DESIGN

This section is devoted to discussion on the design of an antenna which is capable of reconfiguration
from UWB to two narrowband and two dual-band modes by using the filter structure on ground plane
and inserting five p-i-n diode switches inside it, as shown in Figure 10. By changing effective length of
the slot, different resonant frequency bands can be produced. The switches D1–D5 are positioned in
such a way to obtain the required structures I–IV for desired frequency bands. If diode D1 is on and
remaining ones are off, we will get a filter structure like structure-I for dual-band.

For switching operation of p-i-n diodes, we apply dc voltage by using metal strips dimension of
2× 0.6 mm2 inside the main slot, as shown in Figure 10. A 100-pF dc blocking capacitor is also present
in the slot, for each p-i-n diode, to provide the RF connection of the p-i-n diode as well as to isolate the
RF signal from the dc. In the proposed design, ALPHA-6355 beam lead p-i-n diodes with extremely
low capacitance are used [15]. For biasing of p-i-n diodes, a 0.7 V dc voltage is applied to metal strips.
The ALPHA-6355 beam lead p-i-n diode exhibits an ohmic resistance of 2.6 ohm and a capacitance of
0.081 pF in the ON (forward bias) and OFF states (reverse bias), respectively. When the diodes are
turned on, the metal strips are connected to the ground plane and become a part thereof.

The desired frequency band can be obtained by changing the states of five p-i-n diodes, as per
Table 1. The RF equivalent circuit of the p-i-n diode is shown in Figure 11. In the case of ON-
state (forward bias), the p-i-n diode works as a current-controlled resistor (Rs) connected in series
with a fixed inductor (Ls). In OFF-state (reverse bias) of p-i-n diode, the equivalent circuit shows a
shunt combination of the intrinsic-layer capacitance (Cp) and the parallel resistance (Rs) in series with
the fixed inductance (Ls). The depleted intrinsic layer consist capacitive reactance Cp and the shunt
resistance Rs. The reactive capacitance Cp contains the stray capacitance Cs due to the effects of the
diode’s package structure and the junction’s capacitance Cj.

Figure 10. Switchable filter structure on the
ground plane (unit: millimeters).

(a) (b)

Figure 11. Equivalent circuit for p-i-n diode: (a)
ON-state (forward bias), (b) OFF-state (reverse
bias).
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Table 1. Details of combinations of p-i-n diodes with simulated and measured frequency band and
bandwidth in each states.

Diode →
D1 D2 D3 D4 D5

Frequency Bands (in GHz) 10-dB bandwidth (%)
Characteristics

States ↓ Simulated Measured Simulated Measured

I ON OFF OFF ON OFF 5.05–5.91 5.01–5.79 16 14
Narrow

Band

II OFF ON OFF OFF ON 8.76–9.80 8.68–9.69 11 10
Narrow

Band

III ON OFF OFF OFF OFF
2.21–2.52

& 5.07–5.89

2.20–2.50

& 5.05–5.90
13 & 15 12 & 15

Dual

Band

IV OFF ON OFF OFF OFF
2.18–2.52

& 8.78–9.71

2.19–2.50

& 8.70–9.60
14 & 10 13 & 9

Dual

Band

V ON ON ON ON ON 2.87–16.56 2.85–15.85 141 139 UWB

(a) (b)

Figure 12. Images of the fabricated antenna: (a)
top view; (b) bottom view.

Figure 13. Images of measurement setup for
proposed antenna.

The proposed antenna is initially simulated on CST Microwave Studio (MWS) software [16] and
then fabricated with the optimized dimensions, as shown in Figure 12. As per Table 1, the five operating
states are investigated, and their corresponding diodes states with comparison of the simulated and
measured results of frequency bands and impedance bandwidth. With respect to all the five states, the
measured and simulated reflection coefficients S11 are compared as shown in Figures 14–18 which seem
to be in good agreement. As per Table 1, for States I and II two narrowband states, 10 dB impedance
bandwidth achieved is 16% (5.05–5.91 GHz) and 11% (8.76–9.80 GHz) under simulation whereas 14%
(5.01–5.79 GHz) and 10% (8.68–9.69 GHz) in measurement respectively. For States III and IV, the
antenna operates in dual bands, impedance bandwidth of 13% (2.21–2.52 GHz) & 15% (5.07–5.89 GHz)
and 14% (2.18–2.52 GHz) & 10% (8.78–9.71 GHz) under simulation and 12% (2.20–2.50 GHz) & 15%
(5.05–5.90 GHz) and 13% (2.19–2.50 GHz) & 9% (8.70–9.60 GHz) in measurement respectively. For
UWB state, the antenna operates over impedance bandwidth of 141% (2.87–16.56 GHz) under simulation
and 139% (2.85–15.85 GHz) in measurement with return loss S11 < −10 dB.

Figure 13 shows the measurement setup for proposed antenna to obtain the measured reflection
coefficient by using vector network analyzer (VNA) and radiation characteristics with the help of
anechoic chamber.

The frequency bandwidth is obtained by switching among different states that can serve several
wireless applications, according to 802.11b/g/n (2.4–2.48 GHz), 802.11a/h/j/n (5.2 GHz) and ISM band
ranging from 2.4 GHz to 2.5 GHz and are used for different WLAN applications, including the Bluetooth
(2400–2484 MHz), WiMAX (2.3–2.4 & 5.15–5.85 GHz), WiFi (2.40–2.48, 5.15–5.85 GHz) and UWB (3.1–
10.6 GHz). It is also works at 9.2 GHz where airborne radar applications are found.
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Figure 14. Simulated and measured reflection
coefficient S11 of the proposed antenna for State-I
(from Table 1).

Figure 15. Simulated and measured reflection
coefficient S11 of the proposed antenna for State-
II (from Table 1).

Figure 16. Simulated and measured reflection
coefficient S11 of the proposed antenna for State-
III (from Table 1).

Figure 17. Simulated reflection coefficient S11 of
the proposed antenna for State-IV (from Table 1).

From the simulated reflection coefficient (blue line, Figure 18), resonance can be noted at 3.0 GHz,
5.0 GHz, 7.0 GHz and 9.5 GHz. The first resonance is controlled by the variation in the dimensions of
inverted L-shaped slot. An octagonal shape patch at the end of the CPW line acts as a monopole and
results in the resonance at 5.0 GHz. The rectangular slot on the ground plane causes the resonance
at 7.0 GHz while the higher resonance at 9.5 GHz seems to originate in the tank circuits formed by
two rectangular slits which are attached with the inverted L-shaped slot. A plot of the surface current
distribution at these resonances is shown in Figure 19 which justifies the above observations.
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Figure 18. Simulated and measured reflection
coefficient S11 of the proposed antenna for State-
V (from Table 1).

Figure 19. Surface current distribution of the
proposed antenna for different frequencies.

Figure 20. Simulated gain (dB) of the proposed antenna for different frequencies.

Figure 20 shows the 3D-gain of the proposed antenna at different resonance frequencies, which
indicates the maximum radiation in direction with respective to different values of theta and phi. At
higher resonant frequency, directivity is increased so that gain is improved. The measured antenna gain
in different states is exhibited in Figure 21. At lower frequencies (below 6 GHz), the gain is less than the
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(a) (b)

Figure 21. Measured gain of the proposed antenna for different switching states: (a) single-band and
dual-band modes, (b) UWB.

(a) (b)

Figure 22. Simulated radiation efficiency of the proposed antenna for different switching states: (a)
single-band and dual-band modes, (b) UWB.

reference level of 4 dB whereas at higher frequencies (above 6GHz), the gain is improved with respect
to the reference level. The antenna has an acceptable gain in narrowband and dual-band modes and a
reasonably flat gain with an average of 3.9 dB in UWB mode.

As per Figure 22(a), in the case of States I and II for the proposed reconfigurable antenna, the
simulated radiation efficiency varies from 96.9% to 79.5% and from 97.2% to 70.3%, respectively. For
States III and IV, the simulated radiation efficiency changes from 95.5% to 73.3% and from 94.0% to
78.1%, respectively. From Figure 22(b), in the case of State V for UWB mode, efficiency varies from
98.9% to 85.8%. So it is observed that the efficiency stays above 70% in all the operating band, and as
the frequency increases, the radiation efficiency decreases.
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Figure 23. Simulated and Measured AR (axial ratio) (along θ = 78◦ and Φ = −89◦) of the proposed
antenna.

The axial ratio (AR) of the proposed antenna is measured with the help of Antenna Measurement
System in conjunction with a Vector Network Analyzer inside an anechoic chamber. For obtaining
the best performance regarding maximum ARBW (Axial ratio bandwidth) as shown in Figure 23, the
measurement system is set up along the directions of θ = 78◦ and Φ = −89◦. The simulated AR
stays less than 3 dB from 4.4–6.9 GHz which represents an ARBW of 44% centered at 5.65 GHz. The
measured ARBW (axial ratio bandwidth) is slightly less than the simulated ARBW at 38% (4.65–
6.85 GHz) as shown in Figure 23. The wideband CP is achieved by optimizing the inverted L-shaped
slot and rectangular slit on ground plane. Inverted L-shaped slot on the ground plane creates alternate
current paths that produces two orthogonal degenerate modes on the top patch whereas the CP behavior
can be enhanced by creating rectangular slits in ground plane.

5. CIRCULAR LOOP FSS DESIGN FOR GAIN ENHANCEMENT

An FSS of 8 × 8 circular loop is designed to improve the gain of the proposed antenna. The FSS is
formed by a metallic PEC sheet with circular loop of diameter D = 7mm on both sides of an FR4
substrate of relative permittivity εr = 4.4 and thickness 1.6 mm. A schematic of the FSS is shown in
Figure 24.

The circular loop of diameter 7mm is considered as a square loop of side length 6.2 mm [17]. The
relation between the area of square loop and area of circular loop is shown in Equation (1).

l × l = πr2, (1)

where, l is the side length of square loop and r the radius of circular loop.
As per Figure 25 and Equation (1), circular loop unit cell dimension (du) is corresponding to twice

of the side length of the square loop.
As shown in Figure 24, circular loop type FSS combines the characteristics of the patch type FSS

and slot type FSS and is chosen for its broad band operation. In the comparison of the transmittance
with a single layer circular loop FSS to a double layer circular loop FSS in Figures 26 and 27, it is
easily seen that a wider bandwidth of 6.7 GHz (3.5–10.2 GHz) is achieved in the case of the latter. The
impedance bandwidth so obtained is near UWB bandwidth 7.5 GHz (3.1–10.6 GHz).

An equivalent circuit for the square loop FSS is proposed in [18], and for circular loop FSS,
an equivalent circuit is represented with the substrate of characteristic impedance Zsub and lumped
inductance and capacitance in series, as shown in Figure 28, where Z0 is the characteristic impedance
of air. The values of lumped inductance L and capacitance C can be computed by using following



Progress In Electromagnetics Research B, Vol. 64, 2015 39

Equations (2) & (3) [19, 20].

ωL = (du/p)F (p, 2wm, λ) (2)
ωC = 4εr(du/p)F (p, ga, λ) (3)

where, F (p, 2wm, λ) = (p/λ)[ln{cosec(π · 2wm/2p) + G(p,wm, λ)}] and F (p, ga, λ) = (p/λ)[ln{cosec(π ·
ga/2p) + G(p, ga, λ)}].

The characteristics of the proposed circular loop FSS are measured in an anechoic chamber. For
measurement, two double ridge horn antennas are used as reference antennas. Figure 29 shows the block
diagram of the used measurement setup. The proposed FSS is placed between the two horn antennas
(reference antennas) so that it is in the far-field region of both the antennas. The FSS is illuminated
by the plane waves generated by the transmitting horn antenna at the transmitter section, and the
transmitted waves through the FSS are collected by the receiving horn antenna at the receiver section.
The ratio of received signal strength to transmitted signal strength (S21) is calculated using Vector
Network Analyzer (VNA).

From Equations (2) and (3), ωL is the inductive reactance associated with inductance L, and ωC is
the capacitive susceptance associated with capacitance C. G is the correction factor for the associated

Figure 24. Schematic of the proposed FSS with
dimensions of the unit cell and periodicity.

Figure 25. Schematic diagram for equating the
area of square loop with circular loop.

Figure 26. Simulated and measured transmis-
sion (in dB) for the circular loop FSS for single
layer.

Figure 27. Simulated and measured transmis-
sion (in dB) for the circular loop FSS for double
layer.
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inductance and capacitance and can cause minor deviation in the results if it is ignored in the present
calculations. The admittance of the shunt branch representing the FSS may be expressed as,

Y = {jωL + (1/jωC)}−1 (4)

and the magnitude of the transmission coefficient |τ | for a single FSS layer is obtained by,

|τ |2 =
[
4/

{
4 + |Y |2}]

(5)

The resonance frequency can be determined by applying the condition,

ωL = (1/ωC) (6)

For a circular loop FSS layer with dimensions as given in Table 2 and with εr = 2.7 (the mean of
air and FR4), the calculated value of inductive reactance ωL is 10.3537λ−1 , and capacitive susceptance
ωC is 347.3714λ−1 . With these values of ωL and ωC and with the help of Equation (6), the calculated
resonance comes out to be 5.01 GHz. Also, the transmission coefficient magnitude |τ | is calculated by
using Equations (4) and (5).

Table 2. Dimensions of the circular loop FSS.

Parameter Value (in mm)
Periodicity (p) 10.5

Gap (ga) 0.5
Width of metallic loop (wm) 1.5

Dimension of the unit cell (du) 12.4

The size of FSS layer and distance from the antenna are optimized as per Tables 3(a) & (b),
respectively.

The distance from the antenna at which the proposed FSS is to be placed is also decided from the
reflection phase behavior. The distance should allow for constructive interference between the radiation
from antenna and the reflected radiation from the FSS screen. In order to meet the requirement, we
use a simple expression which can be written as given in Equation (7).

ΦFSS − 2βhd = 2nπ (7)

where, n = . . . . . . ,−2,−1, 0, 1, 2, . . . . . ..
ΦFSS is the reflection phase of the FSS screen, hd the distance at which the FSS is to be placed

from antenna, and β the propagation constant of free space given by 2π/λ. If we choose the reflection
phase ΦFSS to be 0◦, the optimal height can be shown to be hd = λ/2. Hence, the optimal height (hd)
can be taken equal to half the wave-length (λ/2) at that frequency where the reflection phase of the

Figure 28. Equivalent circuit for the circular
loop FSS.

Figure 29. Block diagram of measurement
setup [20].
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Table 3. Size and distance optimization for FSS.

(a) Size optimization for the FSS.

Size of FSS Sheet (in mm2)
Distance of FSS from

antenna Structure (in mm)
Peak Gain (in dB)

40 × 40 20 5.47

60 × 60 20 6.7

80 × 80 20 8.31

83.5 × 83.5 20 8.57

100 × 100 20 8.47

120 × 120 20 8.53

(b) Distance optimization for the FSS.

Size of FSS Sheet (in mm2)
Distance of FSS from

antenna Structure (in mm)
Peak Gain (in dB)

83.5 × 83.5 05 7.76

83.5 × 83.5 10 8.24

83.5 × 83.5 15 8.29

83.5 × 83.5 20 8.57

83.5 × 83.5 25 8.26

83.5 × 83.5 30 7.45

(a) (b)

Figure 30. (a) Image of proposed FSS without structure (side view), (b) image of proposed FSS with
structure (top view).

FSS (ΦFSS) is zero. For the designed circular loop FSS, the frequency at which the reflection phase is
0◦ is found to be 7.51 GHz. Hence, the optimal height is calculated as 20 mm. In Figure 30, an image
of the circular loop FSS screen is shown while the antenna along with the FSS screen is mounted at
optimal height of 20 mm.

A comparison of simulated and measured reflection coefficients (S11) of the antenna without the
FSS and with the circular loop FSS are shown in Figure 31. It can be seen from Figure 31 that
the impedance bandwidth more or less remains the same after the application of the FSS screen. The
impedance matching slightly deteriorates in the presence of the FSS due to induced current from reflected
radiation with varying phase at other frequencies.

The measured and simulated radiation patterns of the proposed antenna with and without FSS
are shown in Figure 32. The radiation patterns are plotted for selected frequencies in the two principal
planes E-plane and H-plane. From Figure 32, it is seen that the E-plane (XZ plane) patterns are quasi-
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Figure 31. Comparison of simulated and measured reflection coefficients without and with the FSS.

Figure 32. Measured and simulated radiation patterns (antenna with and without FSS).

omnidirectional in nature whereas the H-plane radiation patterns resemble dumbbell shape. There is a
good agreement seen between the measured and simulated radiation patterns for E and H planes with
the slight difference caused by assembly misalignments.

Also, most of the radiation patterns are seem to be reasonably stable with respect to frequency. In
the case of antenna without FSS, the H-plane pattern shows a pinch-off along the end fire directions
(θ = ±90◦) at lower frequencies, because of the increased cross polarization at these frequency, but when
FSS is applied, the pinch-off is no more evident. This shows a reduction in the cross-polar component
after the application of the proposed FSS. As shown the E-plane pattern, in the case of the antenna
with FSS, the pattern becomes more unidirectional in nature, and the back lobes (along θ = 180◦) are
considerably reduced as expected.
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Figure 33. Image of structure with PEC sheet
(Top view).

Figure 34. Measured peak gains of the proposed
antenna without and with the FSS and PEC
sheet.

Figure 35. Simulated radiation efficiency of the proposed antenna without and with the FSS and PEC
sheet.

Figure 33 shows an image of the proposed structure with PEC sheet where the antenna along with
the sheet is mounted at optimal height of 20 mm.

A comparison between the measured peak gains (linear, total) for the antenna with and without
the FSS and PEC sheet is shown in Figure 34. It shows improvement in gain in the case of antenna
with FSS and PEC sheet compared to the antenna without FSS and PEC sheet. The improvement in
the gain basically results from an increase in the directivity. From Figure 34, it is observed that on
average the improvement in the peak gain is about 4 dB–5 dB. It is also noticed from the figure that
the measured gains for all three cases remain low for lower frequency range up to 4.0 GHz. This is due
to the poor characteristics (low gain) of the reference horn antenna used in the Antenna Measurement
System for this frequency range. The tendency for all the measured gains (with and without FSS and
PEC sheet) to increase with increase in the frequency is attributed to the increased aperture area in
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Figure 36. Simulated and measured axial ratio
(along θ = 78◦ and Φ = −89◦) of the proposed
antenna with the FSS.

Figure 37. Simulated and measured axial ratio
(along θ = 78◦ and Φ = −89◦) of the proposed
antenna without and with the FSS and PEC
sheet.

higher frequency range (above 9.0 GHz).
The simulated radiation efficiencies of the antenna with and without FSS and PEC sheet are shown

in Figure 35. There is approximately a 10–15% reduction in the radiation efficiency in the case of the
antenna with FSS and PEC sheet. This reduction is due to the additional losses taking place in the FSS
screen or PES sheet and the substrate. It is seen from Figure 35, the radiation efficiency stays above
75% in the operating band.

The CP performance of the proposed antenna is affected in the case with the presence of FSS. It
is seen in Figure 36 that the ARBW (axial ratio bandwidth) of the proposed antenna is reduced in
the presence of FSS compared to the case without FSS. This effect is due to the phase change in the
electric field components induced during reflection from the proposed FSS and interference between
the forward traveling and reflected waves. The simulated ARBW is 36% (4.6–6.61 GHz) centered at
5.61 GHz whereas measured ARBW is 27% (4.95–6.51 GHz) centered at 5.73 GHz.

In another case, a PEC sheet is placed as a reflector below the proposed antenna and investigated.
In this case, the impedance matching gets affected, and the axial ratio is disturbed by which ARBW
(axial ratio bandwidth) is observed to be reduced as shown in Figure 37.

6. CONCLUSION

A novel band-reconfigurable octagonal shape monopole antenna with completely switchable frequency
bands has been presented. The antenna uses switchable slotted structure on the ground plane to provide
band-reconfigurable capability. The proposed antenna is simple to design and uses five p-i-n diodes to
switch on the desired frequency bands. The proposed frequency-band reconfigurable antenna is intended
for the use in cognitive radio and multi-radio wireless applications.

To improve the gain of the proposed antenna, two frequency selective surface designs are presented.
The first is a circular loop FSS designed at the center frequency of 7.51 GHz which provides average
improvement in the antenna gain by about 4 dB–5 dB. The second is a PEC sheet type frequency
selective surface which, besides enhancing the gain, retains the impedance bandwidth achieved without
the frequency selective surface. The measured results seem to be in good agreement with the simulated
results.
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