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Resonant States in Waveguide Transmission Problems

Yury Shestopalov*

Abstract—We prove the existence of complex eigenfrequencies of open waveguide resonators in the
form of parallel-plate waveguides and waveguides of rectangular crosssection containing layered dielectric
inclusions. It is shown that complex eigenfrequencies are finite-multiplicity poles of the analytical
continuation of the operator of the initial diffraction problem and its Green’s function to a multi-sheet
Riemann surface, and also of the transmission coefficient extended to the complex plane of some of the
problem parameters. The eigenfrequencies are associated with resonant states (RSs) and eigenvalues
of distinct families of Sturm-Liouville problems on the line; they form countable sets of points in the
complex plane with the only accumulation point at infinity and depend continuously on the problem
parameters. The set of complex eigenfrequencies is similar in its structure to the set of eigenvalues of
a Laplacian in a rectangle. The presence of a resonance domain in the form of a parallel-plane layered
dielectric insert removes the continuous frequency spectrum and gives rise to a discrete set of points
shifted to (upper half of) the complex plane.

1. INTRODUCTION

Spectral problems in the mathematical theory of diffraction have been attracting significant attention
of researchers since the development in [5] of the spectral theory of open structures. From the
mathematical viewpoint, these problems describe singularities of the analytical continuation of the
solution to diffraction problems (with sources) to the domain of complex values of parameters (frequency,
energy) that sometimes have no direct physical meaning. In order to formulate a correct mathematical
statement of a spectral problem in an unbounded spatial domain (e.g., a waveguide), it is necessary to
construct an appropriate analytical continuation to the complex domain (usually, to a well-defined multi-
sheet Riemann surface) of the operator of the initial diffraction problem and its Green’s function, and
first of all, of the conditions at infinity. For example, spectral problems in waveguides are connected with
the analysis of either complex waves or eigenoscillations of open waveguide resonators when frequency is
taken as a (complex) spectral parameter. In the latter case, the diffraction problem considered initially
at real frequencies is continued (extended) analytically to a certain multi-sheet Riemann surface H
where the spectral parameter is varied; it turns out [5] that (nonhomogeneous) diffraction problem
is uniquely solvable everywhere in H except for a discrete set of eigenfrequencies (eigenvalues of the
corresponding homogeneous (spectral) problem) forming a countable set of complex points with the only
accumulation point at infinity; these points are finite-multiplicity poles of the analytical continuation of
the operator of the initial diffraction problem and its Green’s function. A central question that governs
further development of the spectral theory of open structures in particular and mathematical theory of
diffraction in general is rigorous proofs of existence of complex eigenvalues of the spectral problems and
description of their distribution in the complex domain (including analysis of the structure of multi-sheet
Riemann surface H), dependence on (nonspectral) parameters and other important properties.
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In this work we prove the existence of complex eigenvalues for a family of waveguide spectral
problems associated with eigensolutions (eigenfrequencies) of open waveguide resonators and use this
information to identify and classify resonant states (RSs) of various nature. We start the analysis by
considering the problems of scattering of a normal waveguide mode by layered parallel-plane dielectric
inclusions in a planar waveguide and parallel-plane dielectric diaphragms in a waveguide of rectangular
cross section [1]. The closed-form solution to these problems are well known [1, 2]. However, some of
its very important features remained untouched, to the best of our knowledge; namely, a fact (known
in quantum scattering theory) that the transmission and reflection coefficients have singularities in the
complex domain of the problem parameters (frequency, longitudinal wavenumbers, permittivity) and
that the scattering problem is not solvable at these singular values of parameters. We show that these
singularities, referred to as RSs, correspond to poles of the transmission coefficient function (at which
the forward scattering problem is not solvable) considered as an extension to complex domain of one of
the problem parameters and to eigensolutions in open waveguide resonators. We propose classification
and interpretation of the corresponding solutions. We show that the singularities can be calculated
with prescribed accuracy by explicit formulas using the (numerical) solution to simple transcendental
equations and that the corresponding eigensolutions have a form of standing waves.

RSs were first reported in [3] and considered by many authors (see [4] and references therein) in
different problem statements mainly in quantum scattering theory. A correct mathematical approach
for the analysis of RSs in electromagnetics associated with eigenoscillations of cylindrical resonators is
developed in [5, Ch. 4], as part of the spectral theory of open structures.

In Section 1 statements are given of the probelms of diffraction from a dielectric obstacle in
a 3D- and 2D-waveguides and the corresponding spectral problems. The study of RSs of open
waveguide resonators formed by parallel-plate waveguides and waveguides of rectangular cross-section
containing layered dielectric inclusions (multi-section diaphragms) is performed in terms of analysis
of the transmission coefficients as functions of (nonspectral) parameters. Section 2 is devoted to the
determination of eigenvalues of the families of Sturm-Liouville problems on the line associated with the
considered waveguide spectral problems. In Section 3 the existence of eigenvalues is proved. In Section 4
the results are presented of the calculation of complex singularities of the transmission coefficient with
respect to different problem parameters revealing the distribution of RSs on the complex plane and
illustrating some of their properties.

2. STATEMENT OF DIFFRACTION AND SPECTRAL PROBLEMS

2.1. Diffraction from a Dielectric Obstacle in a 3D-Guide

Assume that a waveguide

P := {x : 0 < x1 < a, 0 < x2 < b, −∞ < x3 < ∞}
with the perfectly conducting boundary surface ∂P is given in the cartesian coordinate system. A three-
dimensional body Q (Q ⊂ P is a domain) with a constant magnetic permeability μ0 and permittivity
ε(x) (a bounded function in Q̄) is placed in the waveguide (Fig. 1). The boundary ∂Q of Q is piecewise
smooth, and Q does not touch the walls of the waveguide.

We look for electromagnetic field E, H ∈ Lloc
2 (P ) excited in the waveguide by an external field

with the time dependence e−iωt induced by electric current j0E ∈ Lloc
2 (P ). The differential operators

grad, div, and rot are interpreted in the sense of distributions. We seek weak (generalized) solutions to

Figure 1. A dielectric obstacle in a waveguide.
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Maxwell’s system of equations

rotH = −iωεE + j0E,

rotE = iωμ0H.
(1)

E and H satisfy the boundary conditions

Eτ |∂P = 0, Hν |∂P = 0, (2)

and the conditions at infinity: E and H admit for |x3| > C and sufficiently large C > 0 the
representations (± correspond to ±∞)

(E H)T =
∑

p

R(±)
p e−iγ

(1)
p |x3|

(
λ

(1)
p Πpe3−iγ

(1)
p ∇2Πp

−iωε0(∇2Πp) × e3

)
+
∑

p

Q(±)
p e−iγ

(2)
p |x3|

(
iωμ0(∇2Ψp) × e3

λ
(2)
p Ψpe3−iγ

(2)
p ∇2Ψp

)
, (3)

γ
(j)
p =

√
k2

0 − λ
(j)
p , Im γ

(j)
p < 0 or Im γ

(j)
p = 0, k0γ

(j)
p ≥ 0, and λ

(1)
p , Πp(x1, x2) and λ

(2)
p , Ψp(x1, x2)

(k2
0 = ω2ε0μ0) are the complete system of eigenvalues and orthogonal and normalized in L2(Π)

eigenfunctions of the two-dimensional Laplace operator −Δ in the rectangle Π := {x′ = (x1, x2) :
0 < x1 < a, 0 < x2 < b} with the Dirichlet and the Neumann conditions, respectively. The complete
statement of the conditions at infinity is given in Section 2.5.

2.2. Diffraction Problem in a Parallel-plate Waveguide

Consider a parallel-plate waveguide S = {x = (x1, x2, x3) : 0 < x1 < a, −∞ < x2, x3 < ∞}, containing
a nonmagnetic, isotropic, and inhomogeneous dielectric inclusion having the cross section

D ⊂ Q =
{
x′ = (x1, x3) : 0 < x1 < a, −d < x3 < d

}
bounded by a piecewise smooth closed contour ∂D where Q ⊂ S denotes the so-called transition
domain. The permittivity ε = ε(x′) is assumed to be a complex-valued function piecewise continuously
differentiable and bounded in S such that supp m(x′) ⊂ Q, where m(x′) = 1 − ε(x′).

The problem of diffraction of the TE mode by a dielectric inclusion D, when the solution to BVP
(1)–(3) for Maxwell’s equations has the form

E = (0, E2, 0), H = (H1, 0,H3), (4)

is reduced to the boundary-value problem (BVP) [8]

[Δ + λε(x′)]u(x′) = 0 in S, u(0, x3) = u(a, x3) = 0, (5)

u(x′) = u0 + us, us =
∞∑

n=−∞
a±n Pn(x′). (6)

Here u(x′) = E2 (x′) = E0
2 (x′) + Escat

2 (x′) = u0(x′) + us(x′) is the longitudinal component of the
total field of diffraction by D of the unit-magnitude TE-wave with the only nonzero component E2,

Δ =
∂2

∂x2
1

+
∂2

∂x2
3

is the Laplace operator, superscripts + and − correspond, respectively, to the domains

x3 > 2πδ and x3 < −2πδ, λ = k2
0 , ω = k0c is the dimensionless circular frequency, c = (ε0 μ0)−1/2 is the

speed of light in vacuum, and γn =
√

λ − (πn
a

)2 is the transverse wavenumber satisfying, for real λ, the
conditions

�γn ≥ 0, γn = i|γn|, |γn| = �γn =

√(πn

a

)2
− λ,

πn

a
> λ; (7)

functions
Pn(r′) = exp(iγnx3)f0n(x1), f0n(x1) = sin

πnx1

a
, n = 1, 2, . . . , (8)

solve homogeneous BVP (5)–(7) in a parallel-plate waveguide S without inclusion ({(πn
a )2}, {f0n} is

the complete system of eigenvalues and orthogonal and normalized in L2(0, a) eigenfunctions of the
one-dimensional Laplace operator − d2

dx2 in the interval 0 < x1 < a with the Dirichlet condition).
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It is assumed that series in (3) and (6) converge absolutely and uniformly and allows for double
differentiation. If ε(r′) is a piecewise continuous function, the continuity and transmission conditions [7,
Ch. 2], should be added on the discontinuity lines. Note that u0(x′) satisfies (5) in S, the boundary
condition, and radiation condition (6), (7) only in the positive direction, so that the electromagnetic
field with the x2-component u0(x′) may be interpreted as a mode coming from the domain x3 < −d.

2.3. Spectral Problems

(1)–(3) and (5)–(7) constitute BVPs for Maxwell’s equations or the Helmholtz equation with variable
(piece-wise constant) coefficient in an unbounded cylindrical domain. The corresponding homogeneous
BVPs may have nontrivial solutions giving rise to eigenvalues associated [5] with singular points of
Green’s function of the BVPs in question and resonances of cylindrical inhomogeneously filled open
waveguide resonators formed by the unbounded cylindrical domain. The nature of these resonances and
eigenvalues may be different depending on which of the problem parameters (frequency, longitudinal
wavenumber, or other quantity) is chosen as a spectral one. When frequency (κ = k0) is taken as a
(complex) spectral parameter, the diffraction problem considered initially at real frequencies is continued
analytically to a multi-sheet Riemann surface where the spectral parameter is varied. In [5] it is proved
that the (nonhomogeneous) diffraction problem is uniquely solvable everywhere on the Riemann surface
except for a discrete set K = {κn} of eigenfrequencies of the considered open waveguide resonator
(eigenvalues of the corresponding homogeneous (spectral) problem). The spectrum of eigenfrequencies
forms a countable set of complex points with the only accumulation point at infinity; these points are
finite-multiplicity poles of the analytical continuation of the operator of the initial diffraction problem
and its Green’s function.

The existence of such eigenvalues, referred to as RSs, has never been rigorously proved, to the
best of our knowledge. In this work we confirm the general result concerning the discreteness of
the eigenfrequency set and prove that RSs are associated with violation of the solvability of the
diffraction problem. What is more, we prove that RSs exist for open waveguide resonators formed by
parallel-plate waveguides or waveguides of rectangular cross-section containing inclusions in the form
of multi-sectional diaphragms. The occurence of RSs is shown when either frequency, permittivity or
longitudinal wavenumber of any of the section is taken as a spectral parameter. Main properties of RSs
are investigated by the reduction to determination of zeros of well-defined families of entire functions
of the spectral parameter.

2.4. Layered Dielecric Diaphragms

Consider first parallel-plate waveguide S and assume that inclusion D is a rectangle, D = Q =
{x′ : 0 < x1 < a, 0 < x3 < l} adjacent to the walls of S and separated into n rectangles Q0 =
{−∞ < x3 < 0}, Qj = {lj−1 < x3 < lj}, Qn+1 = {ln < x3 < +∞} (0 < x1 < a, l0 = 0), and
permittivity assumes constant values εj in Qj (j = 1, . . . , n). Domain S\Q̄ is filled with an isotropic
and homogeneous layered medium having constant permeability (μ0 > 0) in P (Fig. 2).

Figure 2. Multisectional diaphragm in a waveguide.

Solving BVP (5)–(7) in S with u0(x′) = Ae−iγ0mx3 we obtain explicit expressions for u(x′) inside
every Qj (j = 1, . . . , n) and outside Q

u(x′) = u(0m)(x
′) = f0m(x1)(Ae−iγ0mx3 + Bjmeiγ0mx3), x ∈ Q0,

u(x′) = u(jm)(x
′) = f0m(x1)(Cjme−iγjmx3 + Djmeiγjmx3), x ∈ Qj ,

(9)



Progress In Electromagnetics Research B, Vol. 64, 2015 123

where m = 1, 2, . . ., γ0m =
√

k2
0 − π2m2

a2 , γjm =
√

k2
j − π2m2

a2 , j = 1, . . . , n + 1, Dn+1 m = 0,
Cn+1m = Fnm, and k2

j = k2
0εj . From the transmission conditions on the lines x3 = lj, j = 0, 1, 2, . . . , n,

where permittivity undergoes breaks

[u(j−1 m)] = [u(j m)] = 0,
[
∂u(j−1 m)

∂x3

]
=
[
∂u(j m)

∂x3

]
= 0, j = 1, . . . , n, (10)

we obtain for every m = 1, 2, . . . a system of equations for the unknown (complex) coefficients and
finally a recurrent formula that couples A and Fnm,

A = gnmFnme−iγ0ln , (11)

where

gnm =
1

2
n∏

j=0
γjm

(γnmpn+1 + γ0qn+1), (12)

pj+1 = γj−1mpj cos αjm + γjmqji sin αjm, p1 := 1,
qj+1 = γj−1mpji sin αjm + γjmqj cos αjm, q1 := 1,

and αjm = γjm(lj − lj−1); j = 2, . . . , n.
Consider now waveguide P of rectangular cross section where body Q is a parallelepiped, Q =

{x : 0 < x1 < a, 0 < x2 < b, 0 < x3 < l} adjacent to the waveguide walls and separated into n sections
Q0 {−∞ < x3 < 0}, Qj {lj−1 < x3 < lj} (j = 1, . . . , n), Qn+1 {ln < x3 < +∞} (0 < x1 < a, 0 < x2 < b),
filled each with a medium having constant permittivity εj > 0. Domain P\Q̄ is filled with an isotropic
and homogeneous layered medium having constant permeability (μ0 > 0) in P . Assume that the solution
to BVP (1)–(3) for Maxwell’s equations has the form (4), π/a < k0 < π/b, and the incident electrical
field is

E0 = e2Af01(x1)e−iγ0x3, γ01 =

√
k2

0 − π2

a2
. (13)

Solving BVP (1)–(3) for TE-modes by applying transmission conditions similar to (10) on the boundary
surfaces of the diaphragm sections x3 = lj (j = 0, 1, 2, . . . , n) where permittivity undergoes breaks

[E(j−1)] = [E(j)] = 0,
[
∂E(j−1)

∂x3

]
=
[
∂E(j)]
∂x3

]
= 0, j = 1, . . . , n, (14)

we obtain explicit expressions in the form (9) at m = 1

E(0) = f01(x1)(Ae−iγ0x3 + Bjmeiγ0x3), x ∈ Q0,

E(j) = f01(x1)(Cjme−iγj1x3 + Djmeiγj1x3), x ∈ Qj,
(15)

for the field components inside every section of diaphragm Q and outside the diaphragm and then the
same recurrent formula (11) and expressions (12) with m = 1 that couple A and Fn1.

2.5. Conditions at Infinity for Waveguide Spectral Problems

The medium in a waveguide with a piecewise constant permittivity is a particular case of a more general
problem with the permittivity function depending on the longitudinal coordinate, ε = ε(x3); this setting
is considered in [6] when planar dielectric layers are situated in free space. In this paper, we will show
that the former problem admits a closed-form solution and obtain complete information about its
spectrum. Therefore, the case with piecewise constant permittivity may serve as the first necessary step
in the analysis of more general problems of waveguides filled with arbitrary inhomogeneous medium.

Inhomogeneous (diffraction) BVPs (1)–(3) or (5)–(7) are considered, respectively, for real values
of the frequency parameter κ = k0 satisfying π

a < κ < π
b or κ > πm

a . The corresponding homogeneous
(spectral) BVPs are obtained from the inhomogeneous BVPs by setting A = 0 in (15) and (9) or
j0E = 0 in (1) and are considered, according to [5], as analytical continuation with respect to, e.g.,
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Figure 3. Riemann surface H2 of the frequency parameter κ = k0.

complex parameter κ on a Riemann surface. For BVP (1)–(3) it will be a two-sheet Riemann surface
H2 defined [5] as follows: the sheets of H2 are complex κ-planes cut along the curves

d1(κ) = (�κ)2 − (�κ)2 −
(π

a

)2
, �κ ≤ 0 (16)

starting at the points κ± = ±π
a (Fig. 3). On the first sheet the quantity Γ = γ01(κ) =

√
κ2 − π2

a2 =
�Γ + i�Γ is defined as follows: in the upper half-plane 0 < arg κ < π �Γ > 0 and �Γ ≥ 0 for
0 ≤ arg κ ≤ π/2 and �Γ ≤ 0 for π/2 < arg κ < π; for κ in the quadrant 3π/2 ≤ arg κ ≤ 2π such that
(�κ)2 − (�κ)2 − (π

a )2 > 0 �Γ > 0 and �Γ < 0, and for (�κ)2 − (�κ)2 − (π
a )2 < 0 �Γ < 0 and �Γ > 0;

for κ in the quadrant π ≤ arg κ ≤ 3π/2 the conditions are the same but the sign of �Γ must be changed
to the opposite. On the second sheet Γ = −�Γ − i�Γ is defined in the same manner.

For BVP (5)–(7), it will be an infinite-sheet Riemann surface H defined [5] as follows: the sheets
of H are complex κ-planes cut along the curves

dm(κ) = (�κ)2 − (�κ)2 −
(πm

a

)2
, �κ ≤ 0 (m = 1, 2, . . .). (17)

The structure of H governed by the necessity to take into account conditions at infinity (7) or (3)

involving complex quantities Γm = γ0m = γ0m(κ) =
√

κ2 − π2m2

a2 (m = 1, 2, . . .) is described in [5,
Ch. 4].

A reason that explains the necessity of extending the analysis of spectral problems to the complex
domain is in the following fact which we verify in this study: a continuation of the transmission coefficient
(11) F = Fnm to the complex domain of some of its parameters (e.g., as F = F (z), with respect to
the variable z =

√
ε1 − π2/(k0a)2) may have singularities because gnm(z) may have zeros. In the

next section we will show that functions gnm(z) do have infinite families of complex zeros depending
continuously of nonspectral parameters. These zeros are actually associated with (complex) eigenvalues
of the families of Sturm-Liouville problems on the line considered with respect to different spectral
parameters.

2.6. Transmission Coefficient as Function of Parameters

The aim of our study is to find singularities (poles) of the transmission coefficient, that is, zeros of
gnm in (11) considered generally with respect to any of its complex parameters. To do this in a
mahematically correct way it is necessary (a) to consider gnm = gnm(z, β) as a function of the chosen
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spectral parameter (sought-for quantity) z and a vector of (remaining) real and complex nonspectral
parameters β = {a, lj , εj}; (b) to prove, using the theorem of existence of implicit function of several
variables, that there exists an implicit function z = z∗(β) specified by the equation gnm(z, β) = 0; the
latter may be called generalized dispersion equation (GDE) and the former generalized dispersion curve
(a hypersurface in the space of parameters associated with vector β).

In the case of a one-sectional diaphragm, which is the basic problem of analysis, the transmission
coefficient

F = F1 = A
eiγ0ls

g1(z)
, g1(z) = cos tz + iZ(z, c) sin tz, (18)

where t = k0l1, c =
√

1 − π2/(k0a)2, and

h(s) =
1
2

(
s +

1
s

)
, Z(s, c) = h

(s

c

)
=

1
2

(s

c
+

c

s

)
(c 
= 0); (19)

h(s) and Z(s, c) are, respectively, the Zhukovsky function and the modified Zhukovsky function. For
g1 in the form (18) the spectral parameter z = c1 =

√
ε1 − π2/(k0a)2 and the parameter vector

β = {a, l1, ε1, k0} or β = {â, l̂1, ε1} with â = k0a, l̂1 = k0l1 being dimensionless variables; if z = κ = k0

then β = {a, l1, ε1} and

g1(ζ) = cos l1ζ + iZ(ζ, c) sin l1ζ, ζ =
√

κε1 − π2/a2. (20)
Consider in view of (18) the functions

g(z) = cos z +
i

2

(
z

C
+

C

z

)
= cos z + iZ(s,C) sin z (21)

and

ĝ±(z) = cos(tz) ± i

2

(
z

C
+

C

z

)
sin(tz) = cos z′ ± iZ(ts, tC) sin z′, z′ = tz, (22)

where C and t are real constants. It is easy to check that Z(s,C) = Z(ts, tC); Z(s,C) sin tz, g(z) and
ĝ±(z) are entire even (depending on z2) functions for every real C and t; g(z) and ĝ±(z) have no real
zeros; and |g(z)| ≥ 1 and |ĝ±(z)| ≥ 1 (and |F | ≤ 1) for real z.

In order to reveal the structure and properties of the functions representing the transmission
coefficient, write explicit formulas (12) for the transmission coefficient in the cases of one-, two-, and
three-sectional diaphragms (omitting index m):

F = Fs = A
eiγ0ls

gs(z)
, s = 1, 2, 3, (23)

g1(z) = cos tz +
i

2

(z

c
+

c

z

)
sin tz = cos tz + iZ(s, c) sin tz, (24)

g2(z) = cos α2 ×
{

cos tz +
i

2

(z

c
+

c

z

)
sin tz +

tan α2

2

[
−
(

z

c2
+

c2

z

)
sin tz + i

(
c

c2
+

c2

c

)
cos tz

]}
= cos α2 {cos tz + iZ(s, c) sin tz + tan α2 [−Z(s, c2) sin tz + iZ(c, c2) cos tz]}
= cos α2Φ2(z, α2), Φ2(z, α2) = g1(z) + tan α2g12(z); (25)

g3(z) = cos α2 cos α3 ×
⎧⎨⎩

cos tz + i
2 (z

c + c
z ) sin tz − tan α2{1

2( z
c2

+ c2
z ) sin tz − i

2( c
c2

+ c2
c ) cos tz}+

− tan α2 tan α3{1
2 ( c3

c2
+ c2

c3
) cos tz + i

2 (zc3
cc2

+ cc2
z3c) sin tz}+

− tan α3{ i
2 ( c

c3
+ c3

c ) cos tz − 1
2( z

c3
+ c3

z ) sin tz}

⎫⎬⎭
=

⎧⎨⎩ g2(z) − tan α3

[
tan α2

(
1
2( c3

c2
+ c2

c3
) cos tz + i

2(zc3
cc2

+ cc2
zc3

) sin tz
)

+

+ i
2( c

c3
+ c3

c ) cos tz − 1
2( z

c3
+ c3

z ) sin tz
] ⎫⎬⎭

=
{

g2(z) − tan α3 [tan α2 (Z(c3, c2) cos tz + Z(zc3, cc2) sin tz)+
+Z(c3, c) cos tz − Z(c3, z) sin tz]

}
= cos α2 cos α3Φ3(z, α2), Φ3(z, α2) = g2(z) + tan α3g23(z); (26)
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Figure 4. ‘Signature curve’ of the transmission coefficient F1 on the complex F1-plane parametrized
by real z, 0 < z < 4; C = 0.05 (red), 0.5 (blue), 1 (black).

here t2 = k0l2, cj =
√

εj − π2/(k0a)2 (j = 2, 3), α2 = c2(t2 − t), and α3 = c3(t3 − t2).
It is not difficulut to check using the analysis applied for Zhukovsky functions and functions (21) and

(22) and explicit expressions (25) and (26) that gs(z) and Φs(z), s = 2, 3, are entire even (depending
on z2) functions for every real-parameter set {t, c, c2, c3}; have no real zeros; and |gs(z)| ≥ 1 (and
|Fs| ≤ 1) for real z. Fig. 4 presents a typical ‘signature curve’ of the transmission coefficient illustrating
a one-to-one correspondence between a parameter set and the set of values of F1(z) on the complex
plane.

The same conclusions apply for functions gn(z), n > 3 in the case of an a n-sectional diaphragm;
they may be also verified using perturbation analysis with respect to small parameters αn and the
reasoning of the next paragraph.

We see that at α2 = 0 the second section vanish and a two-sectional diaphragm is transformed to a
one-sectional and the equation g2(z) = 0 equivalent to Φ2(z, α2) = 0 that governs possible singularities
of the transmission coefficient in the two-sectional case takes the form g1(z) = 0 valid in the one-sectional
case (g2(z) = g2(z, α2) = g1(z) and Φ2(z, α2) = g1(z) at α2 = 0: g2(z, 0) = Φ2(z, 0) = g1(z)) . Similarly,
g3(z) = 0 takes the form g2(z) = 0 at α3 = 0, and so on.

Choosing α2 as a small parameter, denoting z∗ = z∗(α2) a root of the equation g2(z, α2) = 0, and
taking into account that g1(z∗0) = 0 where z∗0 = z∗(0), we can obtain from (25) a linear asymptotic
expansion of z∗(α2) in the form

z∗(α2) = z∗(0) + α2
dz∗

dα2

∣∣∣∣
α2=0

+ O(α2
2) = z∗0 − α2

∂Φ2/∂α2

∂Φ2/∂z

∣∣∣∣
z=z∗0 ,α2=0

+O(α2
2) = z∗0 − α2

g12(z∗0)
g′1(z

∗
0)

+ O(α2
2) = z∗0 + α2A∗

′ + O(α2
2), (27)

A∗
′ =

Z(z∗0 , c2) − Z(c, c2)Z(z∗0 , c)
t(Z2(z∗0 , c) − 1) − iZ ′(z∗0 , c)

=
2c2((z∗0)2 + c2

2) − (c + c2
2)((z

∗
0)2 + c2)

[c2((z∗0)2 − c2)] [t((z∗0)2 − c2) − 2ic]
.

In addition to these regular transformations, it is easy to check that zeros of g1(z) undergo regular
perturbation with respect to (real) parameters α2 and α3, so that, e.g., if z∗ is a zero of g1(z), then a
continuation exists z∗(α2) specified by the equations g2(z, α2) = 0 or Φ2(z, α2) = 0; namely, z∗(α2) is an
implicit function defined at least locally, for sufficiently small α2 ∈ (0, α∗

2), as a (unique differentiable)
solution to the Cauchy problem

dz

dα2
= −∂Φ2/∂α2

∂Φ2/∂z
= − 1

cos2 α2

g12(z)
g′1(z) + tan α2g′12(z)

, α2 ∈ (0, α∗
2), (28)

z(0) = z∗0 ,

because it is easy to check that
∂Φ2

∂z

∣∣∣∣
z=z∗,α2=0


= 0 (29)
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for sufficiently small α2 according to the explicit form of functions g1(z) and g12(z) and their derivatives.
In the case of an n-sectional diaphragm we have

pj+1 = γj−1 cos αj

(
pj + iqj

γj

γj−1
tan αj

)
→ γj−1pj, αj → 0,

qj+1 = γj cos αj

(
qj + ipj

γj−1

γj
tan αj

)
→ γjqj, αj → 0,

gj → 1

2
j∏

k=0

γk

(γjγj−1pj + γ0γjqj) = gj−1, (30)

so that at αj = 0 a j-sectional diaphragm is transformed continuously to a (j−1)-sectional (j = 2, 3, . . .)
in a sense that the equation gj(z) = 0 that governs possible singularities of the transmission coefficient
in the j-sectional case takes the form gj−1(z) = 0. In general, make use of formulas (11) and (12)
where index m (specifying the exciting mode) is omitted and form a parameter vector α = {αj}n−1

j=1

(n > 2). Next, we can check, using the theorem of existence of implicit function of several variables,
that there exists an implicit function z∗(α) specified for sufficiently small ‖α‖ ∈ (0, α∗

2) by the equations
gn(z, α) = 0 or Φn(z, α) = 0 with the appropriately defined function Φn(z, α). Therefore zeros of
gn(z) exist locally (for sufficiently small ‖α‖) and undergo regular perturbation with respect to (real)
parameters {αj}n−1

j=1 .
In view of further analysis of spectral problems with respect to different spectral parameters consider

determination of poles of the transmission coefficient (zeros of gnm in (11)) with respect to different
complex variables. Take first the case of a two-sectional diaphragm and determination of zeros of
function g2 in (25). Let z2 = c2 =

√
ε2 − π2/(k0a)2 be a new spectral parameter, c1 =

√
ε1 − π2/(k0a)2,

α1 = z2t
′, and t′ = t2 − t; rewrite expressions (25) in the form

g2 = cos tc1Φ̃2(z2, α1), Φ̃2(z2, α1) = g̃1(z2) + tan tc1g̃12(z2), (31)
g̃1(z2) = cos t′z2 + iZ(z2, c) sin t′z2, g̃12(z2) = −Z(z2, c1) sin t′z2 + iZ(c, c1) cos t′z2.

We see again that at t = 0 when the first section vanishes, a two-sectional diaphragm is transformed to a
one-sectional, and the equation g2(z2) = 0 equivalent to Φ̃2(z2, α1) = 0 that governs possible singularities
of the transmission coefficient in the two-sectional case with respect to the spectral parameter z2 takes
the form g̃1(z2) = 0 valid in the one-sectional case (g̃1(z2) = g1(z2) at t′ = t). Next, assuming the
existence of zeros of g1(z) which yields the existence of zeros of g̃1(z2), taking t as a small parameter,
and applying the analysis based on reduction to a Cauchy problem as above, we can check that zeros
of g̃1(z2) exist at least locally, for sufficiently small t.

Applying similar analysis based on the parameter-differentiation method and explicit recurrent
formulas (30) and expressions (12) one can prove the existence of zeros of gnm given by (11) considered
with respect to every zj = cj =

√
ε2 − π2/(k0a)2 (j = 2, 3, . . .) for every n,m = 2, 3, . . ..

Important conclusions can be made:
(i) the equation g1(z) = 0 plays a fundamental role in the RS theory: if we prove the existence of roots

of this equation then the existence of roots of all subsequent equations gn(z) = 0, n = 2, 3, . . ., will
be a result of regular perturbation of zeros of g1; what is more, any root of gn(z) = 0 will be a
regular perturbation of a root of gn−1(z) = 0, n = 2, 3, . . .;

(ii) RSs arise as poles of the transmission coefficient (zeros of gnm in (11)) considered with respect
to any of the spectral parameters zj = cj =

√
ε2 − π2/(k0a)2 (j = 2, 3, . . .). Hence, any section

of a multi-sectional diaphragm may produce its ‘own’ RSs and may be considered as a resonance
(resonating) volume.

3. STURM-LIOUVILLE PROBLEMS ASSOCIATED WITH RESONANT STATES

The aim of this section is to establish connections between (i) singularities of the transmission coefficient
in the complex domain, (ii) eigensolutions of Maxwell equations in waveguides with layered dielectric
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inclusions (parallel-plane diaphragms), and (iii) eigenvalues of certain families of Sturm-Liouville
problems. We also reveal basic properties of the spectrum of eigensolutions (eigenvalues) including
existence, discreteness and localization on the complex plane of the spectral parameter(s).

Set λ = k2
0 , Θ = m2(π

a )2, γ0 =
√

λ − Θ, introduce the piece-wise constant weight function

ρ = ρ(x3) =

⎧⎨⎩
ε0, x3 < 0,
ε1, 0 < x3 < l1
ε0, x3 > l1,

(32)

and consider four Sturm–Liouville problems P+
−, P−

+, P+
+, and P−

− on the line with piece-wise constant
coefficient and four different asymptotic conditions at infinity specified by operator L±

±
Su ≡ −u′′ + Θu = ρλu, x3 ∈ R, (33)
L±
±u = 0, x3 → ±∞, u(x3) ∈ C1(R), (34)

where

L±
±u ≡ u(x3) − O(e±iγ0x3) = 0, x3 → ±∞ (P+

+, P−
−), (35)

L+
−u ≡ u(x3) − O(eiγ0x3) = 0, x3 → −∞, u(x3) − O(e−iγ0x3) = 0, x3 → ∞ (P+

−), (36)

L−
+u ≡ u(x3) − O(e−iγ0x3) = 0, x3 → −∞, u(x3) − O(eiγ0x3) = 0, x3 → ∞ (P−

+). (37)

In what follows we assume that ε0 = 1.
It is easy to see that

u(x3) =

⎧⎨⎩ Be±iγ0x3 x3 < 0,
C1e

−iγ1x3 + D1e
iγ1x3, 0 < x3 < l1,

Fe±iγ0x3, x3 > l1,
(38)

where γ1 =
√

λε1 − Θ and B,C1,D1, F are arbitrary constants, solves (33) on the respective intervals.
In the particular case ε0 = ε1 = 1 the piece-wise constant weight function ρ is constant and

u(x3) = Be±iγ0x3 , x3 ∈ R, (39)

with an arbitrary constant B solves, for λ > Θ, (33) and Sturm-Liouville problems P+
+ and P−

−. Hence
the half-line

Λ(Θ) = {λ : λ > Θ} (40)

constitutes the continuous spectrum of operator S. We will show that introduction of a dielectric
obstacle (inclusion) in the form of a parallel-plane dielectric section eliminates the continuous spectrum
and gives rise to discrete spectrum of eigenwaves or eigenoscillations (depending on the choice of the
spectral parameter).

Applying to (38) the continuity conditions in (34) we obtain (in the case of problem P−
+) a system

of four linear equations ⎧⎪⎨⎪⎩
−B + C1 + D1 = 0,
γ0B + γ1 (C1 − D1) = 0,
C1e

−iγ1l1 + D1e
iγ1l1 − Fe−iγ0l1 = 0,

γ1(−C1e
−iγ1l1 + D1e

iγ1l1) + γ0Fe−iγ0l1 = 0,

(41)

which can be written in the matrix form as

A−
+S = 0, A−

+0 =

⎛⎜⎜⎝
−1 1 1 0 0
1 γ1/γ0 −γ1/γ0 0 0
0 1 e2iγ1l1 −eil1(γ1−γ0) 0
0 −1 e2iγ1l1 (γ0/γ1)eil1(γ1−γ0) 0

⎞⎟⎟⎠ , S =

⎛⎜⎝ B
C1

D1

F

⎞⎟⎠ . (42)

We see that matrix A−
+ has a typical block structure, consisting of n = 2 rectangular blocks of the size

2 × 3 each produced by the continuity condition on the permittivity break line and shifted n = 1 time
to the right by inserting a column of two zeros after the first two rows. This result will be generalized
below for the case of an n-sectional diaphragm with arbitrary number of sections n.
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Introduce the quantities

T∓ = T∓(λ, a, l1, ε1)=
1
p∓

[
e∓iγ1l1(γ1+γ0)2−e±iγ1l1(γ0−γ1)2

]
=

4γ0γ1

p∓
g∓(λ, a, l1, ε1), (43)

g∓(λ, a, l1, ε1) = cos(l1γ1) ∓ i

2

(
γ1

γ0
+

γ0

γ1

)
sin(l1γ1)

= cos l1z ∓ i

2

(
√

ε1
z√

z2 − q
+

1√
ε1

√
z2 − q

z

)
sin l1z, (44)

T0 = T0(λ, a, l1, ε1) =
1
p∓

[
(γ2

1 − γ2
0)(eiγ1l1 − e−iγ1l1)

]
=

2i(γ2
1 − γ2

0)
p∓

g0(λ, a, l1, ε1), (45)

g0(λ, a, l1, ε1) = sin(l1γ1),

p∓ = p∓(λ, a, l1, ε1) = (γ0 + γ1)e−iγ1l1 − (γ0 − γ1)eiγ1l1 ,

p± = p±(λ, a, l1, ε1) = (γ0 + γ1)eiγ1l1 − (γ0 − γ1)e−iγ1l1 ,

where z = γ1 and q = Θ(ε1 − 1); T∓ correspond, respectively to problems P−
+ and P+

−, and T±
0 to

problems P+
+ and P−

−.
Applying the Gauss elimination and reducing the system matrix to an upper-diagonal form (or

calculating its determinant) we conclude that homogeneous systems similar to (42) obtained for all four
problems P−

+, P+
−, P+

+, and P−
− are uniquely solvable if

T∓ 
= 0 or T0 
= 0. (46)
These cases correspond to certain sets of parameters

Ω∓
reg = {(λ, a, l1, ε1) : T∓(λ, a, l1, ε1) 
= 0} or Ω0

reg = {(λ, a, l1, ε1) : T0(λ, a, l1, ε1) 
= 0} (47)

and may be called regular (or nonresonant).
Note that under the conditions

γ0 
= 0, γ1 
= 0, (48)
p± 
= 0 and p∓ 
= 0 if T∓ = 0 or T0 = 0; p± = 0 implies T∓ 
= 0 and correspond thus to the regular case.

If
g∓(λ, a, l1, ε1) = 0, (49)

we have T∓ = 0 and the resonant case corresponding to the set of parameters
Ω∓

res = {(λ, a, l1, ε1) : g∓(λ, a, l1, ε1) = 0}. (50)
It is easy to see that (49) yields the equation

e±2iγ1l1 =
(γ1 − γ0)2

(γ1 + γ0)2
(51)

which has no solutions given by the sets of real numbers {(λ, a, l1, ε1)} satisfying (48). This means that
on the nonresonant set Ωreg (when condition (46) is fulfilled) the problem (P) of the scattering of the
normal waveguide mode in a single-mode rectangular waveguide with a lossless dielectric diaphragm is
uniquely solvable for real ω, a, l1, ε1 satisfying (48).

If
g0(λ, a, l1, ε1) = 0, (52)

we have T0 = 0 and the resonant case corresponding to the set of parameters
Ω0

res = {(λ, a, l1, ε1) : γ1l1 = πr, r = 1, 2, . . .}. (53)
In the resonant cases system (42) or homogeneous systems similar to (42) obtained for each of four

problems P−
+, P+

−, P+
+, and P−

− has a nontrivial solution given by⎧⎪⎨⎪⎩
B = G 2γ1

γ1+γ0
F,

C1 = Gγ1−γ0

γ1+γ0
F,

D1 = GF,

G =
eil1(γ1−γ0)

p
, p = p±, p∓, (54)
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where F is an arbitrary complex number; the corresponding nontrivial solution to the Sturm-Liouville
problem (33), (34) may be taken in the form (for F = 1)

u(x3)=

⎧⎨⎩
2Gγ1

γ1+γ0
e−iγ0x3, x3 < 0,

((γ1−γ0)e−iγ1x3+(γ1 + γ0)eiγ1x3) = 2G
γ1+γ0

(γ1 cos(γ1x3)+iγ0 sin(γ1x3)), 0 < x3 < l1,

eiγ0x3, x3 > l1.

(55)

As standing-wave we will call eigensolutions (55) to Sturm-Liouville problems (33), P+
+ and P−

−,
with real γ0 that have real eigenvalues

λ1,rm =
1
ε1

[(
πr

l1

)2

+
(πm

a

)2
]

, r,m = 1, 2, . . . (56)

corresponding to the resonant case (53).
As proper we will call eigensolutions (55) to Sturm-Liouville problems (33) with complex γ0

(�γ0 
= 0) that decay exponentially as x3 → ±∞. For problems P−
+ or P+

− the proper eigensolutions
are specified by the conditions �γ0 > 0 (upper half-plane of the first sheet of the Riemann surface of
parameter κ) or �γ0 < 0 (for m = 1, the part of the lower half-plane on the first sheet of the Riemann
surface H2 of κ bounded by the curves d1(κ) defined by (16)), respectively.

If, for a fixed parameter set {a, l1, ε1} z = z∗∓ is a zero of the function (44)

g∓ = g∓(z) = cos l1z ∓ i

2

(
√

ε1
z√

z2 − q
+

1√
ε1

√
z2 − q

z

)
sin l1z, (57)

then

λ∓ =
(z∗∓)2 + Θ

ε1
(58)

is an eigenvalue of the Sturm-Liouville problems P−
+ and P+

− (33)–(34) with the eigenfunction (55).
In the next section we prove that under certain conditions imposed on the parameter set {a, l1, ε1}

functions (57) have infinitely many complex zeros forming countable sets {z∗∓,rm} (r,m = 1, 2, . . .) in
the complex plane z with an accumulation point at infinity† so that we can naturally number these zeros
and the corresponding eigenvalues, as in the case (56), by a double index rm. Thus the Sturm-Liouville
problems P−

+ and P+
− (33), (34) have countable sets of (complex) eigenvalues

λ∓,rm =
1
ε1

[
(z∗∓,rm)2 +

(πm

a

)2
]

, r,m = 1, 2, . . . . (59)

The corresponding eigenfrequencies of the considered open waveguide resonators form a countable set
of complex points

κ∓,rm =
√

λ∓,rm, r,m = 1, 2, . . . , (60)
with the only accumulation point at infinity. These points are finite-multiplicity poles of the analytical
continuation of the operator of the initial diffraction problem and its Green’s function to a two-sheet
or a multi-sheet Riemann surface H2 or H, respectively, of spectral parameter κ defined [5] using (16)
or (17).

In the case of an n-sectional diaphragm, specifically for n = 2, 3, applying to the expressions
for u similar to (38) that follow from (9) and (15) the transmission conditions on the lines x3 = lj ,
j = 0, 1, 2, . . . , n, where permittivity undergoes breaks (the continuity conditions in (33)) we obtain a
homogeneous linear equation system AnSn = 0 of 2(n+1) linear equations for the unknown coefficients.
The system resembles the form of (42) and its matrix An has a typical block structure: it consists of n
2 × 3 rectangular blocks shifted each n − 1 times to the right by inserting a column of two zeros after
every two subsequent rows. Then by a recurrent procedure similar to that leading to the expressions
(11) and (12), we show that unique solvability of the nonhomogeneous coefficient systems AnSn = Gn

is violated when gnm vanishes. Hence zeros of gnm in (12) with respect to a chosen spectral parameter
are associated with eigenvalues of the Sturm-Liouville problems P−

+ and P+
− (33), (34).

† For every m = 1, 2, . . . functions (57) have infinitely many complex zeros {z∗∓,rm}, r = 1, 2, . . ..
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3.1. Real Eigenvalues, Extrema, and Eigenfrequencies

It is clear that for any complex ζ there is a complex ε1 such that �w = 0, where

λ∓ = w = w(ζ) =
ζ2 + Θ

ε1
(�Θ = 0). (61)

Indeed, denoting ζ = u + iv and ε1 = h + ig we have

w =
u2 − v2 + Θ + 2iuv

h + ig
=

h(u2 − v2 + Θ) + 2uvg − i
[−g(u2 − v2 + Θ) + 2huv

]
h2 + g2

, (62)

so that �w = 0 at

g(u2 − v2 + Θ) = 2huv or
g

h
= R(ζ), R(ζ) = 2

uv

u2 − v2 + Θ
, (63)

which yields

ε1 = ε̃1(ζ) = ε1(1 + iR(ζ)), (64)

and

w = �w =
u2 − v2 + Θ

ε1
(65)

where ε1 
= 0 is an arbitrary real number. Thus

λr
∓,rm =

(z∗∓,rm)2 +
(

πm
a

)2
ε̃1(z∗∓,rm)

=
(z∗∓,rm)2 +

(
πm
a

)2
ε1(1 + iR(z∗∓,rm))

r,m = 1, 2, . . . , (66)

are real eigenvalues of the Sturm-Liouville problems P−
+ and P+

− (33), (34) with ε1 in (32) given by
(62)–(64). A conclusion is that at real ε1 these problems have no real eigenvalues. The corresponding
real eigenfrequencies of the considered open waveguide resonators are determined from (60); the positive
sign in (65) is obtained by setting ε1 = ε̃1 sgn(u2 − v2 + Θ) where ε̃1 > 0.

Recall that zeros of function g1(z) in (21) determine RSs of a one-sectional diaphragm. It is easy
to call that |g1(z)| = 1 at z = zex

r (t) = πr
t , r = 1, 2, . . ., i.e., for z = γ1 =

√
λε1 − Θ, at

λ = λ1 mr =
1
ε1

[(πm

a

)2
+
(πr

t

)2
]

. (67)

so that zex
r (t) and λ1 mr are points of extremum of the transmission coefficient F = F1(z) given by (18),

as illustrated by Figs. 5, A1 and A2. Detailed proofs are given in Appendix A.

Figure 5. Modulus of the transmission coefficient F1 = F1(z) given by (18) at t = 1 with respect
to real z at C = 0.1 (red), C = 1 (blue), and C = 3 (black); local minima at the ‘resonance’ points
z = x∗

n ∈ (π/2(2n − 1), πn), maxima T = 1 are at z = πn (n = 1, 2, . . .).
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λ1 mr are ‘weighted’ eigenvalues of the Laplacian in a rectangle Π = {(x1, x3) : 0 < x1 < a, 0 < x3 <
l1}, that is, in the (first) section of the waveguide, Q1, Q1 = {(x1, x3) : l0 < x3 < l1} and coincide with
real eigenvalues (56) corresponding to standing-wave eigensolutions (55) of Sturm-Liouville problems
(33), P+

+ and P−
−, and resonant case (53). We see that for every given a or l1 there is a (real) ε1 (or,

more precisely, there are parameter triples governed by (67) such that the transmission coefficient (23)
with s = 1 attains unity.

In the case of an n-sectional diaphragm, specifically for n = 2, 3, the points of extremum
zex
r,n = zex

r,n(t, α) and λn mr = λn mr(t, α) of the transmission coefficient F = Fn(z) given by (23)–(26) can
be determined as regular perturbations of the extrema zex

r (t) and λ1 mr of F1(z) with respect to small
parameter α2 or α3 (or the whole vector of nonspectral parameters α) using the parameter-differentiation
method and reduction to Cauchy problems (28), (29). One can obtain their linear asymptotic expansions
in the form similar to (27).

4. EXISTENCE AND CLASSIFICATION

In this section, we will prove the existence of eigenvalues of the Sturm-Liouville problems P−
+ and P+

−
(33), (34) by showing that functions (57) have infinitely many complex zeros. To this end, prove first
the existence of complex zeros of the auxiliary function

g(z) = cos z +
i

2

(
z

C
+

C

z

)
sin z, (68)

where C is a real constant. g(z) does not vanish at zeros of cos z (points π
2 +πk, k = 0, 1, 2, ...); therefore

these points may be excluded from the analysis of zeros of g(z) and we can write the equation g(z) = 0
in the equivalent form

g0(z) ≡ g1(z) + g2(z) = 0, (69)

where
g1(z) = tan z, g2(z) = − 2izc

C2 + z2
. (70)

Since g0(z) is an odd function, we will consider it, for the sake of definiteness, in the right half-plane
Rez ≥ 0.

Let zk = πk, k ≥ 0 and Γk = {z : |z − zk| = r}, r < π. Inside every circle Γk function g1(z) has
exactly one zero of multiplicity one at the point zk = πk, k ≥ 0. According to the condition r < π the
poles of g1(z) (at the points 1

2π +πk, k ≥ 0) are situated outside the circles. Since tan(z +πk) = tan(z)
we have

Mk = min
z∈Γk

|g1(z)| = min
z∈Γk

| tan z| = min
z∈Γk

| tan(z − πk)| = min
z∈Γ0

| tan z| = M0.

Function g1(z) is continuous on Γk; therefore the constant M0 > 0 exists and does not depend on k.
For function g2(z) the following estimate is valid

|g2(z)| ≤ 2|C||z|
|z|2 − |C|2 ≤ 2|C|

|z| − |C| (71)

at |z| < |C|. Then for k > |C|+r
π we have

max
z∈Γk

|g2(z)| ≤ 2|C|
πk − r − |C| ≡ Nk.

Thus is k > |C|+r
π and Nk < M0, all conditions of the Rouche’s theorem are fulfilled, so that function

g0(z) has exactly one zero of multiplicity one at a certain point z∗k inside Γk. Since Nk → 0, k → ∞,
then Nk < M0 beginning from a certain k0. Therefore there are infinitely many zeros of g0(z) in the right
half-plane Rez ≥ 0. Moreover, radius r of the circles may be decreased by choosing e.g., r = 1

n , n → ∞.
Then for every n there is a kn such that for k > kn the zeros of function g0(z) will be inside the circles
Γk of the radius r = 1

n . The latter yields the asymptotics for these zeros of function g0(z) (see Fig. 6):

g0(z∗k) = 0, |z∗k − zk| → 0, k → ∞.
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Figure 6. The first 50 zeros z∗k of g0(z) located in the vicinities of zk = πk, k = 1, 2, . . . , 50, calculated
by the Newton method in the complex domain at c = 1.

Function g(z) has another family of zeros

zn = xn + iyn,

xn = π/2 + nπ, yn =
√

C2
n − x2

n, , n = 0, 1, 2, . . . , (72)

where Cn is the (real) root of the equation

hn(C) ≡ e2
√

C2−x2
n − C + xn

C − xn
= 0, n = 0, 1, 2, . . . . (73)

The proof and analysis of properties of this family of zeros are in Appendix A.
Using a similar reasoning, we prove the existence of complex zeros of the functions

ĝ±(z) = cos(tz) ± i

2

(
z

C
+

C

z

)
sin(tz), (74)

where C and t are real constants, in the vicinities of the points z̃∗kt = πr
t , r = 1, 2, . . ..

Zeros of functions (68) and (74) in the complex domain of variable z correspond to the resonant case
when (real) frequency ω (parameter k0) and geometric quantities l1 and a of a one-sectional diaphragm
in a rectangular waveguide are taken as nonspectral parameters (fixed). Here, in view of the relation
z = γ1 =

√
k2

0ε1 − Θ, only permittivity ε1 may be the spectral parameter (a complex variable quantity).
Thus complex zeros of (68) and (74) give rise to complex RSs that are complex values of permittivity
ε1 of the medium filling the diaphragm (section).

Now we can extend this result and show that functions g∓(z) given by (57) have infinitely many
complex zeros. To this end write the equation g∓(z) = 0 in the equivalent form

g∓0 (z) ≡ g∓1 (z) + g2p(z) = 0, (75)

where

g∓1 (z) = ∓ tan l1z, g2p(z) =
2i
√

ε1

P

z
√

z2 − q

z2 − Q
, (76)

where
P = ε1 + 1, Q =

q

P
=
(π

a

)2 ε1 − 1
ε1 + 1

. (77)

Next, we apply the same scheme of the proof as for functions g0(z) and ˜g(z) above. For function g2p(z)
the following estimate is valid

|g2p(z)| ≤ 2|√ε1||z|
√|z|2 + |q|

|P |(|z|2 − |Q|) ≤ 2|√ε1|
√|z|2 + |q|

|P |(|z| −√|Q|) ≤ 2
√

2|√ε1||z|
|P |(|z| − |Q|) ≤ 4

√
2|√ε1|
|P | (78)
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at |z| > 2
√|Q|. Applying the same construction of circles Γk and the notation for M0 we obtain

max
z∈Γk

|g2p(z)| ≤ 4
√

2|√ε1|
|ε1 + 1| ≡ N(|ε1|) < M0

if |ε1| is sufficiently large, namely, if

|ε1| >

(
2
√

2 +
√

8 − M2
0

M0

)2

. (79)

Then we conclude that all conditions of the Rouche’s theorem are fulfilled, so that function g∓0 (z) has
exactly one zero z∗∓k of multiplicity one inside Γk.

Note that (79) is a sufficient condition providing the existence of a zero inside every circle Γk. It
is easy to check (using e.g., a parameter-differentiation method) that the zeros z∗∓k = z∗∓k (ε1) depend
continuously on ε1, so that actually they exist for smaller |ε1|.

Zeros of functions (57) in the complex domain of variable z correspond to the resonant case when
geometric quantities l1 and a of a one-sectional diaphragm in a rectangular waveguide are taken as
nonspectral parameters (fixed) and κ = k0 (or frequency ω) is the spectral parameter (a complex
variable quantity). Thus complex zeros of (57) give rise to complex RSs that are complex resonance
frequencies of a rectangular waveguide containing a one-sectional dielectric diaphragm obtained from
(58).

The result may be generalized to the case when the diaphragm has several section of different
lengths lj, j = 1, 2, . . . , N . In fact, the resulting representation for the transmission coefficient may be
considered as a function of complex variable z and the equation that governs its singularities can be
written in the form (69) where function g1(z) will be the same as in (69) and g2(z) will be a certain
rational function for which estimate (71) remains valid.

5. ANALYSIS OF SIMULATION RESULTS AND PROPERTIES OF RESONANT
STATES

In this section we present results of calculation of complex singularities of the transmission coefficient
performed with respect to different problem parameters. The calculated data reveal distribution of RSs
on the complex plane and illustrate several their important properties.

Figure 7. Eigenfrequencies k0 of a one-sectional diaphragm.
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(e) (f)

(g) (h)

(a) (b)

(c) (d)

Figure 8. The first 20 eigenfreqiencies of a one-sectional diaphragm at ε1 = 3.8 + 0.25i and 3.8 + 0.5i.
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(a) (b)

(c) (d)

Figure 9. The first 20 eigenfreqiencies of a one-sectional diaphragm at ε1 = 6, 6 + 0.1i, 6 + 0.25i, and
6 + i.

Figure 10. Eigenfields of a one-sectional diaphragm.
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We determine numerically subsets of the resonant set Ω∓
res given by (50) in the form of curves

in the complex planes of spectral parameters λ, k0, or z; the curves are parametrized by some of the
nonspectral (real) parameters. The main attention is paid to a one-sectional dielectric diaphragm and
calculation of complex roots of the equation g1(z) = 0 which plays a fundamental role in the RS theory.
In this case the curves λ = λ(l1), k0 = k0(l1), or z = z(l1) are parametrized by the real parameter l1.

Figure 7 shows the curves of first 20 eigenfrequencies k0 of a one-sectional diaphragm in the complex
plane calculated from (58), exemplifying continuous dependence on parameter l1, relative length of the
section.

Figures 8 and 9 demonstrate one of the important features of RSs: eigenfrequency k0 may
become real at certain complex values of permittivity. Namely, Figs. 8(e), (d), and (f) show the
first 20 eigenfrequencies calculated at ε1 = 3.8 + 0.25i and ε1 = 3.8 + 0.5i: we see that higher-order
eigenfrequencies become real, namely an increase in l1 shifts the eigenfrequency set to lower values of the
imaginary part, so that the eigenfrequency with index 13 (ε1 = 3.8 + 0.25i) or index 6 (ε1 = 3.8 + 0.5i)
‘lands’ to the real axis. For comparison, Figs. 8(c) and (h) and 9(c) and (d) demonstrate the same data
revealing the dynamics of the frequency transformation to real values for real ε1 = 2.04, 3.8, 6 and
6 + 0.1i.

Figures 10 and 11 show the corresponding eigenfunctions (real and imaginary parts of the Ey

eigenfield component) of a one-sectional diaphragm for three eigenfrequencies of increasing index 1, 10,
and 20 (may be identified by the number of oscillations); decaying eigenfunctions in Fig. 10 are for
standing waves in Fig. 11 correspond to real eigenfrequencies.

Figure 12 illustrates a phenomenon which we call ‘tuning’ based on the data calculated for a three-
sectional dielectric diaphragm: modulus of the transmission coefficient increases in a vicinity of an RS

(a) (b)

(c)

Figure 11. Eigenfields (standing waves: real and imaginary parts and modulus of the longitudinal field
component Ey) of a one-sectional diaphragm.
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(a) (b)

Figure 12. ‘Tuning curves’ for a one-sectional diaphragm.

when the parameter couple (t, ε1) (a subset of the resonant set Ω∓
res, (50)) approaches its resonant value

(t∗, ε∗1).

6. CONCLUSION

We have proved the existence of complex eigenvalues for a family of waveguide spectral problems
associated with eigensolutions (eigenfrequencies) of open waveguide resonators formed by parallel-
plate waveguides or waveguides of rectangular cross-section containing inclusions in the form of multi-
sectional diaphragms. We have identified the RSs associated with these eigensolutions (eigenfrequencies)
as singularities (finite-multiplicity poles) of the operators of the corresponding diffraction problems
continued to the complex domain (where the sovability is violated); namely, as poles of the transmission
coefficient. We have investigated main properties of RSs by reducing the problem to determination and
analysis of zeros of well-defined families of entire functions of the spectral parameter. The occurrence of
RSs has been shown when frequency, permittivity, or longitudinal wavenumber of any of the dielectric
sections forming the inclusion is taken as a spectral parameter.

We have shown that RSs, eigensolutions, and eigenfrequencies are associated, for the considered
family of open waveguide resonators, with eigenvalues of distinct families of Sturm-Liouville problems
on the line. The eigenfrequencies form countable sets of points (60) with the only accumulation point
at infinity; these points are finite-multiplicity poles of the analytical continuation of the operator of the
initial diffraction problem and its Green’s function to a multi-sheet Riemann surface.

In line with (56), (59), (66), and (60) the set of complex eigenfrequencies of the considered family of
open waveguide resonators with parallel-plane layered dielectric inclusions is similar in its structure to
the set of eigenvalues of a Laplacian in a rectangle, and may be conditionally described as eigenvalues
of a Laplacian in a ‘semi-infinite’ rectangle Π∞ = {0 < x1 < a, −∞ < x3 < ∞}. The presence
of a resonance domain, an insert in the form of a diaphragm D = {0 < x1 < a, 0 < x3 < l} where
permittivity assumes piecewise-constant values, removes the continuous frequency spectrum and gives
rise to a discrete set of points ‘shifted’ to (upper half of) the complex plane.
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APPENDIX A.

A.1. Another Set of Poles of the Transmission Coefficient

The existence of (infinite sets of) poles of the transmission coefficient in the complex domain is proved
in Section 4 by demonstrating that an entire function

g (z) = cos z +
i

2

(
z

C
+

C

z

)
sin z (A1)

where a constant C > 0 that enters expression (18) for the transmission coefficient has infinite sets of
complex zeros. Here we will prove the existence of the family of zeros (72) of function (A1) employing
a different technique. To this end consider continuation of g(z) to the complex domain of variable z
(longitudinal wavenumber of the wave in the dielectric section) and then of variable ε1 (permittivity of
the dielectric section).

The real and imaginary parts of g(z) = g1(x, y) + ig2(x, y) with z = x + iy are

g1 = cos x cosh y − h1 cos x sinh y − h2 sin x cosh y,

g2 = − sin x sinh y + h1 sin x cosh y − h2 cos x sinh y,

h1 =
x

2

(
1
C

+
C

ρ2

)
, h2 =

y

2

(
1
C

− C

ρ2

)
, (A2)

ρ = |z| , ρ2 = x2 + y2. (A3)

In order to prove that zeros of function g(z) may exist and to determine the domain of their
localization consider the case

ρ = C, C2 = x2 + y2; (A4)
then h2 = 0, h1 = x/C, and

g1 = cos x
[
(C − x)ey + (C + x)e−y

]
, g2 = sin x

[−(C − x)ey + (C + x)e−y
]
,

g1 = 0 ⇔ cos x = 0 ∨ [(C − x)ey + (C + x)e−y
]

= 0,

g2 = 0 ⇔ sin x = 0 ∨ [−(C − x)ey + (C + x)e−y
]

= 0.

There is no x which satisfies the equations cos x = sin x = 0 and[
(C − x)ey + (C + x)e−y

]
= 0 ∧ [−(C − x)ey + (C + x)e−y

]
= 0.

Therefore g(z) = 0 under condition (A4) if x solves the following equation system{
cos x = 0 ∧ [−(C − x)ey + (C + x)e−y

]
= 0
} ∨ {sinx = 0 ∧ [(C − x)ey + (C + x)e−y

]
= 0
}

.

From the first equation we have

cos x = 0 ⇔ x = xm =
π

2
+ mπ, m ∈ Z, (A5)

[−(C − x)ey + (C + x)e−y
]

= 0 ⇔ e2y =
C + x

C − x
,

e2
√

C2−x2
=

C + x

C − x
, (A6)

where 0 < x < C.
The following statements hold.
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Lemma 1. Equation (A6) has exactly one root x0 = x0(C) for every C > 0; x0(C) is a continuous
increasing function of parameter C.

Lemma 2. There is a C = Cn > π/2+nπ such that Equation (A6) has the root xn = xn(Cn) = π/2+nπ
(n = 0, 1, . . .).

0 < Cn − xn < xn+1 − xn = π (A7)

and

lim
n→∞αn = 1, αn =

xn

Cn
. (A8)

Considering g(z) a function of the complex variable ζ = ε1 = u + iv, v ≥ 0, we can express, u and
v via x = �z and y = �z,

u =
x2 − y2 + L

l21k
2
0

, v =
2xy

l21k
2
0

, L =
(

l1π

a

)2

. (A9)

From (A9), it follows

sign (�ε1) = sign (�z)sign (�z). (A10)

Set

pn = x2
n − y2

n = 2x2
n − C2

n, qn = 2xnyn, xn = π/2 + nπ, yn =
√

C2
n − x2

n, (A11)

then

ε1 = ε1,n = un + ivn, un =
pn + L

C2
n + L

, vn =
qn

C2
n + L

, (A12)

where Cn is the root of Equation (A6)

hn(C) ≡ e2
√

C2−x2
n − C + xn

C − xn
= 0, n = 0, 1, 2, . . . . (A13)

Next we prove the following statement using Lemmas 1 and 2.
Set xn, yn, pn, qn, and Cn according to (A11). Then g(zn) = g(z(ε1,n)) = 0, where

zn = xn + iyn = l1

√
k2

0ε1,n −
(π

a

)2
, (A14)

k2
0 =

(π

a

)2
+
(

Cn

l1

)2

.

In particular, x0 = π/2 is a root of Equation (A6) at n = 0 and C = C0. For this value g(z0) = 0;
the calculated quantities are

g (z0) ≡ cos z0 +
i

2

(
z0

C0
+

C0

z0

)
sin z0 = 0,

x0 = π/2, y0 = 1.1312839806580586, C0 = 1.9357697552048596,

z0 = x0 + i
√

C2
0 − x2

0 (|z0| = C0).

A.2. Relation between Poles of the Transmission Coefficient and RSs

Complex zeros zn are poles of the transmission coefficient F1; in line with the general scattering theory,
zn are poles of the scattering matrix of an inhomogeneity in the waveguide and can be referred to as
resonances (RSs) of the inhomogeneity (in the form of a dielectric insert, a parallel-plane diaphragm).
This conclusion explains the behavior of the absolute value |F/A| of the normalized transmission
coefficient described below: this quantity (considered as a function of real variable z) has local minima
at certain ‘resonance’ points z = x∗

n each associated with a particular xn = �zn (n = 0, 1, . . .).
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Figure A1. Modulus of the transmission coefficient F1 = F1(z), C0 − 1 < z < C0 + 1; C = C0 − 1
(red), C0 (blue), C0 + 1 (black). C0 is determined according to Lemma 2.
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Figure A2. Modulus of the transmission coefficient F1 = F1(ε1) vs. relative permittivity for increasing
values of the frequency parameter f = 10, 20, 40, 80 GHz..

The dependence of the modulus of transmission coefficient F1 = F1(z) on real parameter z shown in
Figs. 5 and A1 is similar to the data in Fig. A2 where this quantity is calculated vs. relative permittivity.
In fact, C and z may be considered as independent variables if all geometric quantities a, b, and l1 and
frequency are taken as nonspectral parameters (fixed) and ε1 is varied; therefore, in view of the definition
(A1), the dependence on ε1 is similar to that on z. We see that zeros of function g(z) exist for certain
values of C when both real and imaginary parts of z are positive; therefore zeros of g(z) (poles of the
transmission coefficient F ) lie in a domain defined by sign (x) sign (y) = 1.

Using (A11), (A12), and (A8) it is easy to prove the following
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Lemma 3.
lim

n→∞un = 2α − 1 = 1,

lim
n→∞ vn = 2

√
α − α2 = 0, (A15)

α = lim
n→∞αn = 1.

From Lemma 3 it follows that zeros ε1,n determined according to (A12) of g(z(ζ)) considered as a
function of the complex variable ζ = ε1 form a sequence of complex numbers {ε1,n} such that

lim
n→∞ ε1,n = 1. (A16)

For real z it is easy to obtain from (A1)

|g (z) | =

√
1 +

1
4
gd(z), gd(z) = sin2 z

(
z

C
− C

z

)2

(A17)

so that
min
	z=0

|g (z) | = |g (πn) | = |g (C) | = 1. (A18)

Calculating the derivative of |g (z) | (or of gd(z)) it is easy to check that the local maxima of |g (z) |
are at the points z = x∗

n ∈ (π/2(2n − 1), πn) (n = 1, 2, . . .), where x∗
n are the roots of the equation

tan z = z
C2 − z2

C2 + z2
. (A19)

Figure A3 illustrates the location of the first two roots x∗
1 ∈ (π/2, π) and x∗

2 ∈ (3π/2, 2π).

Figure A3. Location of roots of Equation (A19). C = 0.5.

Consequently, for the transmission coefficient F

T =
∣∣∣∣FA
∣∣∣∣ = 1

|g (z)| , (A20)

max
	z=0

T = |g (πn) | = |g (C) | = 1,

and the local minima of T are at the points z = x∗
n (n = 0, 1, . . .). We see that the transmission

coefficient F considered as a function of complex variable z has poles zn at the points (A14) referred to
as RSs associated with the inhomogeneity in the waveguide in the form of a dielectric insert (a parallel-
plane diaphragm). In addition, the transmission coefficient considered as a function of real variable
z has local minima and maxima at the ‘resonance’ points z = x∗

n each associated with a particular
xn = �zn (n = 0, 1, . . .) and, respectively, zex

r (1) = πr (r = 1, 2, . . .). The latter fact can be directly
applied to the diffraction problem at real frequencies and has a clear physical meaning. Also

lim
n→∞ |x∗

n − xn| = 0. (A21)

The corresponding resonance frequency values are

fn =
c

2

√√√√ 1
ε1

[(
2n − 1

2l1

)2

+
1
a2

]
. (A22)
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A.3. Some Properties of the Extrema of the Transmission Coefficient

Consider now the functions (57)

g∓(z) = cos tz ∓ i

2

(
√

ε1
z√

z2 − q
+

1√
ε1

√
z2 − q

z

)
sin tz, t = l1, (A23)

(A23) as well as function g(z) in (A1), can be written in the form
g∓(z) = cos tz ∓ ih(X) sin tz, z > q, g∓(z) = cos tz ∓ h1(X) sin tz, z < q,

g (z) = cos z + iZ(z,C) sin z, (A24)

X =
z
√

ε1√|z2 − q| , h(X) = Z(X, 1) =
1
2

(
X +

1
X

)
, h1(X) = Z1(X, 1);

here

Z1(s, c) =
1
2

(s

c
− c

s

)
, (A25)

and h(X) and Z(s, c) (the Zhukovsky function and the modified Zhukovsky function (19)) have the
following properties for real s, c > 0:

min
s>0

h(s) = h(1) = 1 (h(s) ≥ 1, s > 0); (A26)

Z(s, c) = Z(c, s), min
s>0

Z(s, c) = Z(c, c) = 1 (Z(s, c) ≥ 1, s > 0). (A27)

Function Z1(s, c) is monotonically increasing for s, c > 0, take all real values for s ∈ (0,∞), and
Z1(s, c) = −Z1(c, s), Z(c, c) = 0; min

s>0
|Z1(s, c)| = min

s>0
Z2

1 (s, c) = Z1(c, c) = 0,

Z(s, c) < 0, s < c; Z(s, c) > 0, s > c. (A28)
For real z, c, q, t > 0 we have, in view of (A26)–(A28), the result obtained above using a different proof

|g (z) |2 = cos2 z + Z2(z,C) sin2 z ≥ cos2 z + sin2 z = 1 = |g (πn) |, (A29)
and

|g∓(z)|2 = cos2 tz + h2(X) sin2 tz ≥ cos2 z + sin2 z = 1 =
∣∣∣g∓ (πr

t

)∣∣∣ (z > q). (A30)

Thus zex
r (t) =

πr

t
and λ1 mr (r,m = 1, 2, . . .) given by (67) are points of extremum of the transmission

coefficient F = F1(z) given by (18) and (23) with s = 1 (considered as a function of real variable z)
where F = F1(z) attains unity (Fig. 5).
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