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Plane-Wave Propagation in Electromagnetic PQ Medium

Ismo V. Lindell*

Abstract—Two basic classes of electromagnetic medium, recently defined as P and Q medium, are
generalized to define the class of PQ media. Plane wave propagation in the general PQ medium
is studied and the quartic dispersion equation is derived in analytic form applying four-dimensional
dyadic formalism. The result is verified by considering various special cases of PQ media for which the
dispersion equation is either decomposed to two quadratic equations or is identically satisfied (media
with no dispersion equation). As a numerical example, the dispersion surface of a PQ medium with
non-decomposable dispersion equation is considered.

1. INTRODUCTION

The most general linear (bi-anisotropic) electromagnetic medium can be represented in terms of 36
scalar medium parameters in different representations. In engineering form applying Gibbsian vector
fields and 3D dyadics it is typical to apply the form [1, 2](

D
B

)
=

(
ε ξ

ζ μ

)
·
(

E
H

)
. (1)

Another form favored by the physicists is [3](
D
H

)
=

(
α ε

′

μ−1 β

)
·
(

B
E

)
. (2)

A more compact form is obtained by applying the 4D formalism in terms of differential forms [4, 5]
where the electromagnetic fields are characterized by two six-dimensional quantities, the two-forms Ψ
and Φ,

Ψ = D − H ∧ ε4, Φ = B + E ∧ ε4. (3)

In a linear medium they are related by the medium bidyadic M as

Ψ = M|Φ. (4)

The medium bidyadic can be expanded in terms of 3D medium dyadics as

M = α + ε
′ ∧ e4 + ε4 ∧ μ−1 + ε4 ∧ β ∧ e4. (5)

For details in the present notation [5] or [6] should be consulted. A recent readable introduction to
differential forms in E.M. theory is given in [7].

It is not easy to get a grasp of the most general medium defined by the bidyadic M. This is why
many classes of media with M restricted by special forms involving less than 36 parameters, and bearing
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strange names, have been defined and studied. Because M corresponds to a 6 × 6 matrix, some classes
have been based on expressing the bidyadic M in terms of a dyadic corresponding to a 4 × 4 matrix
involving only 16 parameters. As the most obvious one, the class of P media [9] has been defined in
terms of a dyadic P ∈ E1F1 as the double-wedge square

M = P(2)T =
1
2
PT ∧∧PT . (6)

As another obvious example, the class of Q media [10] has been defined through the modified medium
bidyadic

Mm = eN�M = eN�Q(2) ∈ E2E2, (7)

in terms of a (quasi-) metric dyadic Q ∈ E1E1. Properties of both medium classes have been recently
studied. For a plane wave, a field of the dependence exp(ν|x) of the spacetime variable x, the wave
one-form ν is normally restricted by a dispersion equation

D(ν) = 0, (8)

which is a quartic equation in general [11] and its form depends on the medium bidyadic M. For
example, for the Q medium the dispersion equation is of the form

D(ν) = ΔQ

(
Q||νν

)2
= 0, (9)

which means that, for a dyadic of full rank satisfying ΔQ = εNεN ||Q(4) �= 0, the quartic equation
reduces to a quadratic equation. On the other hand, one can show that, for a P medium, the dispersion
Equation (8) is actually an identity which is satisfied by any one-form ν [9]. Also, if Q is of rank lower
than 4, we have ΔQ = 0 and (9) is satisfied identically. Media of this kind have previously been called
NDE media (media with no dispersion equation) [12]. Decomposition of P and Q media in natural
subclasses has been studied in [8].

As simple generalizations of the classes of P and Q media we can define

M = P(2)T + εN�DC, (10)

and
Mm = Q(2) + AB, (11)

which have respectively been called extended (or generalized) P [9] and Q [13] media. Here, A,B,C
and D are any bivectors. The number of medium parameters in both cases has been increased from 16
to 23.

Plane waves propagating in extended P and Q media have been previously studied and the
dispersion equations have been shown to take the respective form [9, 13]

D(ν) = ΔP

((
D�PT

)
||νν

)((
C�P−1T

)
||νν

)
= 0, (12)

D(ν) = ΔQ

(
Q||νν

)(
Q + AB��Q−1T

)
||νν = 0. (13)

Here we denote ΔP = trP(4). In both cases, for full-rank dyadics P, Q, the dispersion equations can
be decomposed in two quadratic equations. Such media make two examples of what have been called
decomposable media [14]. For dyadics P and Q of rank less than 3, the two media again fall in the class
of NDE media with dispersion equations satisfied identically for any ν [12]. For ranks equaling 3, some
quadratic functions of D(ν) may decompose to products of linear functions of ν.

Study of various classes of bi-anisotropic media can be motivated by the ongoing effort to find
metamaterial realizations for various electromagnetic media and boundaries [15], in the hope of finding
possible engineering applications. Examples of applicable boundary conditions realized by structures
simulating interfaces of various exotic media are given, e.g., in [16–19].
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2. CLASS OF PQ MEDIA

In the present study we make a further generalization of both P and Q media by considering medium
bidyadics of the composite form

M = P(2)T + εN�Q(2). (14)
Media defined by bidyadics of this form will be called PQ media. It is easy to see that medium dyadics
of this form do not cover all possible linear media. In fact, the number of parameters must certainly be
less than 2 × 16 = 32, which falls short of the 36 parameters of the most general medium.

To find a 3D representation of the PQ medium bidyadic (14) the dyadics P and Q can be expanded
in terms of spatial vectors as,bs,ps, a spatial one-form πs and spatial dyadics Qs,Ps as

Q = Qs + e4as + bse4 + ce4e4, (15)

P = Ps + e4πs + psε4 + pe4ε4. (16)
The spatial medium dyadics of the Q medium can be expressed as [5]

α = ε123�Qs ∧ as, (17)

ε
′ = ε123�

(
cQs − bsas

)
, (18)

μ−1 = −ε123�Q(2)
s , (19)

β = ε123�
(
bs ∧ Qs

)
, (20)

while those of the P medium have the form [9]

α = P(2)T
s , (21)

ε
′ = −πs ∧ PT

s , (22)

μ−1 = −PT
s ∧ ps, (23)

β = πsps − pPT
s . (24)

The medium dyadics of the PQ medium are obtained by summing up the corresponding expressions.
To write the medium equations in the Gibbsian form (1) requires that the dyadic μ exist. Denoting the
Gibbsian dyadics by the subscript ( )g, they are obtained by inserting the previous expansions in the
expressions [5]

εg = e123�
(
ε
′ − α|μ|β

)
, (25)

ξg = e123�α|μ, (26)

ζg = −e123�μ|β, (27)

μg = e123�μ. (28)

The dyadic denoted here by μ stands for the inverse of the sum of the two μ−1 dyadics of (19) and
(23). The full analytic form of the Gibbsian medium dyadics of the PQ medium would have quite an
extensive form.

3. PLANE WAVE IN PQ MEDIUM

The main task of this study is to find properties of a plane wave propagating in the general PQ medium.
Expressing the field two-form of a plane wave in terms of a potential one-form as Φ = ν∧φ, the potential
satisfies

ν ∧ Ψ = ν ∧ M|(ν ∧ φ) = 0

= ν ∧
(
P(2)T + εN�Q(2)

)
|(ν ∧ φ)

= ν ∧
(
PT |ν

)
∧
(
PT |φ

)
+ εN�

(
Q(2)��νν

)
|φ. (29)
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Operating this by eN� yields the equation

eN�(ν ∧ Ψ) = eN�
(
ν ∧

(
ν|P

)
∧ PT

)
|φ +

(
Q(2)��νν

)
|φ =

(
F�PT + Q(2)��νν

)
|φ = 0. (30)

Here we have introduced the bivector

F = F(ν) = eN�
(
ν ∧

(
ν|P

))
, (31)

which is simple since it satisfies [6]

F ∧ F = 0,
(
F�IT

)(2)
= FF,

(
F�IT

)(3)
= 0, (32)

and it can be expressed in the form F = a ∧ b in terms of two vectors. The Equation (30) for the
potential,

D(ν)|φ = 0, (33)

is defined by the dispersion dyadic

D(ν) = F�PT + Q(2)��νν. (34)

Because of (33) and D(ν)|ν = 0, the rank of D(ν) must be less than three, provided φ and ν are linearly
independent, i.e., when Φ = ν ∧φ �= 0, which is assumed here. As a consequence, ν is restricted by the
dyadic dispersion equation [6]

D(3)(ν) =
(
F�PT + Q(2)��νν

)(3)

=
(
F�IT

)(3)
|P(3)T +

((
F�IT

)(2)
|P(2)T

)
∧∧
(
Q(2)��νν

)

+
(
F�PT

)
∧∧
(
Q(2)��νν

)(2)
+
(
Q(2)��νν

)(3)

=
(
FF|P(2)T

)
∧∧
(
Q(2)��νν

)
+
(
F�PT

)
∧∧
(
Q(2)��νν

)(2)
+
(
Q(2)��νν

)(3)
= 0. (35)

Applying the expansion rules [6]

Q(2)��νν =
(
Q||νν

)
Q −

(
Q|ν)(ν|Q

)
(
Q(2)��νν

)(2)
=
(
Q||νν

)((
Q||νν

)
Q(2) − Q∧∧

(
Q|ν

)(
ν|Q

))
=
(
Q||νν

)(
Q(3)��νν

)
(36)(

Q(2)��νν
)(3)

=
(
Q||νν

)2 ((
Q||νν

)
Q(3) − Q(2)∧∧

(
Q|ν

)(
ν|Q

)
=
(
Q||νν

)2 (
Q(4)��νν

)
= ΔQ

(
Q||νν

)2
(eNeN��νν) , (37)

with ΔQ = ε4ε4||Q(4), the dispersion Equation (35) can be written as

D(3)(ν) = C1(ν) + C2(ν) + C3(ν) = 0, (38)

where we denote

C1(ν) =
(
FF|P(2)T

)
∧∧
(
Q(2)��νν

)
(39)

C2(ν) =
(
Q||νν

)(
F�PT

)
∧∧
(
Q(3)��νν

)
(40)

C3(ν) = ΔQ

(
Q||νν

)2
(eNeN��νν). (41)

Now one can show that (38) is equivalent to a scalar dispersion Equation (8). For that we expand the
three dyadics Ci(ν) as follows.
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• For the dyadic C1(ν) we apply the identity

Ai ∧ (Bi�α) = (Ai ∧ Bi)�α − Bi ∧ (Ai�α) = εN |(Ai ∧ Bi)(eN�α) − Bi ∧ (Ai�α), (42)

valid for any bivectors Ai,Bi and one-form α. Assuming that Ai and α satisfy Ai�α = 0, we can
construct the dyadic rule

A1A2
∧∧(B1B2��αα) = εNεN ||(A1A2

∧∧B1B2)(eNeN��αα). (43)

Because of F�ν = 0 and (F|P(2)T )�ν = (F�(ν|P))�PT = 0, we can set A1 = F, A2 = F|P(2)T and
α = ν. Since the rule is linear in the dyadic B1B2, we can set B1B2 = Q(2) and apply the rule as

C1(ν) =
(
FF|P(2)T

)
∧∧
(
Q(2)��νν

)
= D1(ν)(eNeN��νν), (44)

with

D1(ν) = εNεN ||
((

FF|P(2)T
)

∧∧(Q(2)
))

=
(
εNεN��Q(2)

)
||
(
FF|P(2)T

)
= ΔQQ(−2)T ||

(
FF|P(2)T

)
= ΔQFF||

(
PT |Q−1

)(2)
. (45)

In the last expression we have assumed that Q is of full rank, ΔQ �= 0.

• To expand the dyadic C2(ν) we proceed as

C2(ν) =
(
Q||νν

)(
Q(3)��νν

)
∧∧
(
F�PT

)
= ΔQ

(
Q||νν

)((
eNeN��

(
Q−1T ∧∧νν

))
∧∧
(
F�PT

)
= ΔQ

(
Q||νν

)
eNeN��

((
Q−1T ∧∧νν

)
��
(
F�PT

))
= ΔQ

(
Q||νν

)
(eNeN��νν)

(
Q−1T ||

(
F�PT

))
= D2(ν)(eNeN��νν), (46)

with
D2(ν) = ΔQ

(
Q||νν

)
tr
(
F�PT |Q−1

)
. (47)

• Finally, we have
C3(ν) = D3(ν)(εNεN��νν), (48)

with
D3(ν) = ΔQ

(
Q||νν

)2
. (49)

Because each of the dyadics Ci(ν) is a scalar multiple of eNeN��νν, the dyadic dispersion
Equation (38) equals the scalar dispersion Equation (8) as

D(ν) = D1(ν) + D2(ν) + D3(ν)

= ΔQFF||
(
PT |Q−1

)(2)
+ ΔQ

(
Q||νν

)
tr
(
F�PT |Q−1

)
+ΔQ

(
Q||νν

)2
= 0. (50)

Substituting F = eN�(ν ∧ (ν|P)), the quartic form of the dispersion equation can be . This is the main
result of the present paper.

For ΔQ → 0 we must replace

ΔQQ(−2) → εNεN��Q(2)T , ΔQQ−1 → εNεN��Q(3)T , (51)

in the expression (50).
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4. SPECIAL CASES

Let us consider the expression (50) for a few special cases of the PQ medium for which we know the
dispersion equation.

(i) For the pure P medium case Q = 0, after inserting (51) we obtain the identity D(ν) = 0 for all ν.
This proves that a pure P medium belongs to the class of NDE media [12].

(ii) For the pure Q medium with P = 0 (50) is reduced to the known quadratic dispersion Equation (9).

(iii) The case P = αI corresponds to a Q-axion medium. Since we now have F = αeN�(ν ∧ν) = 0, only
the last term of the expression in (50) survives. This, again, yields the dispersion equation of the Q
medium. In fact, it is well known that adding an axion term αI(2)T to the medium bidyadic does not
change the dispersion equation. Here one should note that the P-axion medium M = P(2)T +αI(2)T
with α �= 0 is not a special case of the PQ medium.

(iv) Choosing Q = a1b1 + a2b2 we obtain

M = P(2)T + εN�(a1 ∧ a2)(b1 ∧ b2), (52)

which yields a special case of the extended P medium (10) with DC = (a1∧a2)(b1∧b2). Applying
(51) for ΔQ → 0 in (50) yields the dispersion equation whose form can be expanded as

D(ν) = F|
(
P(2)T |Q(2)T

)
|F

= F
∣∣∣P(2)T

∣∣∣ (εN�(b1 ∧ b2))((a1 ∧ a2)�εN )|F
=
(
ν ∧

(
ν|P

))
�eN

∣∣∣P(2)T
∣∣∣ εN�(b1 ∧ b2))((a1 ∧ a2)|

(
ν ∧

(
ν|P

))
= ΔP

(
ν ∧

(
ν|P

) ∣∣∣P(−2)
∣∣∣ (b1 ∧ b2)

)(
(a1 ∧ a2) = |(ν ∧

(
ν = |P

))
= ΔP

((
ν|P−1

)
∧ ν
)
|(b1 ∧ b2))

(
(a1 ∧ a2)|

(
ν ∧

(
ν|P

))
= 0. (53)

Assuming ΔP = trP(4) �= 0 the equation is split in two quadratic equations as

ν|
(
P ∧ ν

)
|(a1 ∧ a2) = ν

∣∣∣(P�(a1 ∧ a2)
)∣∣∣ν = 0, (54)

ν
∣∣∣(P−1 ∧ ν

)∣∣∣ (b1 ∧ b2) = ν
∣∣∣(P−1�(b1 ∧ b2)

)∣∣∣ν = 0, (55)

which coincide with (12) for DC = (a1 ∧ a2)(b1 ∧ b2). In the case ΔP = 0 we must replace P−1

by eNεN��P(3)T in (55).

(v) Choosing P = a1α1 + a2α2 we have P(3) = 0 and

M = εN�Q(2)T + (α1 ∧ α2)(a1 ∧ a2), (56)

which corresponds to a special case of the extended Q medium (11) with AB = eN�(α1 ∧α2)(a1 ∧
a2). Expanding

F
∣∣∣P(2)T = eN�

(
ν ∧

(
PT |ν

))∣∣∣P(2)T = eN

∣∣∣(ν ∧
(
P(3)T �ν

))
= 0, (57)

the first term of (50) obviously vanishes. Expanding further

F�PT = eN�
(
ν ∧

(
PT |ν

)
∧ PT

)
= eN�

(
ν ∧

(
P(2)T �ν

))
= −ν�

(
eN�P(2)T

)
�ν =

(
eN�P(2)T

)
��νν, (58)

we have

tr
(
F�PT |Q−1

)
=
(
eN�P(2)T

)
��νν

)
||Q−1T =

((
eN�P(2)T

)
��Q−1T

)
||νν, (59)
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whence the dispersion Equation (50) can be written as

D(ν) = ΔQ

(
Q||νν

)(
Q +

(
eN�P(2)T

)
��Q−1T

)
||νν = 0, (60)

which coincides with (13).

(vi) Finally, let us assume that Q is an antisymmetric dyadic, which can be expressed in terms of some
bivector A in the form

Q = A�IT . (61)

This implies Q||νν = 0, whence the dispersion Equation (50) reduces to

D(ν) = ΔQF
∣∣∣P(2)T

∣∣∣Q(−2) |F = 0. (62)

Applying the expansion [6](
A�IT

)(2)
= AA + αeN�I(2)T , α = −1

2
εN |(A ∧ A), (63)

the PQ medium bidyadic has the form of an extended P-axion medium bidyadic [14]

M = P(2)T + εN�AA + αI(2)T . (64)

Applying the rule [6]

Q(−2) =
1

ΔQ
εNεN��Q(2)T =

1
ΔQ

(
εNεN��AA + αεN�I(2)

)
, (65)

one can show that its last term has no effect on the dispersion equation. In fact, inserting

F|P(2)T = eN |
(
ν ∧

(
PT |ν

)
∧ P(2)T

)
= ν|

(
eN�P(3)T

)
�ν = ΔP ν|

(
P−1�eN

)
�ν, (66)

in (62) we have

F
∣∣∣P(2)T

∣∣∣ (εN�I(2)
)
|F = ΔP

(
ν|
(
P−1�eN

)
�ν
)
|
(
εN�

(
eN�

(
ν ∧ (PT |ν

)))
= ΔP

(
ν|
(
P−1�eN

)
|
(
ν ∧ ν ∧

(
PT |ν

))
= 0. (67)

Thus, (62) is reduced to

D(ν) = ΔQF
∣∣∣P(2)T

∣∣∣Q(−2)|F
= ΔP ν|

(
P−1�eN

)
�ν|(εNεN��AA)|

(
eN�(ν ∧

(
PT |ν

))
= ΔP ν|

(
P−1�eN

)
�ν|(εN�A)

(
A|
(
ν ∧

(
PT |ν

)))
= ΔP

((
ν|P−1 ∧ ν

)
|A
)(

A|
(
ν ∧

(
PT |ν

)))
= ΔP

((
P−1�A

)
||νν

)((
P�A

)
||νν

)
= 0. (68)

Since the axion component does not affect the dispersion equation, the result coincides with that
of the extended P medium (12) for the special case C = D = A.

5. EXAMPLE

As a numerical example of a PQ medium let us consider a special one by restricting the dyadic P as

P = P
(
I + Po

)
, Po = aα, a|α = 0, (69)
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and assuming that Q be a symmetric dyadic,

Q = S, ST = S. (70)

In the corresponding medium bidyadic

M = P 2I(2)T + P 2αa∧∧IT + εN�S(2) (71)

the three terms can actually be recognized as components of the Hehl-Obukhov decomposition,
respectively called as the axion, skewon and principal components [3, 6]. In fact, the axion part is
a multiple of the unit bidyadic I(2)T while the skewon and principal parts are trace free. Also, any
skewon bidyadic is known to be of the form (Bo

∧∧I)T with a skewon-free dyadic Bo while any bidyadic
C ∈ F2E2 satisfying C��I = 0 is a principal bidyadic. Actually, one can show that (εN�S(2))��I vanishes
for any symmetric dyadic S, [6].

To find the dispersion equation for the present PQ medium from (50), let us first expand

F|P(2)T = eN |
(
ν ∧

(
P(3)T �ν

))
= P 3eN |

(
ν ∧

(
I(3)T + αa∧∧I(2)T

))
�ν

= P 3eN�
(
ν ∧ ν ∧ I(2)T

)
+ P 3eN |

(
ν ∧

(
α (a|ν) ∧ I(2)T

+ν ∧ (αa) ∧ IT
)

= P 3(a|ν)eN�(ν ∧ α), (72)

F�PT = eN�
(
ν ∧

(
P(2)T

))
�ν
)

= P 2eN�
(
ν ∧

(
I(2)T + αa∧∧IT

)
�ν
)

= P 2eN�
(
ν ∧ ν ∧ IT + ν ∧

(
α(a|ν) ∧ IT + ν ∧ αa

))
= P 2(a|ν)(eN�(ν ∧ α))�IT . (73)

Since the last expression is an antisymmetric dyadic and ΔSS−1 = εNεN��S(3) is a symmetric dyadic
or zero, we have

ΔQtr
(
F�PT |Q−1

)
= ΔS

(
F�PT

)
||S−1 = 0. (74)

Thus, (50) becomes

D(ν) = ΔSF|
(
PT |S−1

)(2) |F + ΔS

(
S||νν

)2
. (75)

Finally, applying (72), we can expand

ΔSF|
(
PT |S−1

)(2) |F = P 4(a|ν) (eN�(ν ∧ α))
∣∣∣S(2)

∣∣∣ (eN�
(
ν ∧

(
IT + αa)|ν

)))
= P 4(a|ν)2(ν ∧ α)

∣∣∣S(2)
∣∣∣ (ν ∧ α)) = P 4(a|ν)2

(
αα��S(2)

)
||νν,

whence the dispersion equation for the special PQ medium (71) has the form

D(ν) = P 4(a|ν)2
(
αα��S(2)

)
||νν + ΔS

(
S||νν

)2

= P 4(a|ν)2
(
αα||S

)(
S||νν

)
+ P 4(a|ν)2

(
α|S|ν

)2
+ ΔS

(
S||νν

)2
= 0. (76)

Unlike for all the special cases considered above, the quartic dispersion equation corresponding to the
medium defined by (71) does not necessarily decompose in two quadratic equations. In the special
case when the dyadic S satisfies S|α = λa, whence we have S||αα = 0, the dispersion equation is
decomposable.
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Setting S = 0 in (76) we obtain D(ν) = 0 for any ν, a property shared by all skewon-axion media.
For aα = 0 we are left with ΔS(S||νν)2 = 0, valid for the Q-axion medium.

To be able to work on this example numerically, let us choose

S = SGs − se4e4, (77)

where Gs denotes the metric dyadic

Gs = e1e1 + e2e2 + e3e3. (78)

Thus, we have
ΔS = trS(4) = −S3s. (79)

Let us further choose
α = ε2, a = e3. (80)

Inserting these in (76), the dispersion equation becomes

D(ν) = P 4ν2
3S
(
S
(
ν2
1 + ν2

2 + ν2
3

)− sk2
)

+ P 4ν2
3S2ν2

2

−S3s
(
S
(
ν2
1 + ν2

2 + ν2
3

)− sk2
)2 = 0. (81)

For a given value of k, this corresponds to a quartic dispersion surface in the three-dimensional space
spanned by νi.

Let us assume that S, s and P are real and positive quantities and simplify the expressions by
denoting

xi = νi

√
S, K = k

√
s, τ =

P 4

S3s
, (82)

with 0 ≤ τ ≤ 1. The dispersion Equation (81) then takes the form(
x2

1 + x2
2 + (1 − τ)x2

3 − K2
) (

x2
1 + x2

2 + x2
3 − K2

)− τx2
3x

2
2 = 0. (83)

An idea of the dispersion surface can be obtained by considering the three main sections.
• Assuming x3 = 0, (83) leads to

x2
1 + x2

2 − K2 = 0, (84)

which corresponds to a circle of unit radius.
• Assuming x2 = 0, (83) yields(

x2
1 + (1 − τ)x2

3 − K2
) (

x2
1 + x2

3 − K2
)

= 0. (85)

This splits in two separate curves, one of which is a circle of unit radius

x2
1 + x2

3 − K2 = 0, (86)

and, the other one, a quadratic curve

x2
1 + (1 − τ)x2

3 − K2 = 0. (87)

For τ < 1 the latter defines an ellipse with axial ratio
√

1 − τ . For τ > 1 the curve is a hyperbola.
• Finally, assuming x1 = 0, (83) yields(

x2
2 + (1 − τ)x2

3 − K2
) (

x2
2 + x2

3 − K2
)− τx2

3x
2
2 = 0. (88)

This corresponds to a curve of the fourth order, the form of which depends on the parameter τ .
For τ < 1 the curve is closed and for τ ≥ 1 it is open. For τ → 0 the curve approaches a circle of
unit radius, in which case the PQ medium approaches a Q medium.
The cross sections x1 = 0 and x2 = 0 are depicted for the parameter value τ = 0.7 in Fig. 1 in

terms of normalized axis parameters nu1 = x1/K = ν1/(k
√

s/S) and nu2 = x2/K = ν2(k
√

s/S). It
is seen that, for this particular PQ medium, there is no birefringence for waves whose wave one-form
satisfies e3|ν = 0. For e3|ν �= 0 the medium appears birefringent. For example, choosing ν = ε3ν3, nu3
may take the values ±1 and ±1/

√
1 − τ ≈ ±1.826.
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Figure 1. Two cross sections of the quartic dispersion surface are denoted by nu1 = 0 (corresponding
to ν1 = e1|ν = 0) and nu2 = 0 (corresponding to ν2 = e2|ν = 0). For ν2 = 0 the cross-section reduces
to a circle and an ellipse. For nu3 = 0 the dispersion surface reduces to a single circle of unit radius.
Here the parameter value τ = P 4/S3s = 0.7 has been assumed.

6. CONCLUSION

A novel class of electromagnetic medium, called PQ medium, was introduced as a generalization of
the previously studied classes of P media and Q media. Plane-wave propagating in the general PQ
medium was studied, and the quartic dispersion equation was derived in analytic form. The equation
was verified for six special cases of PQ media for which the analytic form has been found from previous
studies. In all of these special cases, the quartic equation either reduces to two quadratic equations or
becomes an identity. As an example of a medium yielding a more general quartic dispersion equation,
another special case of the PQ medium was considered.
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