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Effective MagnetoElectric Properties of MagnetoElectroElastic
(Multiferroic) Materials and Effects on Plane Wave Dynamics

Scott M. Keller*, Abdon E. Sepulveda, and Gregory P. Carman

Abstract—In this paper we analyze the 3D modes of a linear homogeneous magnetoelectroelastic
(MEE) material reduced to magnetoelectric (ME) constitutive form. This allows convenient examination
of the predominately electromagnetic behavior in a mechanically coupled MEE material system.
We find that the behavior of the electromagnetic modes are strongly influenced by the mechanical
coupling present in the MEE material system. A number of papers refer to the cross-coupling of
laminated piezoelectric and piezomagnetic materials as magnetoelectric materials. We discuss here
that the composite materials are MEE systems and that the constitutive relations need to reflect the
mechanical coupling also. Further, we find that the mechanical coupling has a significant impact on
the electromagnetic propagation modes of the composite material. Through examples of homogenized
MEE materials we show possibilities for remarkable electromagnetic material characteristics which are
not conventionally obtainable in single phase materials.

1. INTRODUCTION

Historically, magnetoelectric (ME) materials were nothing more than a scientific curiosity. In the
1950’s and 60’s, research on single phase materials proved both the existence of ME materials [1]
and that single crystal materials are inadequate for most engineering applications, since the cross-
coupling effect was generally too weak to be of practical value [2, 3]. The development of composite
materials, however, has produced orders of magnitude increase in the strength of magnetoelectric
coupling effects [4]. New curiosity has been generated in these unique materials over the past decade,
with interest in applications such as magnetometers, phase shifters [5], Radar Absorbing Materials
(RAM) and microwave devices [3, 6], to mention a few. While initial research has focused largely on low
frequency and static type applications, there has been growing interest in higher frequency applications.
These high frequency applications require a solid understanding of wave propagation in these materials
in order to determine how best to apply and design them.

Our primary interest here is understanding the electromagnetic (EM) wave behavior of ME
materials. In most ME candidate materials the ME effect is produced through strain-coupling of a
ferroelastic-ferroelectric phase with a magnetoelastic phase [6, 7] (for example, bonding together thin
layers of piezoelectric and piezomagnetic films). Under an applied electric field, the strain produced in
the ferroelectric phase causes the material to strain (ferroelastic response). This strain is then transferred
through mechanical bonding to the ferromagnetic phase, producing a change in the magnetization
of the ferromagnetic material thru magnetoelastic effects. This is a product ME effect. When the
magnetoelectric effect is produced through strain-coupling, however, the constitutive relations for the
materials are no longer strictly ME but now have additional mechanical coupling. Consequently,
to understand the EM wave propagation in these materials, the wave behavior of the multi-physics
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coupling of the composite must be understood. In modeling this response, it is computationally more
efficient to treat the composite material as a homogeneous mixture rather than separate ferroelectric
and ferromagnetic phases. This assumption is reasonable for wavelengths substantially greater than
the dimensions of individual phases in the composite material. These homogenized models are not
strictly magnetoelectric anymore but also have direct coupling with mechanical fields. The resultant
constitutive relations being magnetoelectroelastic (MEE). Thus, the problem of understanding wave
propagation in strain-coupled ME materials is actually the problem of understanding wave propagation
in MEE materials.

While MEE materials have been studied for quite some time, there are surprisingly few papers
on wave propagation in MEE materials. Earlier works, such as Wang [21], recognize the need to treat
homogenous composite materials as MEE materials and produced models to predict the aggregate
behavior. Other authors [15, 16] have modeled the magnetoelectric cross-coupling properties of two
phase composite systems but were not focused on general models of MEE coupling. Experimental
efforts have verified the effectiveness of strain coupled materials [18, 20] for static application and the
materials community is starting to exam strain coupled materials for high frequency electromagnetic
wave applications [17, 19]. Chen [8] did work on reflection and transmission coefficients in MEE
materials in the quasi-static limit, while Iadonisi [9], published a paper on wave propagation for specific
material symmetries with full dynamics included, though only considering propagation along crystal
axes. Yang [10] and Pang [12] has worked on magnetoelectroelastic wave propagation in materials with
equations of mechanical dynamics but with the limiting assumption of electrostatics. Chen [13] considers
interface effects in multilayered plates and considers the field variable continuity conditions across the
interfaces. Bin [14] presents the dynamic solution for MEE plates composed of magnetostrictive and
piezoelectric layers. All of these authors have focused on the predominately acoustic modes of wave
propagation and generally in the quasistatic limit.

No one has yet looked at the treatment of MEE materials from the viewpoint of extracting the
magnetoelectric material properties and the influence of mechanical effects on electromagnetic behavior.
The focus of the present paper is to examine fully dynamic electromagnetic wave propagation in
MEE materials and illustrate how dramatically the mechanical coupling can influence the EM wave
propagation. A new approach that incorporates the full physics of the MEE material system and then
reduces the system of equations to an ME system with new “effective” properties is proposed. Relevant
examples comparing EM wave modes with and without mechanical effects are presented to highlight
the importance of including the material stiffness in analysis.

2. BACKGROUND

ME materials exhibit cross-coupling between the magnetic and electric fields such that an electric
field can induce magnetization and, similarly, a magnetic field can induce polarization in the material.
Assuming linear response, the constitutive relations that capture this behavior contain cross terms in
the electric flux density (displacement field), D̄, and the magnetic flux density (magnetic induction), B̄
such that

D̄ = εĒ + ξH̄ and B̄ = ξ
T
Ē + μH̄ (1)

where Ē and H̄ are the electric and magnetic fields. Plane wave solutions to Maxwell’s Equations
combined with the above constitutive form produce two modes of propagation and two, possibly
degenerate, phase velocities for each direction of propagation. In conventional isotropic materials, these
modes are electrically and magnetically polarized perpendicular to the direction of wave propagation
and are often referred to as the transverse electric and transverse magnetic modes. Furthermore, in
isotropic materials the phase velocity does not depend on direction, while in anisotropic and cross-
coupled materials, this is usually not the case. The electric and magnetic fields are no longer assured
to be transverse or mutually perpendicular, and the velocities and modes vary with the direction of
propagation.

Similarly, if we consider a purely mechanical system with linear constitutive relations of the form
S̄ = sT̄ where S̄ is the strain, T̄ the stress and s the compliance tensor in Voigt notation, then, plane
wave solutions of this system yield three acoustic modes with possibly degenerate phase velocities: two



Progress In Electromagnetics Research, Vol. 154, 2015 117

corresponding to shear modes, and the third to a longitudinal wave along the direction of the wave
vector. As with general electromagnetic materials, the velocities and modes for mechanical propagation
vary with direction in the material.

For MEE materials, it is necessary to combine the equations of motion for both electromagnetic
and mechanical degrees of freedom. In general, MEE materials will have five modes of propagation
and five different phase velocities in each direction. The five modes are not directly the
acoustic plus electromagnetic modes that one would obtain if considering the mechanical properties
(stiffness/compliance tensor) and electromagnetic properties (permittivity and permeability) separately.
Rather, the coupling of the mechanical and electromagnetic properties through piezoelectric and
piezomagnetic phenomena cause a hybridizing of the “base” modes of the system, causing a shift in the
phase velocities and “mixing” of eigenmodes of the system, depending of course upon the particular
combination of material parameters associated with the system. In the MEE system, we can think
of the modified acoustic modes as “primarily acoustic” and the electromagnetic modes as “primarily
electromagnetic”.

3. ANALYSIS

3.1. Reduced Constitutive Form

In the following section, constitutive relations for a general linear lossless MEE system are presented.
The equations of elastodynamics are used to reduce the constitutive form to an effective magnetoelectric
material form which can then be used for the solution of EM waves in a magnetoelectric material. For
a general lossless homogeneous linear magnetoelectroelastic material the constitutive equations are
represented by

S̄ = sT̄ + d
T
Ē + q

T
H̄ (2)

D̄ = dT̄ + εĒ + ξH̄ (3)

B̄ = qT̄ + ξ
T
Ē + μH̄. (4)

The tensors s, d and q are the compliance, piezoelectric and piezomagnetic material properties while ε, μ

and ξ are the permittivity, permeability, and magnetoelectric coupling parameters of the material. S̄, T̄ ,
Ē, H̄, D̄ and B̄ are the strain, stress, electric, magnetic, electric displacement and magnetic induction
fields. It should be noted that in the above equations, stress and strain fields, along with piezoelectric
and piezomagnetic coupling coefficients are represented in Voigt notation. The particular ordering used
for the Voigt “vector” forms is shown in Equation (11). For clarity, T̄ is used for stress in Voigt notation
while T would indicate the rank two stress tensor. Similar notation is used to distinguish strain while
piezomagnetic and piezoelectric parameters are represented in Voigt “matrix” form throughout.

Our interest here is on the electromagnetic material parameters; the mechanical properties may
seem incidental. However, as we show in this article, ignoring the non-magnetoelectric parameters
(stress and strain) produces results which are different from those which include these parameters. This
result is in sharp contrast to previous approaches which assume solutions are mechanically decoupled.
Consequently, it is inappropriate to ignore the effects of the mechanical coupling on the electromagnetic
wave modes. In what follows, we use the equations of mechanical equilibrium and small deformation in
the strain constitutive relation (2), to account for the induced stresses and strains and then “eliminate”
the stress dependence from the constitutive relations for electric displacement and magnetic induction
fields. This provides a general framework that may be used to solve the mechanical equilibrium and
Maxwell’s Equations for the phase velocities of traveling waves and the associated electric/magnetic
field vectors.

The equations of motion for a mechanical system without body loads and small strains are

∇ · T = ρ¨̄u S =
1
2

(∇ū + ∇ūT
)

(5)
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where ū is the displacement vector and ρ is the material density. The source free Maxwell’s Equations
are

∇× Ē = − ˙̄B ∇× H̄ = ˙̄D
∇ · D̄ = 0 ∇ · B̄ = 0 (6)

For plane wave solutions in linear homogeneous media, the field quantities assume the form

Z̄(x̄, t) = Z̄ei(kp̂·x̄−ωt), (7)
where Z̄ represents one of the fields, and the wavevector is k̄ = kp̂ where p̂ = (α1, α2, α3) defines a unit
vector in the propagation direction† and the αi are direction cosines. Substituting (7) into Equations (5)
and (6), the resultant equations in reciprocal space become

−i
k

ρω2
p̂ · T = ū S = i

k

2
(p̂ : ū + ū : p̂) (8)

1
c

p̂ × Ē = B̄
1
c

p̂ × H̄ = −D̄

p̂ · B̄ = 0 p̂ · D̄ = 0 (9)
where c = ω

k is the phase velocity of the wave, and p̂ : ū is the direct product of p̂ and ū.
From Equation (8) we see that the displacement ū is linear in the stress components and likewise

the strains are linear in the displacements. For plane wave (harmonic) solutions this prompts us to
rewrite the equations in (8) as matrix equations in terms of the Voigt vectors for stress and strain as
follows:

ū = −i
k

ρω2
NT̄ S̄ = ikN

T
ū (10)

where the “vectors” for stress, T̄ , strain, S̄, the displacement vector, ū and direction operator matrix
N are expanded as

T̄ =

⎡
⎢⎢⎢⎢⎢⎣

T11

T22

T33

T23

T13

T12

⎤
⎥⎥⎥⎥⎥⎦ S̄ =

⎡
⎢⎢⎢⎢⎢⎣

S11

S22

S33

2S23

2S13

2S12

⎤
⎥⎥⎥⎥⎥⎦ N =

[
α1 0 0 0 α3 α2

0 α2 0 α3 0 α1

0 0 α3 α2 α1 0

]
ū =

[
u1

u2

u3

]
. (11)

Combining the elastodynamics and small strain Equations (8) in Equation (10) leads to

S̄ =
1

ρc2
N

T
NT̄ . (12)

Using (12) to replace S̄ in (2) and rearranging(
1

ρc2
N

T
N − s

)
T = d

T
Ē + q

T
H̄ (13)

Defining L =
(

1
ρc2

N
T
N − s

)
and assuming L

−1
exists, leads to

T = L
−1

d
T
Ē + L

−1
q
T
H̄ (14)

which when substituted into Equations (3) and (4) produces

D̄ =
(

ε + dL
−1

d
T
)

Ē +
(

ξ + dL
−1

q
T
)

H̄ (15)

B̄ =
(

ξ + dL
−1

q
T
)T

Ē +
(

μ + qL
−1

q
T
)

H̄. (16)

† A more general formulation for non-homogeneous waves would allow p̂ to be complex. The current approach still applies but
introduces additional complexity that is not needed for the types of materials analyzed in the present work, and so is not considered
here. The assumption that k̄ = kp̂ is fine for lossless materials, or at least systems with hermitian κ and ν matrices.
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This provides the effective electromagnetic constitutive relations for a material with elastic coupling.
For the purely ME system, direct analytic solutions for the phase velocities of the material are possible.
The solution of the electromagnetic problem for a magnetoelectrically coupled material was addressed
by the authors in a previous paper [11].

3.2. The Meaning of L

The above derivation of effective magnetoelectric constitutive parameters, Equations (15) and (16) relies
on the invertibility of the 6 × 6 matrix L. It will be seen below that the L matrix is invertible except
for phase velocities, i.e., c values, corresponding to acoustic modes of the system.

In the previous section the calculation of the inverse of L was discussed under the assumption that
L−1 exists. Here we would like to briefly discuss what is meant when this is not the case. Ultimately,
this indicates that the phase velocity or eigenvalue found for the problem is identical to the acoustic
eigenvalue and indicates that the stress (or traction) eigenvector for this value is equivalent to an acoustic
mode eigenvalue. This could either be due to zero piezoelectric and piezomagnetic coefficient coupling
for the mode in question or due to an exact canceling of the piezoelectric and piezomagnetic coupling

(i.e., d
T
Ēi + q

T
H̄ i = 0̄), where the electric and magnetic fields here are the eigenmodes associated with

the eigenvalue. While the latter is theoretically possible it seems unlikely to occur unless the material is
specifically engineered to have this property. Returning to the coupled magnetoelectroelastic problem,
we proceed in a similar manner by substitution of Equation (12) into the constitutive Equation (2)
(note this is not a reduced assumption) to obtain

LT̄ = d
T
Ē + q

T
H̄. (17)

Eliminating displacement, ū, from the mechanical dynamics and small strain equations in (10) we
see

S̄ = ikN
T

(
−i

k

ρω2
N

)
T̄ =

1
(ρc2)

N
T
NT̄ . (18)

Further, assuming a strictly mechanical system where S̄ = sT̄ , we arrive at

sT̄ =
1

(ρc2)
N

T
NT̄ →

(
1

(ρc2)
N

T
N − s

)
T̄ = 0̄ (19)

or equivalently LT̄ = 0̄.
This defines the eigenvalue problem for a purely mechanical system. The eigenvalues of L

correspond to the phase velocities of the acoustic wave modes and are determined from the zeros
of the characteristic polynomial for L, i.e., where the determinant |L| = 0. From consideration of this
purely mechanical problem we see that the inverse of L exists whenever the value of c2 (actually values
of ρc2) is not an eigenvalue, or mechanical wave speed of the strictly mechanical system. Looking at
Equation (13), we note that in the limit of d and q approaching zero, i.e., no electromagnetic cross-
coupling, the purely mechanical eigenvalue problem is recovered as expected. This equation indicates
how the mechanical wave is coupled into the electromagnetic wave. On physical grounds, when the
right hand side of (13) is non-zero (i.e., so long as d and q are not identically zero), we would intuitively
expect the phase velocities of the coupled waves to be different than the purely mechanical waves and
consequently L should be invertible for MEE wave modes. Consequently, we conclude that the matrix
L is invertible for the coupled system under analysis.

3.3. Calculation of L
−1

Noting that L has the form 1
λ(A−λB) where λ = ρc2, A = N

T
N and B = s; we focus first on the form

of the inverse for (A − λB). On physical grounds, the compliance tensor s is expected to be invertible;
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the inverse being the material stiffness tensor. We assume that the eigenpairs are φ̄i and μi such that

Aφ̄i = μiBφ̄i or in matrix form Aφ = BφD (20)

with φ the matrix of eigenvectors and D the corresponding diagonal matrix of eigenvalues, μi. For
convenience we further assume that the eigenvectors are normalized to unity. Since the matrix of
eigenvectors is invertible we have

A = BφD φ
−1

. (21)

Now,

A − λB = Bφ(D − λI6)φ
−1

(22)

and for λ �= μi,

(A − λB)−1 = φ(D − λI6)−1φ
−1

B
−1 → L

−1
= φ(

1
λ

D − I6)−1φ
−1

B
−1

. (23)

Examining the diagonal matrix we find that(
1
λ

D − I6

)−1

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − μ1

λ

)−1
0 0 0 0 0

0
(
1 − μ2

λ

)−1
0 0 0 0

0 0
(
1 − μ3

λ

)−1
0 0 0

0 0 0
(
1 − μ4

λ

)−1
0 0

0 0 0 0
(
1 − μ5

λ

)−1
0

0 0 0 0 0
(
1 − μ6

λ

)−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

When considering the predominately electromagnetic modes, the phase velocity (i.e., the eigenvalue
associated with the electromagnetic wave speed) is generally much larger than the typical acoustic wave
phase velocity. When μi = ρc2

a where ca is one of the three possible acoustic velocities and λ = ρc2 is
one of the five phase velocities for the magnetoelectroelastic system. Assuming we select one of the two
predominately electromagnetic modes, typically

μi

λ
=

(ca

c

)2 � 10−4. (25)

Consequently, μi
λ � 1 and to very good approximation

1(
1 − μ3

λ

) ≈ 1 +
μi

λ
. (26)

With this approximation,

(
1
λ

D − I6

)−1

≈ −I −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1

λ 0 0 0 0 0
0

μ2

λ
0 0 0 0

0 0
μ3

λ
0 0 0

0 0 0
μ4

λ
0 0

0 0 0 0
μ5

λ
0

0 0 0 0 0
μ6

λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −
(
I + ε

)
(27)
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where ε represents a diagonal matrix of small terms in μi
λ . This implies

L
−1

= −φ(I + ε)φ
−1

B
−1

= −B
−1 − φεφ

−1
B

−1
= −s−1 − φεφ

−1
s
−1

. (28)

For many MEE materials the second term has an impact of less than 1% and so L−1 can be conveniently
replaced by −s−1. In some MEE materials, or for specific directions within an MEE material, the EM
phase velocities could be reduced by four or more orders of magnitude. Under these circumstances
the higher order effect of the second term should not be ignored. The same is true when considering
predominately acoustic modes. In these situations it is generally as easy to use the exact inverse given
by Equations (23) and (24).

In the reduced MEE system, the effective tensor properties are functions of the phase velocity
through their dependence on L(c). Consequently this implicit system does not in general yield analytic
solutions for phase velocity since the characteristic polynomial can be of 10th order, requiring numerical
solution for the roots. Alternatively, the phase velocities can be found by iterative methods by assuming
an initial value for the phase velocity, calculating a fixed estimate of L and using this to calculate
the effective parameters and eigenvalues of the system. Theoretically, this can be iterated to desired
accuracy.

It is interesting to note that the L matrix is 6×6 and would generally admit 6 eigenvalues, or wave
speeds and the matched eigenmodes. It is well known that mechanical systems admit 3 eigenmodes,
two shear and one longitudinal (in the same fashion that EM systems typically comprise two shear
modes of propagation). It can be shown that 3 of the eigenmodes for L correspond to the normal
shear/longitacoustic modes while the other 3 eigenvalues are zero. The zero modes correspond to static,
ω = 0, modes and do not relate to the predominately electromagnetic modes of interest in this article.

4. RESULTS

In this section we focus on the discussion of the electromagnetic modes of propagation rather than
the acoustic modes even though both are present in our formulation. We noted above that L looks
like a perterbation of the negative compliance matrix for typical cases. In the limit of large c (phase

velocity), the directional term in L, i.e., 1
ρc2

N
T
N has negligible effect on compliance and the inverse

of L is approximately −s
−1 = −c, Equation (28), the negative inverse of the mechanical compliance

tensor. In light of this, we can view each of the effective electromagnetic parameters as being the “usual”
parameter modified by a stiffness coupling term. For example, the dielectric tensor εeff = ε + dL−1dT

consists of the material permittivity plus a piezoelectric “stiffening” term. We can see the effects of
these stiffening factors by plotting the relative phase velocity of each mode as a function of direction in
space (i.e., plot the parametric surface (θ, φ, c

c0
) where c is the phase velocity, c0 is the speed of light in

vacuum and θ, φ specify the direction of wave propagation).
Figure 1 shows a relative velocity profile for a LeadMgNiobate and CoFerrite composite with a

61% volume fraction of LeadMgNiobate. It is assumed that the ferroelectric and magnetic phases
are polled along the x-direction. This produces strong anisotropy in the material. The material
parameters for LeadMgNiobate and CoFerrite are listed in Table 1. Material properties for the composite
LeadMgNiobate/CoFerrite were calculated by homogenizing the properties of a 2-2 connected, i.e.,
layered, structure. The composite properties for the LeadMgNiobate/CoFerrite are listed in Table 2.

The MEE material parameters for compliance, piezoelectric, piezomagnetic, permittivity,
magnetoelectric and permeability tensors are estimated from the homogenization of a ferroelectric and
ferromagnetic phase. The homogenization model assumes layered materials that are stacked in the z-
direction. The polling of the piezoelectric and piezomagnetic phases are along the x-axis. For composites
operating at higher frequencies the dynamic values of the materials are expected to be different but
are presently unavailble. The effects of the stress-strain on the resultant values however, will still be
significant.

For the LeadMgNiobate and CoFerrite material, the Mode 1 phase velocity in the plot with stress
effects, Figure 2, is about 39% higher on the bulbous ends compared with the plot without stress effects,
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(a) (b)

Figure 1. Phase Velocity Lead Magnesium Niobate (X Polled) — Cobalt Ferrite (X Polled). Relative
phase velocity for the (a) Mode 1 and (b) Mode 2 propagating electromagnetic modes. These modes
to not include the effects of strain-coupling in the material. The phase velocity range of Mode 1 is
0.0016804 to 0.017661. The phase velocity range of Mode 2 is 0.0022018 to 0.060663.

Table 1. Material data used for LeadMgNiobate-CoFerrite MEE material.

s11 [m2/N] s33 s12 s44 s66

1.032 × 10−11 1.199 × 10−11 −3.1 × 10−12 3.628 × 10−11 2.257 × 10−11

e11/e0 e22/e0 e33/e0 μ11/μ0 μ22/μ0 μ33/μ0

1968.6 3375.88 2.25887 104.804 104.883 1.59155
d31 [pC/N] d32 d33 d15 d24

−0.1205 −0.1507 0.282 0.5063 0.0002
q31 [m/A] q32 q33 ξ11

0.0341 × 10−8 0.0344 × 10−8 −0.1154 × 10−8 −3.151 × 10−8

Table 2. Materials properties Lead Magnesium Niobate-Metglas MEE material.

s11 [m2/N] s33 s12 s44 s55 s66

1.221 × 10−11 1.3 × 10−11 −3.66 × 10−12 2.651 × 10−11 3.452 × 10−11 3.174 × 10−11

e11/e0 e22/e0 e33/e0 μ11/μ0 μ22/μ0 μ33/μ0

2560.42 1925.68 2.25887 479.454 774.05 17.3479
d31 [pC/N] d32 d33 d15 d24

−0.1526 −0.1332 0.3116 0.3521 0.0002
q31 [m/A] q32 q33 ξ21

0.0 0.0257 × 10−8 −0.235 × 10−8 8.397 × 10−8

Figure 1. The velocity profiles for the second mode 2 are essentially unchanged. This behavior is not
uncommon based on the configurations examined by the authors to date.

Looking at a more extreme example, Figure 3 shows the velocity profile of a LeadMgNiobate-
Metglas composite without stress interaction effects and with stress interaction effects. These figures
illustrate the dramatic changes in phase velocity that can occur due to strain loading the material. It is
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(a) (b)

Figure 2. Phase Velocity Lead Magnesium Niobate (X Polled) — Cobalt Ferrite (X Polled). Relative
phase velocity for the (a) Mode 1 and (b) Mode 2 propagating electromagnetic modes. These plots
reflect the added “stiffening” terms in the respective permittivity, permeability and magntoelectric
tensors. Note that the second mode is almost unaffected by change, while the velocity profile of the first
mode is visually diffferent. The phase velocity range of Mode 1 is 0.0019582 to 0.024752. The phase
velocity range of Mode 2 is 0.0030843 to 0.06068.

(a) (b)

Figure 3. Phase Velocity Lead Magnesium Niobate (Y Polled) — Metglas (X Polled). Relative phase
velocity for the (a) Mode 1 and (b) Mode 2 propagating electromagnetic modes. These modes to not
include the effects of strain-coupling in the material. The phase velocity range of Mode 1 is 0.0022463
to 0.017345. The phase velocity range of Mode 2 is 0.0030396 to 0.094609.

interesting to note that the shifts in phase velocity can work in both directions (i.e., faster and slower)
in a single propagation mode, see for example Figure 4 Mode 2, or leave a mode almost unaffected,
Figure 2 Mode 2. As a homogenization model, the effective coefficients suggest how materials can be
created with unusual properties not generally occurring in single phase materials.
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(a) (b)

Figure 4. Phase Velocity Lead Magnesium Niobate (Y Polled) — Metglas (X Polled). Relative phase
velocity for the (a) Mode 1 and (b) Mode 2 propagating electromagnetic modes. These plots reflect
the added “stiffening” terms in the respective permittivity, permeability and magntoelectric tensors.
Note that the second mode is almost unaffected by change, while the velocity profile of the first mode
is visually different. The phase velocity range of Mode 1 is 0.0024691 to 0.026794. The phase velocity
range of Mode 2 is 0.012881 to 0.34783.

(a) (b)

Figure 5. Showing modes with estimated strain. Note the apparent singularity on the first (right hand
side) mode. For extreme material cases where the phase velocity is reduced several orders of magnitude
the L inverse estimate is not effective. In the central region acoustic modes are found rather than the
intended EM mode. The second mode reproduces correctly from the approximation.

An interesting property to note, however, is that as the material’s electromagnetic mode phase
velocity drops, due to permittivity or permeable loading for example, see Figure 5, an effective directional
compliance factor can become significant in L and consequently feeds back into the other electromagnetic
material parameters as well. In these extreme cases, the electromagnetic phase velocity becomes too
close to the acoustic phase velocities and the L tensor becomes ill-conditioned. In these cases, iteration
to determine the phase velocity becomes un-stable.
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5. CONCLUSIONS

By applying the mechanical equations of motion and small strain equations to the MEE constitutive
relations, we derived an eigenvalue problem that can be solved for the appropriate phase velocities
and eigenmodes. For high frequency ME applications this provides an effective solution of the coupled
mechanical, electromagnetic MEE system. The effective parameters given yield reasonable values to
treat systems as homogeneous magnetoelectric materials for typical applications. We find that the
results obtained from our system including stress interaction effects are significantly different from those
obtained from solutions which use only the permittivity, permeability and magnetoelectric coupling
tensors. Further, we have shown that homogenized MEE materials can produce significant wave
propagation effects not normally found in single phase materials.
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