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Low-Loss Complex Permittivity and Permeability Determination

in Transmission/Reflection Measurements with
Time-Domain Smoothing

Sung Kim* and Jeffrey R. Guerrieri

Abstract—An approach is proposed for determination of the complex permittivity and permeability of
low-loss materials, eliminating half-wavelength resonances occurring in transmission/reflection (T/R)
measurements. To this end, we apply time-domain smoothing for removing resonant artifacts from
the wave impedance obtained with the conventional T/R method, assuming that we do not have such
artifacts in the refractive index. Accordingly, the permittivity and permeability are found from the
smoothed wave impedance and conventional refractive index. Our method is validated by measurements
for two different low-loss materials, nylon and lithium ferrite, and those results are discussed. Further,
results from the present approach are compared to those from the approximate approach derived in our
previous work.

1. INTRODUCTION

Electromagnetic characterizations of materials have been long carried out to support fundamental
engineering research and development (R&D) and application product design activities. The precise
knowledge of material properties is of great importance to make effective use of the characterizations
of materials. To date, various measurement techniques for the characterizations have been suggested,
and computational algorithms for determining material parameters that suit each of those measurement
techniques have been derived [1–4].

The conventional transmission/reflection (T/R) method [5–10] has been known as one of the
broadband techniques that extract complex permittivity and permeability from total transmission and
reflection coefficients measured for a sample-loaded transmission line, i.e., coaxial line, rectangular
waveguide, etc., at microwave frequencies. The T/R method has often proved useful to measure well-
machined solid material samples over a broad range of frequency.

Although the conventional T/R method is often well-suited for broadband measurements to
characterize materials, there remain inherent issues to be resolved. In our previous study [11], we
circumstantially investigated one of those issues that arise in the T/R method — artifacts that arise
in the material parameters extracted near half-wavelength (λ/2) resonances when measuring a low-loss
material with the conventional T/R method. These artifacts stem from geometric resonances called
Fabry-Pérot resonances (FPRs) that appear when a test sample has a low-loss material property and
its dimension is an integer multiple of λ/2 [12–14]. The resonances are, in effect, standing waves
created by multiple reflections that occur between air-to-sample and sample-to-air interfaces in the
transmission line and are due to the discontinuity of the material property of the air and sample. The
resonant artifacts can severely reduce accuracy in permittivity and permeability measurements with the
conventional T/R method.
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In [11], we approximated the input impedance of the sample-loaded transmission line by means
of 1st-order regressions to remove resonant artifacts. From this approximate input impedance, we
calculated the characteristic impedance of the sample-filled section that is, in turn, either a function
of the wave impedance of the material filling a coaxial line or a function of the permeability filling a
rectangular waveguide. Using the wave impedance or the permeability calculated from the characteristic
impedance, the permittivity was computed, supplemented with the refractive index found by the
conventional T/R method. In this way, the approximate approach in [11] was able to provide reasonable
estimates of the material parameters near the frequencies associated with geometric resonances in T/R
measurements made on low-loss materials.

This present work, which is an alternative to the technique introduced in [11], proposes a more
accurate approach to determining the complex permittivity and permeability of low-loss materials for
frequencies near geometric resonances or (FPRs). Similar to [11], this new approach starts with an
assumption that the T/R method ensures a smooth refractive index at all frequencies, but in contrast
employs the inverse discrete Fourier transform (DFT) of a frequency response for the wave impedance
that is obtained from the conventional T/R method, with an appropriately truncated frequency range.
Subsequently, in this time-domain regime, we use windowing to permit zero-time components of the
wave impedance. To obtain the smoothed wave impedance as a function of frequency, we then apply
the forward DFT to this modified time-domain wave impedance. Thereafter, the permittivity and
permeability are calculated from this smoothed wave impedance and the conventional refractive index.
We then validate the present method by measurements on nylon and lithium ferrite samples with an
APC-7 coaxial transmission line, comparing these results to those in [11].

2. COMPUTATIONAL METHOD

2.1. Theoretical Background of the T/R Method

The T/R method employs a frequency response of S-parameters measured for a test material sample
slab placed in a transmission line (coaxial line, rectangular waveguide, etc.), as illustrated in Fig. 1. In
Fig. 1, an electromagnetic wave is incident upon the surface of the sample of length L and is reflected
and transmitted, respectively, from the front and back surface.

The reflection and transmission parameters, S11 and S21, as measured at reference planes 1 and 2
(or S22 and S12 at reference planes 2 and 1), are given by

S11 = S22 =
Γ

(
1 − P 2

)
1 − Γ2P 2

, (1)

S21 = S12 =
P

(
1 − Γ2

)
1 − Γ2P 2

, (2)

Figure 1. Schematic illustration of the S-parameters measured for the test material sample slab placed
in a transmission line.
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where Γ is the reflection coefficient of the interface, and P is the phase factor that represents the phase
shift of the wave traveling through the material slab. Because in this paper we use an APC-7 coaxial
line as a sample fixture that supports transverse electromagnetic (TEM) propagation waves, Γ and P
are expressed as

Γ =
ς − ς0
ς + ς0

, (3)

P = exp
(
−j

2πnL

λ0

)
, (4)

where ς is the wave impedance of the test material, ς0(∼= 377Ω) is the wave impedance of air, j is
√−1,

λ0 is the wavelength in air, and n is the refractive index of the material.
In order to extract the material parameters n and ς from the S-parameters measured for the

material slab, we need to simultaneously solve Eqs. (1) and (2) (we usually need to measure only either
a pair of S11 and S21 or a pair of S22 and S12). In practice, these equations can be solved in an explicit or
iterative manner. The former is known as the Nicolson-Ross-Weir (NRW) method [5, 6] while the latter
is often referred to as the Baker-Jarvis (BJ) iteration method [8, 9]. Eqs. (1) and (2) can be further
reformulated for the BJ iteration method, resulting in the reference-plane invariant method occasionally
called the NIST precision method (see [8, 9]).

The non-iterative explicit technique in the TEM case conveniently allows us to get simple analytical
solutions [11]:

X =

(
S2

11 − S2
21

)
+ 1

2S11
, (5)

Γ = X ±
√

X2 − 1, (6)

P =
(S11 + S21) − Γ
1 − (S11 + S21) Γ

, (7)

n = n′ − jn′′ = ±j
λ0

2πL
ln

(
1
P

)
= ±j

λ0

2πL

[
ln

(
1
P

)
+ j2πm

]
, (8)

ςr =
ς

ς0
= ς ′r + jς ′′r = ±

√
(1 + S11)

2 − S2
21

(1 − S11)
2 − S2

21

. (9)

The ln symbol on the right-hand side of Eq. (8) denotes the principal value of the natural logarithm.
Since the material is passive, +/− signs in Eqs. (6), (8) and (9) should be chosen to satisfy physical
constraints, |Γ| ≤ 1, n′′ ≥ 0 and ς ′ ≥ 0, respectively. Note that n′ can be negative when measuring
‘effective’ parameters of a negative-index medium [15–18]. If the material does not possess a very
dispersive characteristic, we can readily find a correct value of the integer m in Eq. (8) in such a way
that the group delay acquired from the value of n calculated from Eq. (8) matches the one obtained
from the measurement [6].

Further, we can determine the relative values of the complex dielectric permittivity εr and magnetic
permeability μr from n and ςr as follows:

εr = ε′r − jε′′r = n/ςr, (10)
μr = μ′

r − jμ′′
r = n · ςr. (11)

2.2. The Issue for the T/R Method

In [11], we extensively studied an unavoidable issue that inherently occurs in measurements for low-loss
materials with the conventional T/R method, which we briefly review here.

One of the well known issues for the T/R method is that when measuring a low-loss material,
resonant artifacts arise in the permittivity and permeability extracted near frequencies where the sample
length L corresponds to an integer multiple of a half wavelength (λ/2). This issue is attributed to
geometric resonances or FPRs occurring within the low-loss material sample of length of L = λ/2 due
to the discontinuity of the material property of the air and sample in the transmission line. In [11], this
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physical phenomenon was in detail explained and confirmed by the fact that, looking from reference
plane 1 in Fig. 1, the input impedance Zin of the sample-loaded section of the transmission line appears
to be nearly equal to the characteristic impedance of the air section, Z0(= 50Ω for an APC-7 coaxial
line), at the resonant frequencies. Thus, at the resonant frequencies, |S11| and |S21| have, respectively,
negative (minimal) and positive (maximal) peaks, i.e., |S11| ∼= 0 and |S21| ∼= 1 for a significantly low-loss
material. It can also be understood that those resonances are created by dominant-mode standing waves
reflected back and forth within the test sample (if the resonances were due to higher-order modes, |S21|
would be small because those modes are evanescent and do not propagate). As was done in [11], in
this paper we assume that the sample is homogeneous and appropriately machined, and has sufficiently
flat and smooth front and back surfaces, so that only a dominant mode can exist in the sample-loaded
transmission line. If a composite material sample is measured and resonances that arise from higher-
order evanescent waves need to be taken care of, see the literature [19, 20].

Equation (9) provides a fairly intuitive explanation about the issue in the extraction of material
parameters with the conventional T/R method. We can see from Eq. (9) that ςr becomes ill-conditioned
when |S11| ∼= 0 and |S21| ∼= 1. As a result, the wave impedance ςr gets significantly divergent at the
λ/2 frequencies. As was discovered in [11, 21], in general, the refractive index n obtained from Eq. (8)
is sufficiently smooth over the entire frequency range, whereas the wave impedance ςr has very strong
resonances appearing as sharp peaks at the λ/2 frequencies. Such n and ςr give rise to artifacts in
the dielectric permittivity εr and magnetic permeability μr derived from Eq. (10) and (11) at those
frequencies. In real-life measurements, any vector network analyzers (VNAs) that have finite dynamic
range cannot accurately measure very small S-parameters, |S11| ∼= 0, and this measurement limitation
is another source of degradation of measurements at the λ/2 frequencies.

2.3. Smoothing in the Time Domain

Figure 2 depicts a conceptual drawing for a frequency response of the wave impedance ςr of a low-
loss material measured with the T/R method around a λ/2 frequency. Fig. 2 illustrates that, as has
been discussed in Subsection 2.2, the wave impedance obtained from the T/R method is divergent and
appears to be resonant at the λ/2 frequency, whether we use the explicit or iterative technique to solve
Eqs. (1) and (2).

In order to circumvent the issue of the resonant artifacts in the material parameters extracted
with the T/R method, we attempt to get rid of the resonant peak in the wave impedance. First, we
acquire the real and imaginary parts Z ′

r and Z ′′
r of the time-domain wave impedance, by truncating the

frequency range from fA to fB to include the λ/2 resonance (see Fig. 2) and by performing the inverse
discrete Fourier transform (DFT) (for example, see [22]) for the frequency responses of the real and

Figure 2. Conceptual drawing of the wave
impedance frequency response for a low-loss
material measured with the T/R method around
a λ/2 frequency.

Figure 3. S-parameters measured for the nylon
sample.
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imaginary parts ς ′r and ς ′′r , individually, such as

Z ′
r,p =

N−1∑
k=0

ς ′r,k · exp
(

j2πkp

N

)
, (12)

Z ′′
r,p =

N−1∑
k=0

ς ′′r,k · exp
(

j2πkp

N

)
, (13)

where p is the index for the time-domain data p = 0, 1, 2, . . . , N , k is the index for the frequency-domain
data k = 0, 1, 2, . . . , N , and N is the number of the data points from fA through fB.

Consecutively, we apply windowing to Z ′
r and Z ′′

r so that we can have zero-time components of
Z ′

r and Z ′′
r — unless we have only the zero-time components, the resultant frequency-domain wave

impedance ς ′r and ς ′′r after windowing will still turn out to be oscillatory and resonant. The real and
imaginary parts of the modified time-domain wave impedance are expressed as

Z ′
r,p(windowed) = w′

p · Z ′
r,p, (14)

Z ′′
r,p(windowed) = w′′

p · Z ′′
r,p, (15)

where w′
p and w′′

p are the window functions respectively for the real and imaginary parts of the wave
impedance that permit almost only the zero-time components of the wave impedance:

w′
p, w′′

p =
{

1, for p = 0, 1, . . . (small integer)
0, otherwise. (16)

Notice here that w′
p and w′′

p are identical to a low-pass filter in the frequency domain that passes almost
DC components. In general, w′

p = 1 and w′′
p = 1 for p = 0 give reasonable results. However, if the

measurement frequency range is very broad and the step size in the time domain after the inverse DFT
is considerably small, w′

p = 1 and w′′
p = 1 for p = 0, 1, . . . (p is a small integer) may be chosen, as

long as the wave impedance ς ′r(smoothed) and ς ′′r(smoothed) obtained with Eqs. (17) and (18) are sufficiently
smooth. Note also that since oscillations in ς ′r and ς ′′r are not necessarily the same, w′

p and w′′
p do not

always need to be the identical window functions, and the window widths p for each w′
p, w′′

p = 1 may
be optimally chosen. In the final stage, we do the forward DFT (see [22]) to get frequency responses of
the smoothed ς ′r and ς ′′r :

ς ′r,k(smoothed) =
N−1∑
p=0

Z ′
r,p(windowed) · exp

(
−j2πkp

N

)
, (17)

ς ′′r,k(smoothed) =
N−1∑
p=0

Z ′′
r,p(windowed) · exp

(
−j2πkp

N

)
, (18)

The function of the windowing above is, in effect, an averaging of the resonant oscillatory wave
impedance shown in Fig. 2. In practice, there are commercial numerical software packages available
that facilitate prompt implementation of the inverse and forward DFTs in Eqs. (12), (13), (17), and (18)
with built-in commands.

The acquisition of smoothed εr and μr can easily follow in conjunction with εr = n/ςr(smoothed) and
μr = n · ςr(smoothed) where n is the refractive index obtained with Eq. (8).

3. RESULTS AND DISCUSSION

3.1. Measurement Results

For experimental validation of the method outlined in Section 2, we placed a test sample into an APC-7
coaxial sample fixture whose inner and outer radii are respectively a = 1.52 mm and b = 3.50 mm,
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and conducted S-parameter measurements for the loaded sample fixture with an HP 8510C VNA†. To
perform these S-parameter measurements, we calibrated ports 1 and 2 at the ends of APC-7 cables
attached to this VNA with the short-open-load-thru (SOLT) technique, before inserting the loaded
sample fixture in between.

As the first validation study, we measured a sample of nylon that has a low-loss dielectric
characteristic (εr

∼= 3 and μr = 1). The sample length is L = 15.10 mm. Fig. 3 shows S-parameter data
measured for the nylon sample as a function of measurement frequency. It is seen from Fig. 3 that S11

and S21 become very small and large (|S11| ∼= 0.005 and |S21| ∼= 0.974) at 5.76 GHz where the sample
length is found to be approximately a wavelength, L ∼= λ.

Figures 4(a) and (b) give the plots of the refractive index n and wave impedance ςr extracted from
the S-parameters in Fig. 3 with the conventional T/R method, i.e., Eqs. (5)–(9). These plots show that
frequency responses of extracted n′ and n′′ of nylon are very smooth over the entire frequency range,
whereas in contrast, ς ′r and ς ′′r exhibit a very evident peak, as has been pointed out in Subsection 2.2.

(a) (b)

Figure 4. Refractive index and wave impedance extracted for the nylon with the T/R method. (a) n
and (b) ςr.

We now apply the time-domain smoothing outlined in Subsection 2.3 to the wave impedance
in Fig. 4(b). We truncate the frequency range from fA = 4.87 GHz through fB = 6.74 GHz
(N = 301) to perform the inverse DFT, since ς ′r and ς ′′r seem to be resonant in that frequency range.
Figs. 5(a)–(d) present the real and imaginary parts of the time-domain wave impedance, Z ′

r and Z ′′
r ,

before/after windowing. Only the magnitudes are shown in those plots and those values are normalized
by the maximum values of the non-windowed one, e.g., |Z ′

r(non-windowed)|/max(|Z ′
r(non-windowed)|),

|Z ′
r(windowed)|/max(|Z ′

r(non-windowed)|), etc. We confirm in Figs. 5(b) and (d) that only the zero-time
components remain and all the other components are cut off by the windowing.

Figure 6(a) shows the smoothed and non-smoothed ς ′r and ς ′′r (the non-smoothed ones replicate
those in Fig. 4(b)) as a function of frequency, which are obtained by the forward DFT applied to
the time-domain wave impedance Z ′

r and Z ′′
r , as plotted in Fig. 5. In Fig. 6(a), we see that both of

the smoothed ς ′r and ς ′′r come out to be appropriately flat over the entire frequency range, with the
smoothed ς ′r = 0.59 and ς ′′r = 0.008, while the non-smoothed ς ′r and ς ′′r have a maximum peak at
5.74 GHz. Figs. 6(b) and (c) give a comparison of the smoothed and non-smoothed permittivity and
permeability calculated from Eqs. (10) and (11) with the help of the refractive index in Fig. 4(a) and
the wave impedance in Fig. 6(a). The smoothed ε′r, ε′′r , ε′r, and μ′′

r can be validated to be adequately
clean compared to the non-smoothed ones. The data in [11] are given in Fig. 6, and we can see that the
present approach more accurately follows the conventional results outside the resonance, and provides a
good interpolation to the material parameters, whereas the approximate results seem to slightly deviate
from the smooth values of the conventional results outside the resonance. Further, from Fig. 6, we can
† Reference to specific hardware in this article is provided for informational purposes only and constitutes no endorsement by the
National Institute of Standards and Technology.
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(a) (b) (c) (d)

Figure 5. Real and imaginary parts of the time-domain wave impedance of the nylon sample
before/after windowing. (a) Non-windowed |Z ′

r|, (b) windowed |Z ′
r|, (c) non-windowed |Z ′′

r |, and (d)
windowed |Z ′′

r |.

(a) (b) (c)

Figure 6. (a) Wave impedance ςr, (b) permittivity εr, and (c) permeability μr computed before/after
smoothing for the nylon sample along with the data in [11]. The gray regions in the graphs indicate the
frequency range fA–fB truncated to apply the time-domain smoothing.

read the smoothed permittivity and permeability around the resonance to be ε′r = 2.94, ε′′r = 0.07,
μ′

r = 1.02, and μ′′
r = −0.005 at 5.74 GHz. Those values are confirmed to successfully eliminate the

artifacts that arise in the conventional T/R method and to accurately be almost flat as the values
outside the resonance obtained with the T/R method, εr

∼= 3 and μr
∼= 1.

For the second validation case, we measured a lithium ferrite sample that is a low-loss magnetic
material with μr �= 1 unlike the nylon case. Many magnetic materials are known to generally possess
strong dispersive characteristics in their permittivity and permeability.

S-parameters measured for the lithium ferrite sample with the APC-7 fixture are shown in Fig. 7.
The length of the lithium ferrite sample is L = 25.54 mm, and we see in Fig. 7 that there are two evident
resonances present near 4.2 GHz and 5.5 GHz, each of which corresponds to the frequencies where the
sample becomes nearly L ∼= λ and L ∼= 1.5λ, respectively.

The material parameters of the lithium ferrite are computed in the same manner as done for the
nylon measurement. The smoothed and non-smoothed permittivity and permeability obtained for the
lithium ferrite sample are given in Fig. 8, as well as the data in [11]. In order to smooth out those
resonances, we first truncate the frequency ranges for fA–fB , at 4.0 GHz–4.595 GHz (N = 121) and at
5.195 GHz–5.795 GHz (N = 121), to individually include each of those resonances. After getting the
inverse DFT done, one at a time, we apply windowing to each one, and we apply the forward DFT to
acquire the frequency responses in each of the truncated frequency ranges again.

Figure 8 shows that the real and imaginary parts of both the smoothed εr and μr are sufficiently
clean whereas those of the non-smoothed ones yield very sharp resonant peaks. As has been seen in
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Figure 7. S-parameters measured for the lithium ferrite sample.

(a) (b)

Figure 8. (a) Permittivity εr and (b) permeability μr computed before/after smoothing for the lithium
ferrite along with the data in [11]. The gray regions in the graphs indicate the frequency ranges fA–fB

truncated to apply the time-domain smoothing.

the nylon measurement case, the smoothed results appear to be more accurate than the results in [11].
We can also see that Figs. 8(a) and (b) show that the present approach, based on the time-domain
smoothing technique, gives εr = 12.28− j0.58 and μr = 0.63 + j0.01 at 4.2 GHz and εr = 12.07 − j1.31
and μr = 0.84 + j0.08 at 5.5 GHz.

3.2. Uncertainties

The rigorous evaluation of analytical uncertainties in the smoothed permittivity and permeability
obtained with the method described in Subsection 2.3 is not straightforward. Here, the uncertainty
analysis for only the ‘non-smoothed’ results with the conventional T/R method, i.e., Eqs. (5)–(9), in
place of those of the smoothed ones, is presented — we will see, in the following, that the uncertainties
for the non-smoothed results become very large and nearly maximum at the λ/2 resonance frequencies,
and at the present stage, we speculate that the uncertainties for the ‘smoothed’ results would be smaller
than those for the non-smoothed ones. Further, in order to calculate the analytical uncertainties, we
assume that the sources of the uncertainties are systematic errors of magnitudes and phases of the
measured S-parameters and the uncertainty in the sample length. For example, a total, differential
uncertainty of the real part ε′r of the non-smoothed permittivity is [8, 9],

Δε′r =

√(
∂ε′r

∂ |Sα|Δ |Sα|
)2

+
(

∂ε′r
∂θα

Δθα

)2

+
(

∂ε′r
∂L

ΔL

)2

, (19)

where α = 11 or 21, Δ|Sα| is the uncertainty in the magnitude of the S-parameter, Δθα is the uncertainty
in the phase of the S-parameter, and ΔL is the uncertainty in the sample length. Eq. (19) excludes
the uncertainties that arise from errors in the sample fixture dimensional variations, the location of the



Progress In Electromagnetics Research M, Vol. 44, 2015 77

reference planes, etc., because it was reported that these uncertainties are generally smaller than those
due to systematic measurement errors introduced by VNAs [23]. Further, Eq. (19) is also applicable to
estimate the total uncertainties for Δε′′r , Δμ′

r, and Δμ′′
r , replacing ∂ε′r, respectively, by ∂ε′′r , ∂μ′

r, and
∂μ′′

r .
The expanded uncertainty U is defined as U = kuc, where k is the coverage factor, and uc is the

combined standard uncertainty (Δε′r, Δε′′r , Δμ′
r, or Δμ′′

r in this paper). If, for example, the normal
distribution applies to uc and k = 2, then the expanded uncertainty U gives an interval with a level of
confidence of approximately 95% [24].

Figure 9 displays the expanded uncertainties U in the non-smoothed εr and μr of the nylon
sample with the coverage factor k = 2. In general, the uncertainties should be properly represented
as +/ − U rather than as the absolute values. For plotting Fig. 9, we use Δ|S11| = Δ|S21| = 0.001,
Δθ11 = Δθ21 = 0.02 deg, and ΔL = 5µm as measurement bounds. We observe in the plots in Fig. 9 that
the expanded total uncertainties in the real and imaginary parts of the permittivity and permeability
from Eqs. (5)–(9) attain their maximum values around 5.73 GHz near the frequency where we have seen
the peaks of |S11| and |S21| in Fig. 3. This may be another perspective in addition to the discussion in
Subsection 2.2 about what causes a resonant artifact at the λ/2 frequency.

(a) (b)

Figure 9. Expanded uncertainties in the non-smoothed permittivity and permeability of the nylon
sample with the coverage factor k = 2.

In addition, we calculate the total uncertainties for the lithium ferrite sample with the same
measurement bounds as for the nylon sample. Our calculation finds that the real and imaginary parts
of the non-smoothed permittivity have maximal expanded uncertainties with k = 2, i.e., +/− 0.11 and
+/− 0.17 at 4.2 GHz, and +/− 0.43 and +/− 0.28 at 5.5 GHz — these are near the frequencies where
we have seen the resonances as in Fig. 7. The calculation provides large expanded uncertainties (k = 2)
in the real and imaginary parts of the permeability at the same frequencies as for the permittivity —
respectively, +/ − 0.07 and +/ − 0.05 at 4.2 GHz, and +/ − 0.20 and +/ − 0.52 at 5.5 GHz.

At present, we plan to perform a full uncertainty analysis for smoothed results for the present
approach. The uncertainties for the smoothed results will be not only a function of the measured
quantities, but also depend on how we choose fA–fB, the window functions, etc. To that end, we
will need to accumulate measurement data by repeating measurements under the same measurement
conditions, and statistically estimate the uncertainties rather than analytically compute them.

4. CONCLUSION

Employing the time-domain smoothing, we have developed a new approach for simultaneously
determining complex permittivity and permeability that removes artifacts coming about at the λ/2
frequencies when measuring low-loss materials with the conventional T/R method. This present
approach has been shown to generate sufficiently smooth permittivity and permeability of low-loss,
moderately dispersive materials around the λ/2 resonances while the approximate parameters from our
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previous approach [11] somehow deviated from reasonable results obtained with the conventional T/R
method outside these resonances.

To derive the present approach, firstly, assuming that the refractive index n obtained with the
conventional T/R method is adequately smooth at all frequencies, we have inversely discrete-Fourier
transformed an fA–fB truncated frequency response of the wave impedance into the time domain. We
have then applied windowing that allows for the zero-time components of the wave impedance and
subsequently have conducted the forward DFT to recover the smoothed wave impedance ςr(smoothed)
as a function of frequency. We calculated the complex permittivity and permeability in a way that
εr = n/ςr(smoothed) and μr = n · ςr(smoothed).

We have validated the present approach by measuring two test materials, nylon and lithium ferrite.
Our present approach has successfully yielded sufficiently flat permittivity and permeability of the
nylon sample around the λ/2 resonance, and has shown to eliminate the resonant artifacts and provide
very good interpolation that smoothly connects outside-resonance results from the conventional T/R
method, εr

∼= 3 and μr
∼= 1. The present approach has also extracted the permittivity and permeability

of the lithium ferrite sample, showing reasonably smooth responses over the resonant frequency ranges.
In both experimental validation cases, comparisons to the data in [11] have been given, and we have
observed that the present approach generates more accurate εr and μr than does the technique in [11].

We should reiterate that the present approach has been derived to accurately measure low-loss
materials removing λ/2 resonant artifacts and that any special treatment as the present or approximate
technique would not be necessary for measurements on materials lossy enough to ensure sufficient
stability of Eq. (9). Note also that accuracy of results with the present approach would depend on how
we choose fA–fB and the window function for smoothing. At present, we choose the frequencies fA and
fB so that that frequency range fully includes the resonance and the material parameters interpolate
smooth values below/above the resonant frequencies. We plan to investigate the reasonable bounds
of the material parameters determined with the conventional T/R method that enables us to select
physically justifiable fA and fB where the extracted parameters start deviating from the real ones.
Moreover, we will conduct a full uncertainty analysis for smoothed data that accounts for errors due to
selection of fA–fB , the window functions, etc.
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retrieval procedures,” Phys. Rev. B, Vol. 84, 235106, 2011.

15. Smith, D. R. and S. Schultz, “Determination of effective permittivity and permeability of
metamaterials from reflection and transmission coefficients,” Phys. Rev. B, Vol. 65, 195104, 2002.

16. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust method to
retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E, Vol. 70, 016608,
2004.

17. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Aaron, and J. Baker-Jarvis, “Boundary effects on
the determination of metamaterial parameters from normal incidence reflection and transmission
measurements,” IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2226–2240, 2011.

18. Kim, S., E. F. Kuester, C. L. Holloway, A. D. Scher, and J. R. Baker-Jarvis, “Effective material
property extraction of a metamaterial by taking boundary effects into account at TE/TM polarized
incidence,” Progress In Electromagnetics Research B, Vol. 36, 1–33, 2012.
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