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A Pattern Synthesis Method for Large Planar Antenna Array

Youji Cong*, Guonian Wang, and Zhengdong Qi

Abstract—The pattern synthesis for large antenna arrays is very important because of its wide
applications. Several antenna array synthesis techniques for planar antenna array have been developed
in the past years. In this paper, a hybrid method for solving antenna array pattern synthesis problem
is introduced. The proposed method has three steps. Firstly, the iterative fast Fourier transforms
(IFT) is used to generate a number of initial array excitations based on aim pattern. Then, the global
optimization method differential evolution strategy (DES) is used to optimize these excitations based on
initial excitations. After that, if the optimized pattern does not satisfy the goal, the simulated annealing
(SA) method is applied to optimize the excitations until the goal is achieved or the maximum iteration
is reached. Several simulation results show that the desired pattern can be effectively synthesized by
using the proposed method.

1. INTRODUCTION

In recent years, antenna array has attracted more and more attention, because it has a wide range of
applications in radar, mobile communications, and other electronic systems. These electronic systems
need various antenna patterns due to complex engineering applications. So pattern synthesis is urgently
required, especially in large antenna arrays. However, the synthesis of antenna arrays to generate an
aim radiation pattern is a highly nonlinear optimization problem.

Nowadays, various synthesis methods have been proposed, but they have some limitations. Classical
method such as Dolph-Chebyshev [1] and Taylor-Kaiser [2] can obtain analytical element excitations
instantly, but only for synthesizing simple patterns, such as low side lobe pencil beam. Some complicated
pattern can be synthesized by Woodward-Lawson [3] quickly, however this method can only be used
in linear array. As the pattern synthesis problem is an optimization issue, convex optimization
(CVX) [4, 5, 28] method is applied. The CVX can quickly find the optimization solution of objective
function. However it will be helpless when solving large antenna array synthesis. General optimization
methods such as the steepest descent or conjugate gradient [26], they are usually slow converging
and easy to fall into local optimal solution. In 1990s, the global optimization methods, such as
the genetic algorithm (GA) [6, 7], particle swarm optimization (PSO) [8–10], differential evolution
Strategy (DES) [11–13], and Simulated Annealing (SA) [14, 15] are presented. They all simulate
evolutionary phenomena of nature to find the optimization solution. These methods have the capability
of performing better and more flexible solutions than the classical optimization methods and the
conventional analytical approaches. However, challenges still exist. The computation cost is so huge
that the time will not be tolerated when solving synthesis problems for large antenna arrays.

Recently, the iterative fast Fourier transforms (IFT) [16, 17] was proposed to synthesize the large
antenna arrays with uniform grid spacing. The inverses Fourier transform relationship between the array
factor and the element excitation distribution is used in this algorithm. As a version of the alternating
projection techniques [18–20, 27], the IFT derives the element excitations from the array factor using
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successive forward and backward Fourier transforms. As fast Fourier transforms (FFT) technique is
applied, the array pattern and excitation distribution are obtained rapidly by several iterations, and
this algorism is very suitable for solving large antenna array synthesis problems. But it will not get
good results when the aim antenna pattern is very complex, the iteration will stop ahead frequently.

In this paper, a hybrid synthesis algorithm is proposed, which is based on the IFT and artificial
intelligent algorithm DES and SA. As IFT can obtain the array excitation quickly, the initial population
for DES is generated by IFT. Then the cell excitation is optimized by DES which has high calculation
efficiency. After that SA is applied for optimizing the solution generating by DES. In this way, the
disadvantages of IFT can be avoided and the optimization efficiency increases. In this paper, the effect
of mutual coupling between antenna elements is also considered. The simulation results show that the
method we proposed is effective and accurate when solving the large antenna array synthesis problems.

The paper is organized as follows. In Section 2, the details of the method will be discussed. Several
synthesis examples will be presented in Section 3. The last section of the paper is the conclusion.

2. FORMULATIONS AND ALGORITHMS

2.1. Problems Formulation

The far-field pattern of an array antenna is calculated by the formula (1) [21]

FF (θ, ϕ) = EP (θ, ϕ) × AF (θ, ϕ) (1)

where AF (θ, ϕ) is the array factor (AF), and EP (θ, ϕ) represents the active element pattern of phased
arrays [22]. EP (θ, ϕ) can be obtained by testing or electromagnetic simulation. For a 2-D planar
antenna array, AF (θ, ϕ) can be calculated by formula as follows.

AF (θ, ϕ) =
M∑

m=1

N∑
n=1

Imn exp
[
i
2π
λ

(xmn sin(θ) cos(ϕ) + ymn sin(θ) sin(ϕ))
]

(2)

where λ is the wavelength, and Imn, xmn and ymn are the complex excitation and position of the mnth
antenna element, respectively.

For a typical antenna synthesis problem, the magnitude of far-field pattern |FF (θ, φ)| is required
to be close to the target pattern, or between the boundaries of the limitation patterns, such as
|FFmin(θ, φ)| ≤ |FF (θ, φ)| ≤ |FFmax(θ, φ)|, where |FFmin(θ, φ)| and |FFmax(θ, φ)| are the corresponding
desired lower and upper bounds on the antenna pattern, respectively. A good fitness function to be
minimized is defined as

Fitness =
I∑

i=1

J∑
j=1

√
(|FFobj(θij, ϕij) − FF (θij , ϕij)|)2 (3)

where FFobj(θij , ϕij) and FF (θij , ϕij) are the objective and optimized far-field pattern value evaluated
at far-field angles θij and ϕij , respectively.

The complex excitation Imn will also be required in some specific issues. For example, the excitation
amplitude dynamic range often requires less than a certain value. And in some times, the only-phase
synthesis is required. In this paper, our goal is to obtain a complex excitation Imn which can generate
the objective antenna pattern calculated by formula (1) and (2).

2.2. Iterative Fourier Technique (IFT)

An inverse Fourier transform relationship exists between the AF and the element excitations when an
antenna array has a uniform spacing of the cells. The iterative Fourier technique uses the characteristic
of the relationship. The element excitations can be obtained by a direct Fourier transform, and the
AF can be calculated by using the inverse Fourier transform [27]. In this paper, we assume the active
element pattern in the array is the same, so the far-field pattern can be easily calculated by formula (1).
In each iteration process, the excitations and far-field pattern are adjusted to fulfil the preset conditions.
Thanks to the direct and inverse Fast Fourier transforms (FFTs), the IFT can be implemented quickly.
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The IFT technique starts with the calculation of far-field pattern P0, using an initial excitation
distribution E0 which has M × N elements. The K × K point (K = 2n > 2 · max(M,N)) 2-D inverse
FFT is applied to calculate the far field pattern. The bigger the K value, the more accurate the far-field
pattern, but the computation time will be longer. Then the P0 region beyond the request boundary
part is corrected while the other keeps the same. After this correction, a direct K-point 2-D FFT is
performed on the modified AF to get an updated set of the excitation coefficients. From the K × K
excitation coefficients, only M ×N samples belonging to the array are retained as new excitation, while
the others are forced to zero. The new excitation will be also corrected if the amplitude or the phase
does not satisfy the request. After the correction, the updated excitation E0, and a new updated pattern
P0 are gotten. The iteration will be repeated until the new updated pattern and excitation satisfy the
requirements or the max iterate number is achieved.

The implementation of the IFT algorithm for synthesis of a required pattern for 2-D planar arrays
in this paper involves the steps as follows:
(1) Generate two M×N matrixes A and P as the amplitude and phase for element excitation randomly,

the matrix elements of A are fixed or within a setting dynamic range, the matrix elements of P are
random ranges −180◦ ∼ +180◦, so the initial complex excitation E0 is A · exp(i · π · P/180).

(2) Compute AF based on initial complex excitation E0 using a K × K − point inverse FFT, with
K = 2n > 2 · max(M,N), and the far-field pattern P0 is calculated by formula (1).

(3) Adapt the P0 to the described pattern, substituting the described pattern for P0 whose part exceeds
the boundary of the limitation patterns. Next, the array factor AF is obtained by dividing updated
P0 by the active element pattern.

(4) Compute the updated excitation E0 for the adapted AF by using the K × K − point direct
FFT. Extract the amplitude A and phase P of E0 by the

√
real(E0)2 + imag(E0)2 and

arctan(imag(E0)/real(E0)) respectively.
(5) Modify the complex excitation E0 to meet the set range,and the updated complex excitation E0 is

gotten.
(6) Repeat the steps (2) ∼ (5), until the prescribed far-field pattern is satisfied, or the allowed number

of iteration is reached.
The IFT can be easily and efficiently implemented in the pattern synthesis problem, especially for

the large antenna array which has more than 1000 element numbers. This method is also flexible to
deal with complex antenna patterns or excitation constraints synthesis problems by a little change of
steps (3) and (5).

2.3. Differential Evolution Strategy (DES)

The DES has its origin of the Vector Difference idea by Ken Price when he was solving the Chebyshev
polynomial fitting problem [23]. This idea is modified and improved by Storn and Price for several
times, and ultimately form the DES. The steps of the classical DES are as follows [24]:
(1) Generate N initial population V, here the V represents the complex excitation.
(2) Mutate the initial farms by differential mutation operator, and a new variation vector for each

optimization vector is generated. The differential mutation operator has the form as

V M,i = V (n),opt + β · (V (n),p1 − V (n),p2)
p1, p2 ∈ (1, . . . , N), p1 �= p2 �= i, i = 1, . . . , N

(4)

where N is the population size, V (n),opt is the best individual of father farm, and the mutation
factor β is a constant which can be used to control the differential magnification. The amplitude
of complex excitation are modified to meet the setting range.

(3) The cross operation. V (n),i and its corresponding mutation individual have the crossover operation
at a certain probability, generating offspring V C,i,

(V C,i)j =
{

(V M,i)j , γ < pcross

(V (n),i)j, γ ≥ pcross
(5)

where γ is a random number in range [0, 1]; pcross is to determine the variation of individual
substitution probability of parent individuals.
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(4) The choice of operation. The offspring individuals produced by crossover operator and parent
individuals are compared. If the fitness of offspring individuals is less than the parent individuals,
the offspring individuals replace the parent individuals; otherwise the parent individuals will remain
in the next generation.

(5) The termination operation. The operation will be stopped when the best individual of progeny
population has reached the optimization goal or the max iteration number is achieved, otherwise
repeat the steps (2) ∼ (5).

The DES has the advantage of simple operation, fast optimization speed, and excellent searching
ability. However it will be convergence stagnation and even premature convergence in some engineering
problems.

2.4. The Simulated Annealing Algorithm (SA)

The SA is a kind of general probabilistic algorithm, which is introduced by S. Kirkpatrick et al. [25].
The basic idea of the SA is similar to the behavior of a material in the cooling process. According to the
theory, the value of objective function at every state within the searching space can be treated as the
“energy” of a fictitious material. Then an energy function with respect to the fictitious material will be
minimized. Here the fitness function is treated as the energy function, which is defined as formula (3)
with respect to complex excitations. The key idea is to find the optimized excitations. When the SA
is implemented, the maximum temperature T0, the maximal iteration number K, and the excitation
variable are all initialized. The fitness function can be calculated quickly by formula (1) ∼ (3) using
FFT. The SA algorithm has several parts: cooling procedure, and the inner iteration. The cooling
procedure contains cooling rate and the stop threshold. Here the cooling temperature is defined as
Tn = T0 · rn, where r is the cooling rate. The cooling procedure stops as the temperature Tn is lower
than defined lowest temperature. At one temperature, each iteration of the SA algorithm starts with an
antenna excitation configuration Eold, and the new state Enew is gotten by randomly changes the state
of Eold. If the new state Enew cause the value of fitness function decrease, it is accepted. Otherwise it
is accepted in a probability P in a current temperature. The accepted probability P is calculated by
formula (6)

P (Ebest = Enew) =
{

1 if Δf < o

exp(−Δf/Tn) if Δf ≥ 0
(6)

where Δf = Fitness(Enew)−Fitness(Eold). From formula (6), we can find that the higher temperature,
the higher accepted probability of the new solution as Δf ≥ 0. To update the new state Enew is very
important for the key potential of global optimization due to non-linear problem. In this paper, a simple
and effective algorithm is implemented as follows

Enew = Eold + ΔE (7)

where ΔE is the additive excitation matrix which has the adding amplitude and phase of the excitation.
The amplitude of complex excitation are modified to meet the setting range. Here the number and the
position of the adding excitation elements are given beforehand and randomly respectively. By the
formula (7), the solutions around the current optimization solution are exploited.

The SA procedure stops until the temperature is lower down to the minimum. And the optimization
excitation is obtained after the SA procedure.

2.5. Hybrid Pattern Synthesis Method

In this paper, a hybrid pattern synthesis method is proposed. Three different basic optimization ideas
are applied here, which are the IFT, DES, and SA. Owing to the respective defect and advantages of
IFT, DES and SA, three optimization methods are combined in this paper. The overall procedure is
summarized in the flow chart of Figure 1.

Firstly, the parameters of antenna array, such as the size of rows and columns, the position of
antenna elements etc are given. The active element pattern is also given. The IFT is to generate N
solutions and corresponding fitness values due to the excellent searching speed of IFT. In the process of
IFT, the selection of calculation point K is considerable. If K is small, the antenna pattern calculated
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Generate N excitations Ei(i=1…N) by 
IFT and evaluate each fitness value 

Best fitness value 
satisfies the goal?

Initial array parameter 
and the objective  pattern

 Using the N excitations generated by IFT 
as initial populations and optimized by 

DES and the best excitation E is obtained. 

Best fitness value 
satisfies the goal?

The excitation E is optimized by SA, the 
optimized excitation Eopt is obtained.

End

N

N

Y

Y

Figure 1. Flow chart of the proposed hybrid approach.

is too spare to describe the details. However when K is too large, the calculation speed is so slow that
the synthesis efficiency will be reduced. Generally, K is set to be 256 or 512. A judgment is used to
determine whether to continue the optimization process.

If the best value of the fitness function generated by IFT does not satisfy the goal, the DES
is implemented for its advantage of fast convergence speed and good searching ability. However,
convergence stagnation often happens in the DES process. The optimized parameters β and Pcross

in the DES are very important, which can affect the final optimization result. In general, β is between
0.55 and 0.7 while Pcross is set in arrange [0, 1] respectively. In this paper, optimized parameters are
carefully set and adjusted depending on the different issues.

After the DES optimization process, a best excitation is gotten. Thereafter the SA algorithm
starts when the solution is not good either. The SA has a slower convergence speed, but the excellent
searching ability. In the SA process, we have some steps such as repeating heating to enhance the
searching ability. The iteration stops when value of the fitness function is satisfied or the max number
iteration is reached.

In the optimization process, the antenna array far-field patterns are calculated by considering the
couple effect of antenna elements. In this way, the antenna array pattern can be more accurate. Large
planar antenna array synthesis problem can be easily solved because of the FFT. Several simulation
examples as follows will prove the accuracy and effectiveness of the method.
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3. SYNTHESIS EXAMPLE

Several pattern synthesis simulations are performed here to illustrate the accuracy and efficiency of the
proposed method. The simulations employ two examples. One is the cosecant beam synthesis for a
linear array which has 16 antenna elements, the results of synthesis method and full wave method are
compared. The other is the flat-top beam synthesis for a large planar array which has more than 3000
antenna elements.

3.1. Cosecant Beam Synthesis for a Linear Array

A 45 degree cosecant beam synthesis for a 16 linear waveguide array showing in Figure 2 is presented.
This example is to demonstrate the accuracy of the proposed method.

In this case, the active element pattern in the array is considered in pattern synthesis. The
excitation amplitude and phase are all employed in the pattern synthesis, and the excitation amplitude
dynamic range ratio (DRR) is set to below 1.85. Some main parameters of synthesis method are as
follows, the max IFT iteration number is 100; the DES population size is 40, and the iteration number
is 40, the mutation factor beta is 0.5, and the cross probability Pcross is 0.95; the maximum iteration
steps for SA is 500.

Figure 3 shows the synthesis result. The optimized pattern is in agreement with the full wave
simulation results. The tiny difference is caused by the neglect of the small differences between the
active element patterns in the array. Figure 4 shows the synthesis pattern without employing the
active element pattern,which deviates from the full wave simulated result. Table 1 and Table 2 give
the amplitude and phase values of two cases respectively. The active element pattern is a key factor
in the pattern synthesis especially for the wide shaped beam. In practice, if the array is large enough,
considering only the middle element pattern can meet the precision requirement.

Figure 2. A 16 linear waveguide array for 45 degree cosecant beam synthesis.
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Figure 3. Synthesis result of cosecant beam.
In the optimization process, the influence of the
active element pattern is considered.
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Figure 4. Synthesis result of cosecant beam.
In the optimization process, the influence of the
active element pattern is not considered.
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Table 1. Synthesised excitation amplitude and phase of the waveguide linear array (with active element
pattern).

Number 1 2 3 4 5 6 7 8
Amplitude 0.54 0.98 0.86 0.61 0.54 0.65 1.00 0.91

Phase (degree) 42.64 −36.17 −119.15 140.89 58.50 70.62 37.85 18.10
Number 9 10 11 12 13 14 15 16

Amplitude 1.00 1.00 0.83 0.81 0.62 0.54 0.54 0.54
Phase (degree) 21.07 0.67 3.24 −3.06 −15.09 −1.58 −32.95 24.25

Table 2. Synthesised excitation amplitude and phase of the waveguide linear array (without active
element pattern).

Number 1 2 3 4 5 6 7 8
Amplitude 0.54 0.56 0.61 0.75 0.74 1.00 0.81 1.00

Phase (degree) −15.99 17.92 28.41 −6.96 22.77 −7.89 −16.96 −8.67
Number 9 10 11 12 13 14 15 16

Amplitude 1.00 0.64 0.61 0.64 0.57 0.71 0.66 0.56
Phase (degree) −35.12 −54.20 −42.65 −95.14 152.70 79.44 33.73 −48.75

3.2. Flat-Top Beam Synthesis

Flat-top beam is commonly used in engineering. In this case, pattern synthesis bases on a large scale
array which has more than 3000 elements containing 60 rows, 60 columns. The radiation elements
are triangular arrangement, and the line spacing is 0.5 wavelengths while the column spacing is 0.5
wavelengths too. The goal 3 dB beam width of flat-top beam is 32 deg, about 20 times the pencil beam
broadening, while the ripple is below 1dB. In this case, only the phase is optimized, so the excitation
amplitude is set all the same.

For this synthesis problem, the active element pattern here is assumed to be cos(θ). Some main
parameters settings are as follows, the max IFT iteration number is 100; the DES population size is 40,
the iteration number is 40, the mutation factor β is 0.45, and the cross probability Pcross is 0.95; the
maximum iteration steps for SA is 360. The FFT calculate point is 256 × 256.

Figure 5 and 6 show the simulation results. The ripple of the flat-top is less than 1dB, and the side
lobe is less than −22 dB. In order to demonstrate the features of this method, several synthesis methods
such as IFT alone, IFT combined with DES, DES combined with SA are compared here. The above
numerical methods are all computed on a PC with Intel i3-2100 3.1 GHz CPU. The average convergence
curves of 50 trials are shown in Figure 7. Table 3 gives the average synthesis trial time of different
methods.

Table 3. Optimization time of different synthesis method.

Synthesis method IFT+DES+SA IFT alone IFT+DES DES+SA
Optimization time 328s 17s 448s 253s

The IFT converges very quickly in the initial stage, but it will soon fall into the optimization
stagnation after about 30 iterations. The SA converges slowly but has a further optimization
characteristic. From Figure 7 and Table 3, we can find that the method proposed here has a better
solution searching ability than IFT and other combination methods by the cost of spending longer time.



154 Cong, Wang, and Qi

Figure 5. Relative power patterns of flat-top
beam synthesis.
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Figure 6. Section of synthesised flat-top beam.
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Figure 7. Convergence curves of several synthesis methods.

4. CONCLUSIONS

In this paper, a hybrid pattern synthesis method for large antenna array is proposed. The IFT and
artificial intelligent algorithm DES, SA are the bases of the algorithm. The method starts with the
excitations generated by IFT, and then the excitations are optimized by DES and SA. FFT algorithm
is implemented here to accelerate the pattern calculation. The coupling effect of the antenna elements
has also been considered in the synthesis process, so optimized pattern is more close to the actual
application. Several simulations illustrate the efficient and accuracy feature of the method. In practice,
different combination methods can be chosen according to different problems.
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