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Fixed-Image-Method-Based Transient Electromagnetic Model
of Grounding System in Horizontally Stratified Multilayer Medium

Dino Lovrić* and Slavko Vujević

Abstract—In this paper, a frequency-domain-based transient electromagnetic model of grounding
system in horizontally stratified multilayer medium is presented. The basis of the model is an improved
version of the time-harmonic electromagnetic model of grounding system. Using the originally developed
continuous numerical Fourier transform algorithm, the results obtained by the time-harmonic model are
synthesized into a complete time domain solution. The presented model features very high accuracy
and fast execution speed and is validated through several numerical examples.

1. INTRODUCTION

Grounding system analysis is generally considered to be a complex scientific and engineering field of
study. This complexity stems from the fact that most approximations and simplifications used in
other scientific fields are often unusable in grounding system analysis. For example, grounding system
conductors can be long and short, but can neither be approximated by an infinite conductor nor by an
infinitesimally small conductor. The conductors themselves can either be bare conductors or insulated
cables with several layers of insulation. Furthermore, the ground in which these conductors are situated
is highly heterogeneous in most cases. In most cases the ground is approximated by several horizontal
layers [1–3] and, in some cases, even vertical [4] or spherical layers [5] all characterized by highly diverse
soil parameters. Naturally since the grounding system conductors are buried in a lossy heterogeneous
medium both longitudinal current which flows through the conductor and leakage current which flows
into the surrounding medium must be taken into account. Last but not least, the current dissipated
through the grounding system into the surrounding medium can be a time-harmonic current (50–60 Hz)
for example during single pole short circuits or transient current which occurs for example during
lightning strikes [6, 7]. In case of the transient current energization, all frequencies are present in
the electromagnetic model, so researchers must choose whether to conduct the desired computations
directly in the time domain [8] or indirectly in the frequency domain [9]. Both approaches have their
advantages and disadvantages. The frequency-domain approach is generally considered to be faster
and well suited to handle complex grounding systems, but cannot easily include nonlinear effects such
as soil ionization [10]. In addition, the transformation procedure in frequency-domain-based models is
problematic especially when using Fast Fourier Transform (FFT) [11, 12]. As can be seen from this brief
summary of problems, the complexity of grounding system analysis is considerable but this complexity
can be reduced if the result accuracy is sacrificed. Naturally, the goal would be to develop a well
rounded electromagnetic model of the grounding system which will be as highly accurate as possible in
the shortest execution time possible.

This paper will present a novel frequency-domain-based transient electromagnetic model of
grounding system in horizontally stratified multilayer medium. This transient model introduces
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improvements to previously published time-harmonic model of the grounding system [3, 13, 14] and
features a novel algorithm for transformation purposes between the time and frequency domain and
vice versa. These algorithms for continuous numerical Fourier transform (CNFT) [15] and inverse
continuous numerical Fourier transform (ICNFT) [16] are robust, accurate and versatile which is clearly
demonstrated in the aforementioned papers.

The developed transient electromagnetic model computes the quantities of interest on a set of
frequencies using the time-harmonic electromagnetic model and then utilizes the originally developed
CNFT/ICNFT algorithm [15, 16] to combine these results into a time domain solution. First, the
transient current dissipated through the grounding system into the surrounding medium is transformed
from the time domain into the frequency domain using CNFT. The developed algorithm can transform
either a mathematical function or an actual measured lightning function [15]. Using CNFT, a continuous
function of the transient current in the frequency domain is obtained using a combination of numerical
and analytical integration of the Fourier integral. This consequently enables completely independent
time domain and frequency domain sampling which is not feasible when using for example Fast Fourier
Transform (FFT) algorithm [11, 12]. In the second step, electromagnetic quantities of interest for an
arbitrary frequency set can be computed using the improved time-harmonic electromagnetic model.
The procedure for selecting these frequencies is generalized and utilizes a combination of nonuniform
and uniform sampling [16]. Finally in the third step, algorithm for ICNFT transforms the transient
solution function from the frequency domain into the time domain using a combination of numerical
and analytical integration.

In the time-harmonic electromagnetic model published in [3, 13, 14] and improved in this paper,
conductors of the grounding system are subdivided into straight segments which satisfy the thin-wire
approximation. Longitudinal current of the conductor segment is in the improved model approximated
using a linear approximation instead of a constant as used in [3, 13, 14]. Complete electromagnetic
coupling between segments is taken into account. Computation of Sommerfeld integrals is circumvented
using an effective approximation of the attenuation and phase shift effects which significantly contributes
to the execution speed of the model [3, 13, 14]. Segments of the grounding system can be situated in any
layer of the horizontally stratified multilayer medium which includes the air layer and an arbitrary
number of ground layers. Influence of layers is taken into account by using the highly accurate
and numerically stable fixed image method developed in previous work [17]. This time-harmonic
electromagnetic model of a grounding system can be used to compute all electromagnetic quantities
of interest for a chosen frequency in observation point(s) situated in any layer of the medium: scalar
electric potential, magnetic vector potential, magnetic flux density and electric field intensity.

The accuracy of the presented transient electromagnetic model will be verified by comparing it
with published results obtained both by calculation and by measurement.

2. CONTINUOUS NUMERICAL FOURIER TRANSFORM OF TRANSIENT
CURRENT DISSIPATED THROUGH THE GROUNDING SYSTEM INTO THE
SURROUNDING GROUND

When performing frequency-domain-based transient computations a reliable procedure is required for
transformation of an arbitrary transient source current from the time domain into the frequency
domain. In other words, in the first computation step the transient current i(t) that is dissipated
through the grounding grid into the surrounding medium needs to be transformed to the frequency
domain. In paper [15], a reliable and highly accurate numerical algorithm was developed for continuous
transformation of an arbitrary transient current waveform from the time domain into the frequency
domain. The developed CNFT algorithm is based on arbitrary discretization of the transient current
function in the time domain (adaptive recursive sampling is used) and linearization of the lightning
current function over a time segment. This enables analytical transformation of the transient current
into the frequency domain, thus resulting in a continuous expression in the frequency domain [15]:

ĪCNFT (ω) =
NELt∑
k=1

(ik+1 − ik) · Āk + (tk+1 · ik − tk · ik+1) · B̄k

tk+1 − tk
(1)
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where for ω �= 0:

Āk =
e−j·ω·tk+1 − e−j·ω·tk

ω2
+ j · tk+1 · e−j·ω·tk+1 − tk · e−j·ω·tk

ω
(2)

B̄k = j · e−j·ω·tk+1 − e−j·ω·tk

ω
(3)

while for ω = 0:

Āk =
t2k+1 − t2k

2
(4)

B̄k = tk+1 − tk (5)

In Equation (1), NELt represents the total number of finite elements in the time domain over which the
transient current is linearized, tk the starting time of the k-th finite element, tk+1 the ending time of the
k-th finite element, ik = i(tk) the value of the transient current in the k-th global nod, ik+1 = i(tk+1)
the value of the transient current in the global node k+1, t the time, ω = 2 ·π · f the circular frequency,
and f the frequency.

For more details about the sampling procedure used in the CNFT algorithm refer to [15]. The
developed CNFT algorithm was extensively tested and its accuracy and versatility were validated on
several numerical examples [15].

3. TIME-HARMONIC ANALYSIS OF GROUNDING SYSTEM IN HORIZONTALLY
STRATIFIED MULTILAYER MEDIUM

In this section, the basic theoretical background of the improved time-harmonic model of the grounding
system in horizontally stratified multilayer medium is presented. The presented formulas are valid
for one frequency value so consequently this time-harmonic model needs to be invoked as many times
as there are sampled frequency values. The total number and values of the sampled frequencies are
determined by the algorithm used in the ICNFT algorithm presented in paper [16].

In the presented time-harmonic model of the grounding system all computations of interest are
performed including computation of potentials and computation of electromagnetic fields in any number
of observation points. The presented model can deal with grounding systems comprised of arbitrarily
positioned bare cylindrical conductors. In the time-harmonic model these conductors are divided into
segments in such a way that thin-wire approximation is satisfied. The time-harmonic model of the
grounding system is based on finite element technique and the entire set of grounding grid conductor
segments forms one finite element. For the purpose of formation of the complete local system of equations
all conductor segments are initially disconnected (Fig. 1). Fig. 1 also depicts the selected indexation of
local nodes. As can be seen, the beginning nodes of segments are denoted from 1 to Ns whereas the
ending nodes are denoted from Ns+1 to 2 · Ns.

In the time-harmonic model, grounding grid conductor segments are situated in horizontally
stratified multilayer medium, and they can be positioned in any layer of the medium. The first layer of
the medium is the air layer while other layers represent the multilayer earth model. The total number of
earth layers can be completely arbitrary. An arbitrary i-th layer is described by its thickness and complex
wave propagation constant γ̄i = j · ω · μ0 · (σi + j · ω · ε0 · εri) where μ0 is the medium permeability of
the vacuum, σi is electrical conductivity of the i-th layer, ε0 is the permittivity of vacuum and εri is the
relative permittivity of the i-th earth layer. The effect of medium heterogeneity is taken into account
by using the fixed image method originally developed in [17] and used in [3, 13, 14]. Basically, this fixed
image method utilized the imaging method to take into account various earth layer configurations. For
segments parallel to earth surface the heterogeneity of the medium is taken into account by using three
exact images of the segment and 30 fixed images of the segment [3]. In the case of nonparallel segments
this heterogeneity is taken into account by using three exact images and 30 fixed images of five point
current sources positioned along the conductor axis [13]. For more details refer to [17].

Since the conductor segments are situated in lossy medium, the current of the segments flows both
through the conductor and into the surrounding medium (Fig. 2).
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Figure 1. Disconnected grounding system
conductor segments.

Figure 2. Approximation of the grounding
system conductor segment current.

In the improved time-harmonic electromagnetic model of the grounding system, the current of the
ks-th conductor segment which flows along the segment axis (longitudinal current) is approximated
linearly along the segment using the following expression:

Ī�
ks (u) = Nksn · Īksn + N(Ns+ks)n · Ī(Ns+ks)n (6)

Nksn (u) =
1 − u

2
(7)

N(Ns+ks)n (u) = −1 + u

2
(8)

where Īksn is the nodal current of the beginning node of the ks-th segment and Ī(ks+Ns)n the nodal
current of the ending node of the ks-th segment (Fig. 2). This consequently implies that the transversal
current of the conductor segment that leaks into the surrounding medium is constant along the segment
length:

Īt
ks (u) = Īksn + Ī(Ns+ks)n (9)

In the finite element technique the complete local system of equations first needs to be formed.
Using Galerkin-Bubnov method a system of linear equations for longitudinal and transversal segment
currents is initially formed which can then easily be transformed to an equivalent complete local system
of linear equations for nodal currents:[ [

Z̄t
] [

Z̄t
]

[
Z̄b�

] [
Z̄e�

]
]
· {nĪ

}
=

⎡
⎣ 1

2
· [E]

1
2
· [E]

[E] [E]

⎤
⎦ · {nΦ̄

}
(10)

where [Z̄t] is a symmetrical transversal segment impedance matrix, [Z̄b�] a nonsymmetrical matrix of
longitudinal impedances between segments and beginning nodes of segments, [Z̄e�] a nonsymmetrical
matrix of longitudinal impedances between segments and ending nodes of segments, [E] the unit matrix,
{nĪ} a vector representing local nodal currents, and {nΦ̄} a vector representing local nodal potentials.
Elements of the symmetrical transversal segment impedance matrix [Z̄t] are computed analytically
and have been derived in detail in [3] and [13, 14] whereas the nonsymmetric matrices [Z̄e�] and [Z̄e�]
represent improvements to the previously developed model and are computed numerically using an
improved Gaussian quadrature.

Longitudinal impedance between the ks-th segment and the beginning of the same segment is
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computed using the following expression:

Z̄b�
ks,ksn =

�ks

2
· Z̄1

ks + f̄ks,ks · j · ω · μ0

4 · π ·

�ks
2∫

− �ks
2

�ks
2∫

− �ks
2

Nksn (t)√
(t − u)2 + v2

dt · du (11)

where �ks is the length of the ks-th conductor segment, Z̄1
ks the per-unit-length internal impedance

of the ks-th segment and f̄ks,ks the attenuation-phase shift factor which approximately takes into
account phase shift and attenuation effects between the ks-th segment and the beginning node of the
ks-th segment [3, 13, 14]. The exact expression for this attenuation — phase shift factor can be found
in [3, 13, 14] along with an in-depth validation of using this factor instead of solving numerically very ill
behaved Sommerfeld integrals.

Longitudinal impedance between the is-th segment and the beginning node of the ks-th segment
is computed using the following expression:

Z̄b�
is,ksn =

(
��0is · ��0ks

)
· f̄is,ks · j · ω · μ0

4 · π ·
�is
2∫

− �is
2

�ks
2∫

− �ks
2

Nksn (t)√
(t − u)2 + v2

dt · du (12)

where ��0ks is the unit vector of the ks-th conductor segment and f̄is,ks the attenuation-phase shift factor
which approximately takes into account phase shift and attenuation effects between the is-th segment
and the beginning node of the ks-th segment. The elements of the nonsymmetric matrix [Z̄e�] are
calculated using the following expressions similar as before:

Z̄e�
ks,ksn =

�ks

2
· Z̄1

ks + f̄ks,ks · j · ω · μ0

4 · π ·

�ks
2∫

− �ks
2

�ks
2∫

− �ks
2

N(Ns+ks)n (t)√
(t − u)2 + v2

dt · du (13)

Z̄e�
is,ksn =

(
��0is · ��0ks

)
· f̄is,ks · j · ω · μ0

4 · π ·
�is
2∫

− �is
2

�ks
2∫

− �ks
2

N(Ns+ks)n (t)√
(t − u)2 + v2

dt · du (14)

The complete local system of equations can be obtained from (10) by rearranging the expression to:[
Ȳ

] · {nΦ̄
}

=
{

nĪ
}

(15)

where [Ȳ ] represents the nodal admittance matrix of the local system which can be derived from Eq.
(10).

By equalizing the elements of the nodal current vector with zero, the incomplete local system of
equations is obtained and is ready for the assembly procedure:[

Ȳ
] · {nΦ̄

}
= {0} (16)

Using the assembly procedure the previously disconnected segments become connected in global
nodes: [

Ȳg

] · {Φ̄g

}
= {0} (17)

where [Ȳg] is the admittance matrix of global nodes and {Φ̄g} the unknown vector of global nodal
potentials. Finally, the complete global system of equations is obtained by imposing the known boundary
conditions, i.e., the injected currents into any of the global nodes:[

Ȳg

] · {Φ̄g

}
=

{
Īg

}
(18)

The injected currents are obtained using the CNFT algorithm described in the previous section.
Finally, when the unknown global potentials are computed then it is easy to calculate local node
potentials and consequently local nodal currents which are needed for computation of longitudinal and
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transversal segment currents. These segment currents are required for computation of scalar electric
potential, vector magnetic potential and electromagnetic fields.

Algorithm for computation of scalar electric potential in an arbitrary observation point has
been published in [13] whereas the algorithms for computation of vector magnetic potential and
electromagnetic fields are fairly straightforward and are not presented here due manuscript page
limitation. Nevertheless, this computed quantity (potential and/or electromagnetic field) represents
the solution function and needs to be computed as many times as there are sampled frequency values.
Then this solution function needs to be transformed back to the time domain. This is accomplished
using the inverse continuous numerical Fourier transform (ICNFT) developed in paper [16] and concisely
presented in the following section.

4. INVERSE CONTINUOUS NUMERICAL FOURIER TRANSFORM OF THE
SOLUTION FUNCTION COMPUTED IN AN ARBITRARY OBSERVATION POINT

The solution function is transformed back to the time domain using ICNFT algorithm developed in
paper [16]. Let the solution function be denoted by F̄ (ω). ICNFT algorithm utilizes nonuniform
sampling in the frequency domain to determine the optimal number and value of the sampled frequencies
which is described in detail in paper [16]. For each of these sampled frequencies time-harmonic
electromagnetic model from the previous section is invoked to calculate the solution function in one
or more observation points. The developed ICNFT algorithm is based on arbitrary discretization of
the transient solution function in the frequency domain and linearization of the solution function over
a frequency segment. This enables analytical transformation of the solution function into the time
domain, thus resulting in a continuous expression in the time domain [16]:

fICNFT (t) =
1
π
·

NELω∑
k=1

Re

[(
F̄k+1 − F̄k

) · C̄k +
(
ωk+1 · F̄k − ωk · F̄k+1

) · D̄k

ωk+1 − ωk

]
(19)

where for t �= 0:

C̄k =
ej·ωk+1·t − ej·ωk·t

t2
+ j · ωk · ej·ωk·t − ωk+1 · ej·ωk+1·t

t
(20)

D̄k = j · ej·ωk·t − ej·ωk+1·t

t
(21)

while for t = 0:
C̄k = 0; D̄k = 0 (22)

In Equation (19), NELω represents the total number of finite elements in the frequency domain
over which the transient solution function is linearized, ωk the starting circular frequency of the k-th
finite element, ωk+1 the ending circular frequency of the k-th finite element, F̄k = F̄ (ωk) the value of
the solution function in the k-th global node, and F̄k+1 = F̄ (ωk+1) the value of the solution function in
the global node k+1.

The developed ICNFT algorithm was extensively tested and its accuracy and versatility were
validated on several numerical examples [16]. The main advantage of the presented CNFT/ICNFT
algorithms is the independence of sampling points in the time and frequency domains thus enabling
the user much faster and adaptable computation than in the case when FFT/IFFT is used. This even
enables the user to perform nonlinear computations in the frequency-domain-based model iteratively.
This, for example, means that soil ionization can be effectively taken into account even though this is
a frequency domain based model.

5. NUMERICAL EXAMPLES

In the following three numerical examples results obtained using the presented transient electromagnetic
model will be compared to measured data [18] and to results computed using full electromagnetic models
from literature [19, 20]. In the first numerical example comparison is made with results computed
using a full electromagnetic model and results obtained by measurement in two-layer earth on a simple
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grounding system [18, 19]. In the second numerical example comparison is made with results obtained
using a full electromagnetic model in homogeneous earth on a complex grounding system [20]. In
this example the disadvantages of using FFT/IFFT algorithm in transient grounding grid analysis are
clearly depicted. The third numerical example will demonstrate the advantages of using the proposed
transient electromagnetic model. Two connected grounding system buried in 4-layer earth are observed
and scalar electric potential is computed in 23511 observation points located on the earth surface.

5.1. Comparison with Measured Data and a Full Electromagnetic Model for a Simple
Grounding System in Two-Layer Ground

In this example, results obtained by the proposed model will be compared to measured data from [18]
and results obtained by a full electromagnetic model which numerically solves Sommerfeld integrals [19].
The observed grounding system is depicted in Fig. 3 and formed by copper conductors (50 mm2 cross
section). The ground is approximated by two layers. The resistivity of the first layer is 50 Ωm, and
relative permittivity of the first layer is 10, whereas the resistivity of the second layer is 26 Ωm with the
same permittivity as the first layer. In the conducted experiment from [18], impulse current is injected
into the grounding system in point A, and scalar electric potential is measured and computed in that
same point. Actual measured injected current along with its double-exponential approximation used for
simulation is depicted in Fig. 4. Double-exponential approximation was used because approximation
is also used in the full electromagnetic model [19]. Parameters of the double-exponential function
obtained using the least squares method [21] are: I0 = 10.2 A, η = 0.84421, α = 10917.74 s−1 and
β = 284259.97 s−1.

In the developed numerical model, the grounding system is subdivided into 24 equal segments of
2.5 m length. Scalar electric potential in point A is computed in 294 sampled frequencies with maximum
circular frequency being ωmax = 184.2025 · 106 rad/s. After this, ICNFT was used to transform the
frequency domain results to the time domain. Fig. 5 depicts three curves of scalar electric potential in
observation point A: (a) measured data [18], (b) results obtained using full electromagnetic model [19]
and (c) results obtained using the proposed electromagnetic model. As can be seen excellent agreement
of results was found.

The proposed transient electromagnetic model can work with actual measured current as input
data unlike most models available in literature. When computing the scalar electric potential in point
A with the measured current as the source current, scalar electric potential in point A was computed in
357 sampled frequencies with maximum circular frequency being ωmax = 3.9831 · 109 rad/s. Then again
ICNFT was used to transform the results into the time domain. The obtained results are depicted in
Fig. 6 and as can be seen good agreement with measured data has been found.

Figure 3. Layout of the observed grounding
system buried in two-layer ground.

Figure 4. Measured current injected into node
A and its double-exponential approximation.
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Figure 5. Comparison of scalar electric potential
in point A computed using the proposed model
with measured data and results computed using
the full electromagnetic model [18].

Figure 6. Comparison of measured scalar electric
potential in point A and results obtained using the
proposed model when the injected current is the
actual measured current.

5.2. Comparison with a Full Electromagnetic Model for a Complex Grounding System in
Homogeneous Ground

This example features a complex grounding system situated in homogeneous ground (Fig. 7). The
resistivity of ground is 100 Ωm, and its relative permittivity is 36. Lightning current is injected into
the central point of the grounding system A, and the scalar electric potential is computed in points
A, B and C using the proposed model and a full electromagnetic model [20] which numerically solves
Sommerfeld integrals and utilizes the FFT/IFFT algorithm. Grounding system is buried at a depth of
0.6 m parallel with the earth surface and is composed of copper conductors of 4.6 mm radius (Fig. 7).

Lightning current waveform 1/20 µs with a 1 kA peak value is injected in point A. Unfortunately,
in paper [20] it is not stated, whose lightning current function is used to approximate this 1/20 µs
waveform, so in this paper Heidler function was used. The following Heidler function parameters were
obtained using the least squares method [22]: I0 = 1 kA, η = 0.90294, τ1 = 0.3186µs, τ2 = 25.1575µs
and n = 2. Scalar electric potential in observation points A, B and C is computed using the proposed
model and compared to the full electromagnetic model [20].

In the developed numerical model, the grounding system is subdivided into 176 equal segments of
5m length. Scalar electric potentials in points A, B and C are computed in 331 sampled frequencies
with frequency being ωmax = 1.12021·109 rad/s. After this, ICNFT was used to transform the frequency
domain results to the time domain. Figs. 8–10 depict comparisons of results for points A, B and C
between the proposed model and the full electromagnetic model [20].

The disadvantages of using FFT/IFFT algorithm are evident from previous figures. When using
FFT/IFFT algorithm in transient analysis, it is necessary to select the time window in such a way that

Figure 7. Observed grounding system in
homogeneous ground.

Figure 8. Comparison of scalar electric
potentials computed using the proposed model
and full electromagnetic model from [19] in
point A.
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Figure 9. Comparison of scalar electric
potentials computed using the proposed model
and full electromagnetic model from [19] in
point B.

Figure 10. Comparison of scalar electric
potentials computed using the proposed model
and full electromagnetic model from [19] in
point C.

both the source function and the solution function must become insignificant at that instant. Since
in some cases computations are performed in several observation points, the optimal value of the time
window is not identical for all points. This is evident from Figs. 9 and 10 where one can observe a
DC component which is introduced in the results which makes them physically invalid since the results
do not start from zero for t = 0. A detailed overview of disadvantages of FFT in transient analysis is
presented in [12].

5.3. 3D Computation of Scalar Electric Potential for Two Simple Grounding Systems in
4-Layer Ground

In this numerical example, two simple grounding systems are observed. They are buried in 4-layer
ground at a depth of 0.5 m (see Figs. 11–12) and connected by a 200 m long copper conductor. All
grounding system conductors are copper conductor with a 4.6 mm radius. The characteristics of the
ground layers are presented in Table 1.

Scalar electric potentials are computed in 23511 observation points that form an observational
surface positioned at ground level, extending above the grounding grids. In other words, observational

Table 1. haracteristics of ground layers.

Index of Ground Layer Resistivity (Ωm) Relative Permittivity
1 1000 10
2 800 8
3 700 9
4 2000 10

Figure 11. Observed grounding system. Figure 12. Two connected grounding systems in
4-layer ground.
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Figure 13. Layout of the grounding systems. Figure 14. Scalar electric potential in 23511
observation points on the earth surface at t = 4µs.

Figure 15. Scalar electric potential in 23511
observation points on the earth surface at t = 8µs.

Figure 16. Scalar electric potential in 23511
observation points on the earth surface at t =
18µs.

surface is a rectangle positioned at earth level where −10 ≤ x ≤ 210 and −10 ≤ y ≤ 15 with field
points spread 1m apart. This example is near to impossible to perform when using FFT/IFFT because
for every observation point different FFT parameters are required. In the proposed model when using
CNFT/ICNFT algorithm this is unnecessary.

A lightning current modeled by Heidler function is injected into the corner of one grounding system
(Fig. 13). Parameters of the Heidler employed in this example are: I0 = 28 kA, η = 0.8231, τ = 0.8231,
τ1 = 1.8µs, τ2 = 30µs and n = 2.

In the transient electromagnetic model, each grounding grid is subdivided into 20 horizontal
segments of 1 m length and 8 vertical segments of 0.5 m length while the connecting conductor is
subdivided into 100 equal segments of 2m length. This makes a total of 156 segments. Using the
proposed algorithm scalar electric potential was computed at 23511 observation points at 281 sampled
frequencies (ωmax = 97.639 · 106 rad/s). After this, ICNFT was used to transform the frequency domain
results to the time domain. This means that for each observation point a time domain curve of the
scalar electric potential exists. Figs. 14–16 depicts the time domain propagation of scalar potential in
23511 observation points.

6. CONCLUSION

In this paper, a transient electromagnetic model of grounding system in horizontally stratified multilayer
medium is concisely presented. The model utilizes a novel transformation algorithm for continuous
numerical Fourier transform which significantly improves the quality and accuracy of results. The basis
of the transient electromagnetic model is an improved version of previously published time-harmonic
electromagnetic model of grounding system. The resulting transient electromagnetic model features
very high accuracy and execution speed. This combination of speed and accuracy is achieved mainly
because of these three reasons: accurate approximation of attenuation and phase shift effects which
circumvents the solving of Sommerfeld integrals, utilization of the fixed image method to account
for an arbitrary number of soil layers and utilization of the continuous numerical Fourier transform
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algorithm for transformation purposes between the time and frequency domain. In addition, although
this transient electromagnetic model is a frequency domain based model, it can include nonlinear effects
of soil ionization in computation procedure due to mutually independent sampling in the time and
frequency domain in the presented transformation algorithm.

REFERENCES

1. Li, Z.-X., W. Chen, J. B. Fan, and J. Lu, “A novel mathematical modeling of grounding system
buried in multilayer earth,” IEEE Transactions on Power Delivery, Vol. 21, No. 3, 1267–1272, 2006.
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6. Sarajčev, P. and S. Vujević, “A review of methods for grounding grid analysis,” Proceedings of
the 17th International Conference on Software, Telecommunications & Computer Networks, 42–49,
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12. Lovrić, D., S. Vujević, and P. Sarajčev, “Accuracy of the Inverse Fast Fourier Transform in
grounding grid transient analysis,” Proceedings of the 20th International Conference on Applied
Electromagnetics and Communications, (S10-3) 1–4, Dubrovnik, Croatia, 2010.
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