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Computational Aspects of 2D-Quasi-Periodic-Green-Function
Computations for Scattering by Dielectric Objects

via Surface Integral Equations

Pieter Jorna*, Vito Lancellotti, and Martijn C. van Beurden

Abstract—We describe a surface integral-equation (SIE) method suitable for computation of
electromagnetic fields scattered by 2D-periodic high-permittivity and plasmonic scatterers. The method
makes use of fast evaluation of the 2D-quasi-periodic Green function (2D-QPGF) and its gradient using
a tabulation technique in combination with tri-linear interpolation. In particular we present a very
efficient technique to create the look-up tables for the 2D-QPGF and its gradient where we use to
our advantage that it is very effective to simultaneously compute the QPGF and its gradient, and to
simultaneously compute these values for the case in which the role of source and observation point
are interchanged. We use the Ewald representation of the 2D-QPGF and its gradient to construct the
tables with pre-computed values. Usually the expressions for the Ewald representation of the 2D-QPGF
and its gradient are presented in terms of the complex complementary error function but here we give
the expressions in terms of the Faddeeva function enabling efficient use of the dedicated algorithms to
compute the Faddeeva function. Expressions are given for both lossy and lossless medium parameters
and it is shown that the expression for the lossless case can be evaluated twice as fast as the expression
for the lossy case. Two case studies are presented to validate the proposed method and to show that
the time required for computing the method of moments (MoM) integrals that require evaluation of
the 2D-QPGF becomes comparable to the time required for computing the MoM integrals that require
evaluation of the aperiodic Green function.

1. INTRODUCTION

Reliable prediction of the interaction of electromagnetic fields with periodic structures plays a key role
in numerous applications whether it is in the radio-frequency (RF) regime or in the optical regime.
In the RF regime, periodic structures are for instance used to model the scattering properties of large
arrays and frequency-selective surfaces. In the optical regime, an application of great importance is
the scattering of light by diffraction gratings. To enable accurate and efficient computation of fields
scattered by periodic structures, considerable effort has been invested over the years in the development
of a range of numerical methods. For many of these methods the performance is excellent as long as
the periodically repeated scattering objects have low contrast, but for high permittivity and plasmonic
scatterers the problem of obtaining sufficiently accurate results in acceptable computation times arises
often. In the RF regime, metals can mostly be modeled by PEC structures but in the optical regime
they exhibit plasmonic behavior, see [1] and [2], hence in the optical regime the problem of dealing with
plasmonic scatterers is especially important.

While the very successful Finite Element Method (FEM) and Volume Integral-Equation (VIE)
method apply a volumetric discretization, the Surface Integral Equation (SIE) formulation only uses
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the unknown electromagnetic field on the boundaries of the object domains by introducing equivalent
electric and magnetic surface current densities. These equivalent current sources on the boundaries
yield an accurate representation of the fields in the interior and the exterior of the objects via exact
Green function expressions. The SIE method therefore does not need to discretize the fields inside
the object volumes but only applies a discretization of the surface current densities on the boundaries.
This is especially advantageous in the case of high contrast and metal objects for which an accurate
representation of the fields in the interior via discretization is often difficult to realize. It is for this
reason that we have developed an efficient SIE method for the computation of electromagnetic fields
scattered by 2D-periodic structures in 3D space.

We restrict the class of problems to the computation of electromagnetic fields scattered by an
arbitrary number of mutually disjoint 2D-periodically repeated penetrable objects in a 3D homogeneous
space. This is in itself an important class of problems but it is also of vital importance in the more
complex application in which the 2D-periodically repeated objects are embedded in a multilayered
medium. In the latter application the Green function has a spectral representation and a typical
strategy for acceleration involves identifying and extracting the asymptotic terms in the spectral sums,
see [1, 3–6]. The extracted terms are computed separately and are added back to the spectral sums.
For several of the components of the Green function the extracted terms correspond to a 2D-periodic
array of sources in an infinite homogeneous medium and can therefore be computed with a method as
the one described in this paper. An implementation that allows the penetrable objects to be connected
and/or the inclusion of one object by another requires a similar adaptation as is needed for an aperiodic
SIE formulation, see [7] and [8]. In addition, the method can be extended to incorporate scattering
objects of infinite lateral extent that cross the periodic boundaries. This extension requires the use of
overlapping basis functions along one edge of the unit cell to allow the equivalent currents to flow from
one cell to the next, for detailed information see for instance [9–11].

Key to the feasibility of using the SIE method for 2D-periodic penetrable structures in an infinite
homogeneous medium is the ability to efficiently evaluate the quasi-periodic Green function (QPGF)
and its gradient. The prefix “quasi” is added to bring to attention that the Green function is not truly
periodic as it may include a phase factor with a different periodicity relation to represent a progressive
phase that is modulated onto the sources. Whereas the purely spatial and the purely spectral series
representation of the QPGF are known to suffer from convergence problems, it is well established that
the Ewald representation of the QPGF, after Ewald [12], provides a robust method of evaluating the
QPGF regardless of the loss properties of the medium and the position of observation and source point.
The Ewald representation of the 2D-QPGF in 3D space for the Helmholtz equation was first brought
to the attention of the electromagnetic community in [13] even though it had already been published
almost two decades earlier in [14]. In the latter article, a rigorous mathematical derivation of the Ewald
representation of the 2D-QPGF is given and once the integrals in this representation are expressed in
terms of error functions we obtain the familiar Ewald representation of the 2D-QPGF presented in [13],
a representation that has been used extensively by many authors. For complex arguments, the error
functions can be computed using algorithms for the scaled complex complementary error function, also
referred to as the Faddeeva function, and hence it is more efficient to use the Ewald representation of
the 2D-QPGF in terms of the Faddeeva function. We present expressions for the Ewald representation
of the 2D-QPGF in terms of the Faddeeva function for both lossy and lossless medium parameters.
We show that the expression for the lossless case, which can also be found in [1], can be evaluated
twice as fast as the expression for the lossy case. In a SIE-formulation for penetrable objects we also
need the gradient of the QPGF hence we give its expression in terms of the Faddeeva function. By
applying the Ewald method, we considerably accelerate the computation of the QPGF but even with
this acceleration the evaluation of the QPGF remains relatively costly. A successful strategy to further
reduce the computation time is to pre-compute and store the regularized QPGF and its gradient on
a pre-defined interpolation grid so that the values needed to compute the numerical integrals in the
method of moments (MoM) matrix can be obtained fast using interpolation routines, see [4–6, 9, 15].
We present an efficient technique to create the look-up tables for the QPGF and its gradient where we
use to our advantage that it is very effective to simultaneously compute the QPGF and its gradient, and
to simultaneously compute these values for the case in which the role of source and observation point are
interchanged. The more sophisticated the chosen interpolation method, the coarser the interpolation
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grid can be and hence there is a trade-off between the required interpolation time and tabulation time
and storage. We show that tabulation of the regularized QPGF and its gradient in combination with
simple tri-linear interpolation may still only require limited tabulation time and storage but that it leads
to a very significant reduction in the required computation time, by a factor of 100 times or more. For
configurations with many unknowns, conventional MoM may no longer suffice and it becomes necessary
to resort to fast algorithms as presented in [16] and [17] but both these algorithms can again benefit
from the proposed efficient tabulation technique.

The paper is organized as follows. In Section 2 we start with a detailed description of the problem
of interest. In Section 3, we briefly present the used SIE formulation. In Section 4 we address some
important differences in the periodic SIE-formulation when compared to an aperiodic SIE-formulation.
In Section 5 we present the Ewald representation of the QPGF and its gradient in terms of the Faddeeva
function. In Section 6 we describe an efficient technique to compute the QPGF and its gradient by
applying a combination of tabulation and interpolation. In Section 7 we present numerical results for
two different configurations that serve to validate the proposed approach and demonstrate its efficiency.
Finally, in Section 8 we conclude by summarizing the contributions of this paper.

2. FORMULATION OF THE PROBLEM

The problem statement is now described in detail and the notation used in the remainder of the paper
is given. We are interested in being able to compute the electromagnetic field scattered by 2D-periodic
structures in 3D space for a plane-wave incident field. In our modeling we assume 2D periodicity in 3D
space with the periodic directions orthogonal to ẑ but not necessarily orthogonal to each other. The
corresponding unit cell can then be described by a so-called Bravais lattice spanned by the primitive
lattice vectors a1 and a2 lying in the xy-plane. Here we define the 2D unit cell U0 = U(0,0) with surface
area A = |a1 × a2| as

U0 =
{

x1a1 + x2a2

∣∣∣∣x1, x2 ∈
]
−1

2
,
1
2

]}
. (1)

A 3D unit cell U3D
0 may be obtained by extending the 2D unit cell U0 to infinity in the negative and

positive z-direction. Any of the other cells U3D
n = U3D

(n1,n2)
with n1, n2 ∈ Z is obtained by translating

the 3D unit cell with respect to the lattice vector an = a(n1,n2) = n1a1 + n2a2. The implementation
described here allows the unit cell to contain a finite number of dielectric objects that are mutually
disjoint and that are all embedded in a homogeneous background medium. Let us assume that we have
Q scattering objects in the unit cell U3D

0 . We denote the domains occupied by these Q scatterers by
Dq with q ∈ {2, . . . , Q + 1} and let ∂Dq be the (piecewise) smooth boundaries that enclose the domains
Dq. Note that we have not yet defined D1 as we have preserved this notation for the unit-cell space
exterior to the scatterers. The boundary ∂D1 of the domain D1 is assumed to comprise the boundaries
that enclose the domains Dq with q ∈ {2, . . . , Q + 1}, that is, ∂D1 = ∂D2 ∪ . . . ∪ ∂DQ+1. The latter
definition implies that we do not include the cell boundary in ∂D1. We denote the unit normal vector
on the boundary ∂Dq pointing outward from the domain Dq by n̂q. For each of the Q + 1 domains
Dq with q ∈ {1, . . . , Q + 1} we take εq and μq to be the homogeneous permittivity and permeability of
the domain. An example of a unit-cell configuration with three objects is given in Figure 1(a). In the
figure, the unit cell is truncated in the z-direction such that it just contains all objects. In the following
we denote observation points by r and source points by r′. The vector pointing from source point to
observation point is denoted by R = r−r′ = (rT +zẑ)−(r′T +z′ẑ) = rT −r′T +(z−z′)ẑ = RT +(z−z′)ẑ.
The vector pointing from the shifted source point r′ + an to observation point r is denoted by Rn, that
is, Rn = r − r′ − an = R− an.

We assume a plane wave of angular frequency ω is incident on the periodic structure under polar
and azimuthal angles (θ, φ), defined with respect to the z- and x-axis, as is indicated in Figure 1(b).
For ejωt time convention, the electric field belonging to such an excitation in the upper half space is
given by

Ei(r) = (Esŝ + Epp̂) e−jki·r, (2)
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Figure 1. Plane wave incident field impinging on a 2D-periodic configuration. (a) Unit-cell
configuration with 3 objects. (b) Definition of the incident field direction of the impinging plane wave.

where
ki = −ω

√
ε1μ1 (sin θ cos φx̂ + sin θ sin φŷ + cos θẑ) (3)

= ki
T + ki

z ẑ and ki
T = ki

xx̂ + ki
yŷ, (4)

ŝ = − sin φx̂ + cos φŷ, (5)
p̂ = cos θ cos φx̂ + cos θ sin φŷ − sin θẑ. (6)

In these expressions, ki is the incident wave vector specifying the direction of the wavefront. The
complex amplitudes along the s- and p-polarized directions of the incident electric field are denoted by
Es and Ep. Let b1 and b2 in the xy-plane be the reciprocal primitive vectors that satisfy ai · bj = δij

for i, j = 1, 2, with δij the Kronecker delta. Spectral representations of the quasi-periodic functions
that we encounter in our analysis use the following set of points in k-space on the Bravais-lattice

km
T = ki

T + 2πm1b1 + 2πm2b2, (7)
with m = (m1,m2) and m1,m2 ∈ Z. Let k = ω

√
με be the wave number of the medium under

consideration at angular frequency ω. Given the transverse component of the wave vector km
T as defined

in (7) the z-component of the complex propagation vector equals

γm
z =

√
km

T · km
T − k2. (8)

3. SIE FORMULATION 2D-PERIODIC DIELECTRIC STRUCTURES IN 3D SPACE

In the Surface Integral-Equation (SIE) method the unknown electric and magnetic fields in each of the
domains Dq are fully determined by the prescribed sources in the domain Dq and by equivalent electric
and magnetic surface-current densities on the boundary of the object domain. Since the domains Dq with
q ∈ {2, . . . , Q+1} represent scatterers and do not contain any sources, the only source is to be found in
the D1 domain. The sources inside D1 are taken into account by imposing a plane-wave incident electric
and magnetic field Ei

1(r) and Hi
1(r) as is described in the previous section. The equivalent electric and

magnetic surface-current densities Jq and Mq at an arbitrary point r′ ∈ ∂Dq on the boundary of object
Dq are given by

Jq(r′) = (Hq × n̂q) (r′), (9)
Mq(r′) = (n̂q × Eq) (r′), (10)
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and as such are again expressed in terms of the unknown electric and magnetic field at the boundary of
the object. In this way we may obtain an Electric Field Integral Equation (EFIE) and a Magnetic Field
Integral Equation (MFIE) for the domain boundary ∂Dq by approaching the boundary from within Dq

and taking the limit to the surface. For the same boundary ∂Dq we may obtain a second EFIE and
MFIE by approaching the boundary from the other side, that is, from within D1 and taking the limit
to the surface.

Here, we will use the well-known PMCHWT-formulation, named after Poggio, Miller [18], Chang,
Harrington [19], Wu and Tsai [20], in which a first equation is obtained by subtracting the two EFIEs
and a second equation is obtained by subtracting the two MFIEs. The PMCHWT-formulation imposes
the following pair of coupled integral equations for each of the boundaries ∂Dq with q ∈ {2, . . . , Q + 1}

− (
n̂q×Ei

1

)
(r) = Zq (n̂q×LqJq) (r)+(n̂q×KqMq) (r)+

Q+1∑
p=2

(Z1 (n̂p×L1Jp) (r)+(n̂p×K1Mp) (r)) , (11)

− (
n̂q×Hi

1

)
(r) = Yq (n̂q×LqMq) (r)−(n̂q×KqJq) (r)+

Q+1∑
p=2

(Y1 (n̂p×L1Mp) (r)−(n̂p×K1Jp) (r)) , (12)

with, for q ∈ {1, . . . , Q + 1}, Zq, Yq the wave impedance and the wave admittance of domain Dq and
Lq, Kq the linear boundary integral operators that act on a surface-current density Xq on ∂Dq, defined
as follows

(LqXq) (r) = jkq

∮
∂Dq

Gq

(
r, r′

)
Xq

(
r′

)
dA′ − 1

jkq
∇

∮
∂Dq

Gq

(
r, r′

) (∇′
S ·Xq

(
r′

))
dA′, (13)

(KqXq) (r) =
∮

∂Dq

Xq

(
r′

) ×∇′Gq

(
r, r′

)
dA′, (14)

where kq = ω
√

μqεq is the wave number of domain Dq. In the operator definitions (13) and (14) G1 is
the QPGF for an unbounded homogeneous space with the medium parameters of domain D1, i.e.,

G1

(
r, r′

)
=

1
4π

∑
n∈Z2

e−jki
T ·an

e−jk1|Rn|

|Rn| , (15)

whereas Gq for q ∈ {2, . . . , Q+1} is the aperiodic scalar Green function for an unbounded homogeneous
space with the medium parameters of domain Dq, i.e.,

Gq

(
r, r′

)
=

e−jkq|r−r′|

4π|r − r′| . (16)

4. IMPORTANT DIFFERENCES APERIODIC AND PERIODIC SIE-FORMULATION

We use the Method of Moments (MoM) technique [21] to solve the coupled set of equations. In this
procedure the equivalent surface-current densities are expanded in terms of Rao-Wilton-Glisson (RWG)
basis functions [22], and Eqs. (11) and (12) are tested with n̂ × RWG test functions, see also [10]. To
determine the matrix elements of the MoM matrix, we apply a singularity-extraction of the static Green
function when source and observation point are nearby. The singular part is integrated analytically and
the regular remainder is integrated via Gaussian quadrature.

In a 2D-periodic configuration one has to be careful since for each RWG source triangle in the unit
cell there also is a RWG source triangle in each of the other cells and the RWG source triangle nearest
to the RWG test triangle is not necessarily located in the same cell as is illustrated in Figure 2(a) for
a cell with two orthogonal lattice vectors. It is therefore important to first determine the location of
the nearest source triangle. This does not only preclude erroneous use of numerical integration routines
for nearly singular surface integrals, but it also enables the most efficient evaluation of a spatial series
that is used to compute the QPGF. While finding the nearest source triangle is straightforward in case
both lattice vectors are orthogonal, it is more intricate in case the lattice vectors are non-orthogonal.



54 Jorna, Lancellotti, and Van Beurden

x1

x 2

z

(a) (b)

(c) (d)

x1
x 2

x 2

x 2

x 2

x1

x1

x1

-2Δφ -Δφ Δφ 2Δφ

-2Δφ -Δφ Δφ 2Δφ

Figure 2. Test triangle (open) and source triangles (solid) in the same cell and neighboring cells: (a)
Orthogonal lattice vectors. (b) Non-orthogonal lattice vectors. (c) Contributions to the gradient of
the QPGF. (d) Interaction of source triangles (solid) and test triangle (open) with a progressive phase
modulated onto the periodically repeated sources.

In Figure 2(b) it is shown that in the latter case the nearest source triangle may not even be located in
one of the neighboring cells of the original unit cell.

To evaluate the surface integrals that arise from testing the Kq operator, defined in (14), with RWG
test functions after having expanded the current densities using RWG basis functions, we make use of
the expression for the gradient of the Green function. The property that the gradient of the aperiodic
Green function, defined in (16), is always pointing in the radial direction r−r′ is often explicitly used in
the integration routine. In particular, it is used that the surface integral is zero in case the source and
test triangle are located in the same plane. It is important to note that the gradient of the QPGF is no
longer pointing in the radial direction r− r′ due to the contributions of the source triangles outside the
unit cell as is illustrated in Figure 2(c). In the 2D-periodic case, the surface integral for a source and
test triangle in the unit cell located in the same plane is no longer guaranteed to be zero except when
the plane is parallel to or coincides with the xy-plane.

After having built the upper-triangular part of the MoM matrix one has to interchange the role
of the basis functions, which contain the source points, and the test functions, which contain the
observation points, to determine the entries in the lower-triangular part of the matrix, which implies
we need to determine the QPGF and its gradient both for r − r′ and r′ − r. An important and useful
property of the aperiodic Green function (16) for the 3D scalar Helmholtz equation in unbounded
homogeneous space is the symmetry of interchanging source and observation point. While the same
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symmetry properties still apply to the Periodic Green Function (PGF), not all of the properties hold for
the QPGF. The QPGF is symmetric for the interchange of variables z and z′ but not for the interchange
of variables rT and r′T . It is the phase modulated onto the periodically repeated sources in the transverse
plane that breaks the symmetry. Figure 2(d) illustrates that the role of expansion and test function
cannot simply be interchanged due to the progressive phase added to the sources.

Other than suggested in [10, Section 2] and in [14, §3], the QPGF with the variables rT and r′T
interchanged cannot be obtained by computing the complex conjugate of the original QPGF. In Section 5
we will however show that the additional work necessary to compute the QPGF for r′−r while computing
the QPGF for r− r′ is minimal and hence simultaneous computation of the QPGF for r′ − r and r− r′
can be made very efficient.

5. QUASI-PERIODIC GREEN FUNCTION AND THE EWALD TRANSFORMATION

Key to the feasibility of the SIE method for 2D-periodic structures is an efficient evaluation of the
QPGF and its gradient. The spatial representation of the 2D QPGF is a double-infinite series in which
the contributions of all 2D-periodic source points are summed with the proper phase, i.e.,

Gspatial
Λ =

1
4π

∑
n∈Z2

e−jki
T ·an

e−jk|Rn|

|Rn| . (17)

In very lossy media and in metals that exhibit plasmonic behavior, this spatial series expression yields
an efficient way of computing the 2D-QPGF and its gradient as only a limited number of terms is
required in the summation since the amplitude of the terms decays exponentially with |Rn|. In a
lossless background medium (such as air), however, these series exhibit very slow convergence since the
amplitude of the terms in the summation only decays with 1/|Rn|. An alternative method of computing
the 2D-QPGF and its gradient may be provided by using the spectral representation of the 2D QPGF,
a 2D quasi-periodic Fourier series that sums the contributions of all 2D quasi-periodic Fourier modes

Gspectral
Λ =

1
2A

∑
m∈Z2

e−jkm
T ·RT

e−γm
z |z−z′|

γm
z

. (18)

For observation points at a height h = z−z′ well above or below the source point, the contributions of the
evanescent modes decay exponentially with Re{γm

z } and the spectral representation of the 2D-QPGF
and its gradient is very efficient. For this reason we use the spectral representation of the 2D-QPGF
and its gradient to compute the reflection and transmission coefficients. This double series, however,
has convergence problems if the point of observation is located at (approximately) the same height as
the source point.

To solve the convergence problems we may use the Ewald representation for the QPGF. In the
Ewald representation, the QPGF is split up into the sum of a modified spatial and a modified spectral
series using the so-called splitting parameter E, i.e.,

GΛ,E =
∑
n∈Z2

Gspatial
Λ,E,n +

∑
m∈Z2

Gspectral
Λ,E,m . (19)

Both the spatial and spectral series part of the Ewald representation of the QPGF possess Gaussian
decay regardless of the loss properties of the medium and the height h = z − z′ between observation
and source point. The splitting parameter E is an arbitrary number but in [13] an optimal value
Eopt =

√
π/A is derived that balances the convergence rate of both series, thereby causing the total

number of terms needed for the calculation to be minimized. In [23], it has been shown that values of E
equal to or less than Eopt may cause accuracy problems when the periodic spacing gets large in terms
of the wavelength as the first terms of the spatial and spectral series are very large and have to cancel
each other out. One can remedy this problem by increasing E by a sufficient amount beyond the value
of Eopt. In [24] and [25], a best E parameter is derived that allows for the fastest convergence while
maintaining a specific level of accuracy in the final result, but the method requires solving a nonlinear
equation. A less rigorous but simpler alternative solution is presented in [15] and [26]. For large periodic
spacings, the first terms of the spatial and spectral series behave as exp(k2/(4E2)) and the problem
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is remedied by requiring k2/(4E2) < H2 where H2 is the maximum exponent permitted, which in the
articles is taken to be H2 = 9. We have used this simpler approach and for general complex k we take

E = max
{

Eopt,
Re{k}
2H

}
. (20)

While there are various ways of presenting the Ewald representation of the QPGF, most often the
Ewald representation of the QPGF is given in terms of the complementary error function. For complex
arguments the complementary error function can be computed using the scaled complex complementary
error function, i.e., the Faddeeva function w(z), see [27], as

erfc (z) = e−z2
w(jz). (21)

In practice it is not efficient to actually compute the complementary error function after having evaluated
the Faddeeva function. Instead, we use the Ewald representation of the QPGF in terms of the Faddeeva
function w(z). The terms in the modified spatial series and the modified spectral series are given by

Gspatial
Λ,E,n =

e−jki
T ·an−(|Rn|E)2+( k

2E )2

8π|Rn|
[
w

(
j|Rn|E − k

2E

)
+ w

(
j|Rn|E +

k

2E

)]
, (22)

Gspectral
Λ,E,m =

e
−jkm

T ·RT−
(

γm
z

2E

)2
−((z−z′)E)2

4Aγm
z

[
w

(
jγm

z

2E
+ j(z − z′)E

)
+ w

(
jγm

z

2E
− j(z − z′)E

)]
. (23)

The gradient of the modified spatial series and the gradient of the modified spectral series in terms of
the Faddeeva function can be obtained by differentiation of (22) and (23), which leads to

∇Gspatial
Λ,E,n =

e−jki
T ·an−(|Rn|E)2+( k

2E )2

8π|Rn|
Rn

|Rn|
[
w

(
j|Rn|E − k

2E

)(
jk − 1

|Rn|
)

+w
(

j|Rn|E +
k

2E

)(
−jk − 1

|Rn|
)
− 4E√

π

]
, (24)

∇Gspectral
Λ,E,m =

e
−jkm

T ·RT−
(

γm
z

2E

)2
−((z−z′)E)2

4Aγm
z

[
(−jkm

T + γm
z ẑ)w

(
jγm

z

2E
+ j(z − z′)E

)

+ (−jkm
T − γm

z ẑ)w
(

jγm
z

2E
− j(z − z′)E

)]
. (25)

Expressions for the gradient can also be found in [26] however it should be noted that in the paper both
the gradient of the modified spatial series and the gradient of the modified spectral series contain a
misprint. In the calculation of the partial derivatives we have used that the derivative of the holomorphic
Faddeeva function satisfies

d

dz
w(z) =

2j√
π
− 2zw(z), (26)

with z an arbitrary complex variable. Note that calculation of the gradient of the modified spatial
series and the gradient of the modified spectral series requires the same Faddeeva function evaluations
used in computing the QPGF. Since the greater part of the computational effort involved in computing
the spatial and spectral series is spent on evaluating the Faddeeva functions, the additional work of
computing the gradient after having computed the QPGF is negligible.

In the MoM we need to evaluate the QPGF both for r − r′ and r′ − r but in Section 4 we have
seen that the QPGF is no longer symmetric in the transverse plane. It is however not necessary to
double the number of computations. A saving in computational effort, similar to the saving obtained
by computing the QPGF and its gradient simultaneously, is possible if for each vertical displacement
z − z′ we simultaneously compute the QPGF and its gradient for the transverse vector rT − r′T and for
its opposite transverse vector r′T − rT . If we take a closer look at the expressions for the QPGF and its
gradient with rT − r′T and r′T − rT interchanged we find that:

• the Faddeeva function evaluations can be re-used,
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• the factors e−(|Rn|E)2+( k
2E

)2 and e−(
γm
z

2E
)2−((z−z′)E)2 need to be computed only once,

• after having computed e−jki
T ·an the factor ejki

T ·an is obtained by computing the complex conjugate
when ki

T is real-valued or by computing the inverse in the special case that ki
T is complex-valued.

The same also holds for the factors e−jkm
T ·RT and ejkm

T ·RT .

Thus we have established that for each vertical displacement z − z′ simultaneously computing the
QPGF and its gradient for both rT − r′T and its opposite vector r′T − rT reduces the total number of
Faddeeva-function evaluations by a factor of four. In the special case that k2 = ω2εμ > 0, which covers
computation of the QPGF in all lossless media, simplified expressions for the QPGF and its gradient
can be derived in which only one Faddeeva evaluation per term in the summation is required. Since the
greater part of the computational effort involved in computing the spatial and spectral series is spent on
evaluating the Faddeeva function, a further factor of two improvement in computation time is obtained
when using these simplified expressions. The detailed expressions for the QPGF and its gradient for
the special case where k2 = ω2εμ > 0 are presented in Appendix A.

There are several numerical routines available to evaluate the Faddeeva function. The NAG
library contains the routine S15DDF which makes use of Algorithm 363, published in Transactions
on Mathematical Software (TOMS), see [28]. In our computations we have made use of the WOFZ
algorithm, an improved version of Algorithm 363, which is published as Algorithm 680 (in TOMS),
see [29]. For real arguments we use the NAG routine S15ADF to compute the complementary error
function (erfc), as a dedicated routine for real arguments turns out to be significantly faster than
a general algorithm for complex arguments. More recently, a newly developed accurate algorithm
for computing the Faddeeva function has been published as Algorithm 916 (in TOMS), see [30].
In [30, Table 5] it is suggested that Algorithm 916 may offer a very substantial improvement in
computation time over Algorithm 680, but the tests we performed (including the test in [30]) did
not show this improvement.

6. EFFICIENT TABULATION AND INTERPOLATION OF THE QPGF AND ITS
GRADIENT

By applying the Ewald method, we considerably accelerate the computation of the QPGF but even
with this acceleration evaluation of the QPGF remains relatively costly. A tabulation of the regularized
QPGF in combination with interpolation may bring relief as is suggested in [15] for PEC periodic
structures. In [4, 5] a 4D-interpolation method is described for the more complex case of the layered-
medium 2D-periodic Green function. In the latter approach homogeneous-medium 2D-periodic Green
functions are subtracted from the layered-medium 2D-periodic Green function to accelerate convergence
and it is shown that a 3D-interpolation of the extracted terms is effective in achieving a further speed-up
of the computations. A complete description of the work can be found in [6]. Since SIE-formulations
for dielectric structures require evaluation of the gradient of the QPGF we apply a tabulation technique
that simultaneously stores the regularized gradient of the QPGF.

Here, we build look-up tables with the regularized QPGF and the regularized gradient of the QPGF
that are to be used in the interpolations. Note that we only have to tabulate the regularized QPGF
and the regularized gradient of the QPGF for r− r′ in the unit cell. For r− r′ outside the unit cell we
may subtract an integer number n1, n2 of the lattice vectors a1, a2 such that r− r′ − (n1a1 + n2a2) is
located in the unit cell. After interpolation in the unit cell for the shifted point, we add the extracted
singular terms and then obtain the QPGF and the gradient of the QPGF for the original r − r′ by
applying an appropriate phase shift using the Floquet-Bloch theorem. Depending on the location and
size of the objects we may not even need to tabulate the entire unit cell. If the maximum separation
d1 between any two points on the object in the direction of lattice vector a1 is smaller than |a1|/2 we
may reduce our tabulation region in the a1 direction to [−d1, d1] instead of [−|a1|/2, |a1|/2]. If the
maximum separation d2 between any two object points in the direction of lattice vector a2 is smaller
than |a2|/2 a similar reduction of the tabulation region in the a2 direction may be applied.

To build an interpolation table, we first define a regular grid of hexahedral volumes on the unit
cell, along the directions a1, a2 and ẑ, i.e., the vertices of the volumes are given by (r − r′)n1,n2,nz =
n1(Δ1/|a1|)a1 + n2(Δ2/|a2|)a2 + nzΔzẑ, for the integers n1, n2 and nz. Subsequently, we compute the
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regularized QPGF and its gradient

G̃Λ(r, r′) = GΛ(r, r′) − 1
4π|R| , (27)

∇G̃Λ(r, r′) = ∇GΛ(r, r′) +
1

4π|R|3 R, (28)

at all vertices in the grid. In this way, the regularized QPGF and its gradient at the vertices of each
hexahedron can be easily fetched from memory. In the process of filling the table we compute the
regularized QPGF and its gradient at the same time. Moreover, we compute the regularized QPGF and
its gradient for the transverse vector rT − r′T and for its opposite transverse vector r′T − rT at the same
time and as such the computation time is reduced by a factor of four in comparison with the case where
we would have computed all entries separately. Since the regularized QPGF is symmetric in z − z′ and
its gradient is simply pointing in the opposite direction for z′−z we only need to tabulate for z−z′ > 0.
When we access the table to determine the QPGF at a certain vector r− r′, we first determine in which
hexahedral volume this vector is located and subsequently we apply tri-linear interpolation between
the values of the QPGF at the eight vertices of the pertaining volume. In exactly the same way we
obtain interpolated values of the regularized gradient of the QPGF using the pre-computed values at
the vertices. Note that we may reduce the number of points for which we tabulate the regularized
QPGF and its gradient by choosing a higher-order interpolation scheme but once the table is computed
the above described interpolation is very fast. Alternatively, one may use simplex interpolation, as
described in [4] and [5], instead of the tri-linear interpolation used here. The same efficient way of filling
the table is also possible for simplex interpolation in case the unit cell is first divided in cubes and
subsequently each of the cubes is subdivided into five regular tetrahedra as described in [5].

We have to take special care of the interpolation in the eight hexahedrons that share the vertex
(r − r′)000 = 0. In the interpolation of the regularized QPGF we use the limit for |R| → 0 of the
regularized QPGF for the value at this vertex. In the process of pre-computing the corresponding table
entry we use that the limit for |R| → 0 of the regularized modified spatial series (22) equals

lim
|R|→0

1
8π|R|

{
e−(|R|E)2+( k

2E )2
[
w

(
j|R|E − k

2E

)
+ w

(
j|R|E +

k

2E

)]
− 2

}

=
1
4π

{
e(

k
2E )2

[
jkw

(
− k

2E

)
− 2E√

π

]
− jk

}
. (29)

In the interpolation of the gradient of the regularized QPGF we have to be even more careful as the limit
for |R| → 0 of the gradient of the regularized QPGF depends on the direction from which we approach
the vertex and hence does not exist. In the interpolation we may however use this direction-dependent
limit at the vertex (r − r′)000 = 0, where we assume that we approach the vertex from the direction
imposed by the interpolation point R = r − r′ inside the cube. In the implementation we therefore
only store the existing scalar limit preceding the unit direction vector R/|R|. The latter vector can
be determined once the interpolation point R = r − r′ inside the cube is known. In the process of
pre-computing the corresponding table entry we use that the limit for |R| → 0 of the scalar expression
preceding the unit direction vector R/|R| in the gradient of the regularized modified spatial series (24)
equals

lim
|R|→0

1
8π|R|

{
e−(|R|E)2+( k

2E )2
[
w

(
j|R|E − k

2E

)(
jk − 1

|R|
)

+w
(

j|R|E +
k

2E

)(
−jk − 1

|R|
)
− 4E√

π

]
+

2
|R|

}
= − 1

8π
k2. (30)

7. NUMERICAL RESULTS

We now present two test cases where we use the described SIE method to compute the reflection
coefficients for a plane-wave incident field impinging on a 2D-periodic structure while varying the angle
of incidence. In the first test case we fix the employed MoM mesh and we study the required CPU time
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to build the look-up tables and we study the convergence of the reflection coefficients when refining the
regular interpolation grid of hexahedral volumes. In the second test case we choose a fine interpolation
grid and we study the computational complexity and the convergence of the reflection coefficients when
refining the MoM mesh. Definition of the reflection coefficients and details on how to compute them
once the equivalent currents are known can be found in Appendix B.

In the first test case the unit cell is defined by the lattice vectors a1 = x̂ 400 nm, a2 = ŷ 400 nm
and it contains two dielectric cylinders embedded in a free-space background medium. The unit-cell
configuration with the two cylinders and their dimensions is shown in Figure 3(a). The first cylindrical
domain D2 is a dielectric with εr = 2.25, height h2 = 225 nm, diameter d2 = 200 nm, and the center of
the bottom surface is positioned at (−50, −50, 50) nm. The second cylindrical domain D3 is a dielectric
with εr = 3− 3j, height h3 = 100 nm, diameter d3 = d2 = 200 nm, and the center of the bottom surface
is positioned at (50, 50, −275) nm.

We apply the SIE method, with and without tabulation of the QPGF and its gradient, to compute
the reflection coefficients of the four diffraction orders that can be observed when the angle of incidence
of an s-polarized plane-wave incident field of wavelength λ0 = 425 nm is scanned from θ = 0◦ to
almost grazing incidence θ = 89◦ in steps of 1◦ while the azimuth angle is kept fixed at φ = 45◦. To
validate the SIE implementation we have also computed the reflection coefficients with the VIE method
presented in [31]. Detailed information on computing the reflection coefficients for the VIE method can
be found in [32, Section 4]. To obtain accurate results with the VIE method we have used 63 modes in
both the x and y direction and we have used 161 and 71 equidistant sample points in the z-direction
for the cylindrical domains D2 and D3, respectively. In the SIE method we have used 304 and 320
triangular elements to discretize the boundaries of the cylindrical domains D2 and D3, respectively,
which corresponds to a number of 912 and 960 unknowns connected to ∂D2 and ∂D3, respectively. In
Figure 3(b) it can be seen that the magnitude of the co-polar and the cross-polar reflection coefficients
for the diffraction order (0,1) computed with the SIE method without applying tabulation and with
the VIE method show a good correspondence. Note that the diffraction order (0,1) is first observed at
θ = 6◦.

To compare computed reflection coefficients RA(θ) and RB(θ) we define the Root Mean Square
Deviation (RMSD) between the reflection coefficients as follows

RMSD
(|RA|, |RB |) =

√√√√ 1
Nθ

Nθ∑
n=1

||RA(θn)| − |RB(θn)||2, (31)
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with Nθ the number of angles for which the reflection coefficients are computed. The used definition of
the RMSD implies that it only measures deviations between the magnitude of the reflection coefficients.
We have computed the co-polar reflection coefficients for the diffraction orders (0,0), (0,1) and (1,1)
using the SIE method with and without tabulation. More precisely, we have repeatedly applied the
SIE method with tabulation using cubical grids of different edge length Δ = λ0/Nppwl with Nppwl the
number of points per wavelength.

In Figure 4(a) it is shown that the RMSD between the reflection coefficients computed using the
SIE method with and without tabulation decreases quadratically with Nppwl. For each of the three
co-polar reflection coefficients we have also indicated in the figure, with the horizontal lines, the RMSD
between the reflection coefficients computed using the SIE method without tabulation and the VIE
method. The figure shows that already for a cubical grid of edge length Δ = λ0/20, the RMSD between
the reflection coefficients computed using the SIE method with and without tabulation is smaller than
the RMSD between the reflection coefficients computed using the SIE method without tabulation and
the VIE method.

In Figure 4(b) we show for the cubical grids of various edge lengths the required CPU time, averaged
over the 90 angles, to build the look-up tables for the regularized QPGF and its gradient. In the figure,
the measured average required CPU time is shown for four different methods of building the look-up
tables. Method I is the proposed method that combines the computation of the regularized QPGF
and its gradient for both the transverse vector rT − r′T and for its opposite transverse vector r′T − rT .
Moreover, it uses the simplified expressions for the Ewald representation of the QPGF and its gradient
for k2 > 0 as presented in Appendix A. In Method II, the same tabulation strategy is applied but the
average required CPU time has more than doubled because here we have used the Ewald representation
of the QPGF and its gradient for general k2 as is presented in Section 5. The average required CPU time
has again almost doubled for Method III, where we still combine the computation of the regularized
QPGF and its gradient but separately compute them for the transverse vector rT − r′T and for its
opposite transverse vector r′T − rT . In Method IV, the regularized QPGF and its gradient have also
been computed separately and as a consequence the average required CPU time has doubled once more.
For all four methods the average required CPU time to build the tables increases cubically with Nppwl.
Note that building the interpolation tables is still cheap for the configuration under consideration but
for unit cells that are larger in terms of wavelength this may no longer be the case, see for instance
the analysis in [16, Section III-D]. In the latter case, a considerable gain in efficiency can be obtained
if the strategy suggested in [5], in which only points of the interpolation table are filled if needed in a
computation, is adopted.

In Table 1, we compare the required CPU time, averaged over the 90 angles, for each of the
subtasks in the SIE method in case we do or do not use tabulation of the QPGF and its gradient (with
Δ = λ0/80). In the first column we have given the measured average CPU times for the SIE method
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without tabulation. In the second column the same average CPU times when larger than 60 seconds
have been expressed in minutes. In the third column we have given the measured average CPU times
for the SIE method with tabulation. In the fourth column we have listed the speed-up factor for each
task when using tabulation. In the following, computation of the contribution to the MoM matrix by
the L1 and K1 operators in (11) and (12) is respectively referred to as building the L-periodic operator
and the K-periodic operator. Computation of the contribution to the MoM matrix by the L2 and L3

operators in (11) and (12) is referred to as building the L-object operators whereas computation of the
contribution to the MoM matrix by the K2 and K3 operators in (11) and (12) is referred to as building
the K-object operators. It is clear from the table that without tabulation the vast majority of the
CPU time is spent on evaluating the QPGF and its gradient in the process of computing the periodic
operators during the matrix build. By applying tabulation and interpolation we have managed to reduce
the building time of both periodic operators by a factor of 230. The additional task of building the
look-up tables is relatively cheap in terms of CPU time. Note that in practice the object operators only
need to be computed once and can be reused for all angles. The average CPU time listed in the table
for building the object operators is based on recomputing the object operators for all angles and can
therefore be reduced by a factor of 90. This would further increase the total speed-up factor from 154
to 216. Since we have two objects with approximately the same number of RWGs on each of the objects
the total number of RWG interactions needed to compute the two periodic operators is twice the total
number of RWG interactions needed to compute the four object operators. Building the L-periodic
operator however is less than twice as time-consuming as building the two L-object operators, which
is an indication that computing the QPGF by interpolation may be even faster than computing the
aperiodic Green function. Building the K-periodic operator however is more than twice as expensive
as building the two K-object operators which may be caused by the large number of in-plane RWG
interactions for which the contribution to the K-object operators is easily determined to be zero.

In the second test case the unit cell is defined by the lattice vectors a1 = x̂ 500 nm, a2 = ŷ 100 nm
and it contains a copper truncated triangular prism embedded in a free-space background. The unit-
cell configuration with the truncated triangular prism and its dimensions, length l = 460 nm, height
h = 120 nm, bottom width wb = 42 nm and top width wt = 18 nm is shown in Figure 5(a). The
relative permittivity of the copper is taken to be εr = −17.3−1.78j which implies the structure exhibits
plasmonic behavior.

We apply the SIE method, with tabulation of the QPGF and its gradient, to compute the reflection
coefficients of the two diffraction orders that can be observed when the angle of incidence of a p-polarized
plane wave incident field of wavelength λ0 = 700 nm is scanned from θ = 0◦ to almost grazing incidence
θ = 89◦ in steps of 1◦ while the azimuth angle is kept fixed at φ = 45◦. The SIE computations are

Table 1. Comparison average CPU time SIE method with tabulation (80 points per wavelength) and
without tabulation of the QPGF and its gradient.

Task
CPU Time (s)
No Tabulation

CPU Time (min)
No Tabulation

CPU Time (s)
Tabulation

Factor

Build Table 9.87
Build L-periodic 2159.30 35.99 9.40 230
Build K-periodic 2044.44 34.07 8.87 230
Build Periodic 4203.74 70.06 18.27 230

Build L-objects 4.98 4.98
Build K-objects 2.96 2.96
Build Objects 7.94 7.94

Total Build Matrix 4211.68 70.19 26.21 161
Factorize Matrix + Solve 1.23 1.11
Total 4212.91 70.22 27.32 154
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performed for seven MoM meshes of decreasing mesh size. All SIE computations with tabulation make
use of a fine sampling grid of 100 points per wavelength. In Figure 5(b) we show that the RMSD in
the co-polar and cross-polar reflection coefficients decrease linearly with the number of unknowns if we
take the reflection coefficients computed with the finest mesh as the reference solution. In Figure 5(c) it
is shown that the average required CPU time per angle for building the matrix and for factorizing the
matrix respectively increases quadratically and cubically with the number of unknowns. However, for
the first six meshes the cost of building the matrix still is dominant and the curve for the average required
total CPU time per angle almost coincides with the curve for the matrix-build time. Also indicated
in Figure 5(c) for the first three meshes is the average required total CPU time per angle in case the
SIE method is applied without the use of tabulation and it can be seen that an improvement factor
of more than 100 in computation time has been achieved by applying the tabulation. In Figure 5(d)
the required CPU time for building the look-up tables and the L and K operators for the first angle
is shown for each of the seven meshes. It is clear that with the use of tabulation the time required for
evaluating the periodic operators and the object operators has become comparable. The time required
for building the K-object operator is again the lowest, which may be explained by the many in-plane
interactions that can easily be set to zero. Note that the object operators only have to be built for
the first angle whereas the periodic operators have to be rebuilt for each new angle. Since we use the
same look-up tables for each of the meshes the required CPU time to build these tables is constant and
for this sub-wavelength cell it is very low. More results can be found in our ICEAA 2014 conference
paper [33].
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8. CONCLUSIONS

We have identified the SIE method to be very suitable for computation of electromagnetic fields scattered
by 2D-periodic high-permittivity and plasmonic scatterers. Key to the feasibility of using the SIE
method for 2D-periodic penetrable structures in an infinite homogeneous medium is the ability to
efficiently evaluate the 2D-QPGF and its gradient. A successful strategy to accelerate computation of
the 2D-QPGF and its gradient is to pre-compute and store the regularized 2D-QPGF and its gradient
on a pre-defined interpolation grid so that the values needed to compute the numerical integrals in
the method of moments (MoM) matrix can be obtained fast by using interpolation routines. We have
presented an efficient technique to create the look-up tables for the QPGF and its gradient where we
use to our advantage that it is very effective to simultaneously compute the QPGF and its gradient,
and to simultaneously compute these values for the case in which the role of source and observation
point are interchanged, thereby reducing the tabulation time by a factor of four. In the process of
pre-computing the regularized 2D-QPGF and its gradient we apply the Ewald representation of the
2D-QPGF, which provides a robust method of evaluating the QPGF regardless of the loss properties of
the medium and the position of observation and source point. Since there are dedicated algorithms to
compute the scaled complex complementary error function, also referred to as the Faddeeva function, it
is more efficient to use the Ewald representation of the 2D-QPGF in terms of the Faddeeva function. We
have presented the expressions for the Ewald representation of the 2D-QPGF in terms of the Faddeeva
function for both lossy and lossless medium parameters. Moreover, we have shown that the expression
for the lossless case can be evaluated twice as fast as the expression for the lossy case. While the efficient
tabulation technique in combination with interpolation can also be used to compute extracted terms
in doubly periodic structures in layered media, the proposed method is validated here by computing
the reflection coefficients for a plane-wave incident field impinging on an arbitrary number of mutually
disjoint 2D-periodically repeated penetrable objects in a 3D homogeneous space. In two case studies we
have shown that for unit cells that are not too large in terms of the wavelength the additional task of
building the look-up tables is computationally cheap even when simple tri-linear interpolation is used.
By using the tabulation technique in combination with the very fast tri-linear interpolation it has been
shown that the time required for building the periodic operators has become comparable to the time
required for building the object operators and as a result the total computation time is reduced with a
factor of 100 or more.

APPENDIX A. EWALD REPRESENTATION QUASI PERIODIC GREEN
FUNCTION IN TERMS OF THE FADDEEVA FUNCTION FOR K2 > 0

In Section 5 we have shown that for general complex k2 we may express the Ewald representation of the
QPGF and the Ewald representation of the gradient of the QPGF in terms of a scaled complementary
error function, the Faddeeva function w(z). In the special case that k2 = ω2εμ > 0 we can use the
properties of the Faddeeva function

w(−z) = 2e−z2 − w(z), (A1)
w(z∗) = w(−z)∗, (A2)

where the star denotes complex conjugation, to simplify the Ewald representation of the QPGF and its
gradient such that we only need one Faddeeva-function evaluation per term in the summation:
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For the modified spectral series we use different expressions for the propagating-mode terms and the
evanescent-mode terms. For the evanescent-mode terms we use the complementary error function (erfc)



64 Jorna, Lancellotti, and Van Beurden

since a dedicated algorithm for real arguments is very efficient.
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Evanescent Modes ((γm
z )2 = km
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z

[
erfc

(
γm

z

2E
+ (z − z′)E

)
eγm

z (z−z′)

+erfc
(

γm
z

2E
− (z − z′)E

)
e−γm

z (z−z′)
]
, (A7)

∇Gspectral
Λ,E,m =

1
4A

e−jkm
T ·RT

γm
z

[
(−jkm

T + γm
z ẑ) erfc

(
γm

z

2E
+ (z − z′)E

)
eγm

z (z−z′)

+ (−jkm
T − γm

z ẑ) erfc
(

γm
z

2E
− (z − z′)E

)
e−γm

z (z−z′)
]
. (A8)

APPENDIX B. REFLECTION COEFFICIENTS

Let zmax be the maximum z-coordinate found in any of the objects. The reflected electromagnetic field
for propagating mode m for z > zmax is given by

Em,r(r) =
[
jωμ1

(
I − 1

k2
1

(km,r)km,r·
)
Fr

m(J1) − jkm,r ×Fr
m(M1)

]
e−jkm,r·r

2γm
z A

, (B1)

Hm,r(r) =
[
jωε1

(
I − 1

k2
1

(km,r)km,r·
)
Fr

m(M1) + jkm,r ×Fr
m(J1)

]
e−jkm,r·r

2γm
z A

, (B2)

where I denotes the 3 × 3 identity matrix, km,r = km
T − jγm

z ẑ, and

Fr
m({J1,M1}) = −

∮
∂D1

{J1,M1}(r′)ejkm,r ·r′dA′. (B3)

We now follow [34, page 24] and introduce vectorial modal reflection coefficients Rm,e and Rm,h in the
following way:

Em,r(r) = Rm,ee−jkm,r·(r−zmaxẑ), Hm,r(r) = Y1Rm,he−jkm,r·(r−zmaxẑ). (B4)

For each mode, we can further decompose the above plane-wave representation in terms of the parallel
(p) and the perpendicular (s) polarization, which are different for each mode due to the different k-
vectors. We define the unit vectors

ŝm =
km

T

|km
T | × ẑ, ŝm,⊥ = ŝm × ẑ = − km

T

|km
T | , (B5)

and define the reflection coefficients in s and p polarization as

Rm
s = Rm,e · ŝm, Rm

p = Rm,h · ŝm. (B6)
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When the incident electric field at z = zmax has unit amplitude and zero phase, Rm
s and Rm

p can
be interpreted as the Fresnel reflection coefficients in s and p polarization, respectively. The final
expressions for the reflection coefficients in s and p polarization are

Rm
s =

[
Z1Fr

m(J1) · ŝm +
jγm

z

k1
Fr

m(M1) · ŝm,⊥ − |km
T |

k1
Fr

m(M1) · ẑ
]

jk1e
−γm

z zmax

2γm
z A

, (B7)

Rm
p =

[
Y1Fr

m(M1) · ŝm − jγm
z

k1
Fr

m(J1) · ŝm,⊥ +
|km

T |
k1

Fr
m(J1) · ẑ

]
jk1Z1e

−γm
z zmax

2γm
z A

. (B8)
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