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RCS Reduction of Cylindrical Structure Using Mixed-Impedance

Boundary Conditions

Ali Azarbar1 and Mostafa Mashhadi2, *

Abstract—In this paper, the problem of RCS reduction in cylindrical structures with various boundary
conditions are investigated comprehensively. It has been done through a general form of boundary
conditions called Mixed-Impedance boundary conditions. Genetic algorithm, a powerful optimization
method, is used to explore specific conditions that provide major reduction of cylindrical structure’s
RCS. The optimizations are performed in case of normally and obliquely incident illuminations. Finally,
the optimized values are formulated in terms of incident angle to construct a simple and fast way of
evaluation of the minimum RCS situation. The results are compared with a cylindrical PEC structure,
and it has been verified that the optimized values of MI boundary conditions could result in significant
backward RCS reduction for both normal and oblique incident.

1. INTRODUCTION

Radar Cross Section (RCS) reduction has received a lot of attention in military applications (stealth
technology). The purpose of RCS reduction is to reduce the scattered electromagnetic field from the
object-of-interest. Three different techniques proposed for RCS reduction are the use of Radar Absorbing
Material (RAM), object shaping, and object coating.

So far, several methods have been proposed for implementation of RAM. The common method for
implementation of RAM coating is the Salisbury screen [1] in which a lossy resistive dielectric sheet
placed at λ/4 above a perfectly conducting plane. The drawbacks of the Salisbury screens are the overall
thickness and frequency angular dependence. To improve the performance of Salisbury screens as well
as reduction of its thickness, various techniques are used [2–5].

The mentioned techniques are mostly applied to planar structures. Therefore, they cannot be
efficiently used in cylindrical structures unless they are optimized for this purpose. In this paper, we
investigate the RCS reduction from cylindrical structure. For achieving this purpose, we optimize the
boundary conditions of cylindrical structure.

Recently a new anisotropic impedance boundary condition was introduced in [6], called mixed-
impedance (MI) boundary condition. In this boundary condition, boundary has two different surface
impedances for TE and TM polarization fields [6].

ETE = ZTEn× HTE (1)

HTM = − 1
ZTM

n× ETM (2)

where ZTE and ZTM are surface impedances of TE and TM polarized fields, respectively. In fact, the
MI boundary condition is a generalization of the more common PEC, PMC and classical impedance
boundaries and also the previously defined DB and D’B’ boundaries [7, 8]. In other words, PEC,
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PMC, classic impedance boundary, DB, D’B’ boundaries can be expressed as special cases of the MI
boundary. Isotropic impedance boundary that include the specific cases of PEC (ZTE = ZTM = 0) and
PMC (ZTE = ZTM = ∞) occurs when ZTE = ZTM . Also, it is shown that ZTE = 0 and ZTM = ∞
corresponds to DB boundary and ZTE = ∞ and ZTM = 0 corresponds to D’B’ surface [6].

The two surface impedances, ZTE and ZTM can also be expressed in terms of two other parameters
s, a [6].

ZTE = η(s + a), ZTM =
η

(s − a)
(3)

where s and a are called self-dual and anti-self-dual surface impedance parameters, respectively. The two
parameters of s and a determine whether boundary is a self-dual boundary or not. A medium and/or
boundary condition are called self-dual when they remain invariant in the duality transformation [9].
It is shown in [6] that when a = 0, MI boundary is a self-dual boundary for all values of s. Then s and
a are called the self-dual and anti-self-dual surface impedance parameters.

In the cylindrical structures with MI boundary, boundary conditions have the following form [10].

jkHρ − (s + a)
1
ρ

∂(ρHρ)
∂ρ

= 0 (4)

jkEρ − (s − a)
1
ρ

∂(ρEρ)
∂ρ

= 0 (5)

where Hρ and Eρ are normal components of electric and magnetic fields at the boundary surface.
In Section 2, the problem of RCS reduction of a MI boundary cylinder in normally incident

plane waves is investigated. Then, the two surface impedances are optimized to maximize the RCS
reduction. RCS reduction of an obliquely incident plane wave from a MI boundary cylinder is obtained
and optimized in Section 3, and the conclusions are given in Section 4.

2. BACKWARD RCS REDUCTION FROM MI CYLINDER IN A NORMALLY
INCIDENT PLANE WAVE

Let us suppose that a plane wave propagated in x-axis direction is normally incident upon a MI boundary
cylinder of radius R, as shown in Fig. 1. The RCS of this structure can be found from the following
equations [10]:

RCS = lim
ρ→∞

(
2πρ

∣∣∣∣Es

Ei

∣∣∣∣
2
)

=
4
k0

∣∣∣∣∣
n=+∞∑
n=−∞

Anjnejnϕ

∣∣∣∣∣
2

(6)

in which An for TMZ and TEZ polarizations are found from following equations respectively:

An = −(−j)n
Jn(k0R) + j(s + a)J ′

n(k0R)
H2

n(k0R) + j(s + a)H ′2
n (k0R)

(7)

An = −(−j)n
Jn(k0R) + j(s − a)J ′

n(k0R)
H2

n(k0R) + j(s − a)H ′2
n (k0R)

(8)

Figure 1. Uniform plane wave with normal incidence to MI cylinder.
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As observed from (7)–(8), in the case of ‘a = 0’ the cylinder boundary is a self-dual boundary and RCS
will be independent from the kind of polarizations. For the self-dual cylindrical boundary the coefficient
of An will be:

An = −(−jn)
Jn(k0R) + jsJ ′

n(k0R)
H2

n(k0R) + jsH ′2
n (k0R)

(9)

From above equation, it is observed that for a specific ϕ, such as backward direction (ϕ = 180◦),
RCS is a function of frequency, R the radius of cylinder, and s the self-dual parameter. Therefore,
it seems possible that properly choosing s can minimize the backward RCS of self-dual cylindrical
structure for a specified radius and frequency range. Here we adopt the frequency range of 8–10 GHz,
the ranges that RCS reductions is important in military applications, and find the optimized value of
s versus R to minimize the backward RCS. The optimization is done using genetic algorithm (GA).
The goal of GA is to minimize the average of backward RCS by optimizing the value of s for a specific
radius. The average of backward RCS is defined as the summation of backward RCS in the frequency
range of 8–10 GHz with step widths of 100 MHz per the number of frequency points. The optimization
goal can be expressed as the following equations.

min

⎛
⎜⎜⎝

n∑
i=0

RCS(f1 + iΔf,R = R0, ϕ = 180o, s)

n + 1

⎞
⎟⎟⎠ (10)

where f1 = 8 GHz, Δf = 100 MHz and n = 20. After GA optimizations, the real and imaginary parts
of s, which minimize the average backward RCS, are obtained and plotted versus R, shown in Fig. 2.
It is seen that when the radius of cylinder is smaller than free space wavelength (λ0 = 3 cm at centre
frequency 9GHz), the real and imaginary parts of s have oscillation behaviour; however, when the
radius of cylinder is larger than wavelength, the real and imaginary parts of s have a uniform variations
and close to values of 1 and 0 by increasing of radius, respectively.

Better analysis of this subject is possible by plotting two surface impedances ZTE and ZTM using
Eq. (3) which is shown in Fig. 3. This figure shows that for R < λ0, two surface impedances have
oscillation behaviour, while for R � λ0, the real and imaginary parts of two surface impedances are
near each other and close to free space impedance (η0 = 377). This result is predictable, since when
the radius of cylinder is several times greater than free space wavelength, cylinder can be assumed as a
planner surface in calculation of backward RCS. Therefore, in order to reduce the backward RCS, the
surface impedances must be equal to free space impedance η0.

The average backward RCS from a PEC cylinder and a self-dual MI cylinder with optimized values
of s is plotted in Fig. 4. It is observed that by increasing R, the backward RCSs of PEC cylinder
for two polarizations increase. The average backward RCS reduction between an optimized value of s
and a PEC cylinder (TEZ polarization are assumed for PEC cylinder) is plotted in Fig. 5. It is seen
that by increasing R, the RCS reduction is almost increased. RCS reduction of a cylinder with surface

Figure 2. The optimized values of real and
imaginary of ‘s’ versus cylinder radius.

Figure 3. The optimized values of real and
imaginary of ZTE and ZTM versus cylinder radius.
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Figure 4. The average backward RCS of PEC
cylinder and a cylinder with optimized values of
ZTE and ZTM .

Figure 5. The average backward RCS reduction
of a cylinder with an optimized values of ZTE and
ZTM and a cylinder with impedance surface of η0

in comparison with PEC cylinder.

Figure 6. The RCS reduction of a cylinder with
optimized values of ZTE and ZTM in comparison
with a PEC cylinder versus frequency for different
radius.

Figure 7. Uniform plane wave with oblique
incidence to MI cylinder.

impedance of η0 with respect to PEC cylinder is also plotted in Fig. 5. In this case, there is also a
better than 30 dB backward RCS reductions when R > λ0.

The backward RCS reduction of an optimized cylinder with respect to a PEC one’s versus frequency
and for different radii is plotted in Fig. 6. This figure also shows that by increasing R, the backward
RCS is reduced more.

3. BACKWARD RCS REDUCTION FROM MI CYLINDER IN AN OBLIQUELY
INCIDENT PLANE WAVE

Assume that a plane wave traveling parallel to the x-z plane is incident upon a cylinder of radius R,
which is shown in Fig. 7. The RCS of this structure can be found from the following equations [10]:

RCS = lim
ρ→∞

(
2πρ

∣∣∣∣Es

Ei

∣∣∣∣
2
)

=
4

k0ρ

⎛
⎝
∣∣∣∣∣
n=+∞∑
n=−∞

Anjnejnϕ

∣∣∣∣∣
2

+

∣∣∣∣∣
n=+∞∑
n=−∞

Bnjnejnϕ

∣∣∣∣∣
2
⎞
⎠ (11)

where k0ρ = k0 sin θi, An and Bn are co-polarization and cross-polarization coefficients of scattering
fields, respectively. These coefficients are generally different for two polarizations of TEZ and TMZ ,
which are given in [10]. However, in the special case of self-dual boundary a = 0, the coefficients of An

and Bn are equal for two polarizations. Another feature of MI cylinder is that cross-polarization is null
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in forward and backward directions. Therefore, only the coefficients of An participate in the backward
RCS, and the coefficients of Bn have no effects on the backward RCS. Therefore, the backward RCS
can be obtained from following equations:

Backward RCS =
4

k0ρ

∣∣∣∣∣
n=+∞∑
n=−∞

An(−j)n
∣∣∣∣∣
2

(12)

For a self-dual MI boundary, the coefficients of An are obtained from following equations [10]:

An =
D3D5 − D2D6

D1D5 − D2D4
(13)

where coefficients D1 to D6 are defined as follows:

D1 =
jk0zk0ρ

k2
0

(
jk0H

′2
n (k0ρR) − s

R

(
H

′2
n (k0ρR) + R0k0ρH

′′2
n (k0ρR)

))
(14)

D2 =
−n

k0η0R

(
jk0H

2
n(k0ρρ) − sk0ρH

′2
n (k0ρR)

)
(15)

D3 =
−jk0zk0ρ

k2
0

j−n
(
jk0J

′
n(k0ρR) − s

R

(
J ′

n(k0ρR) + R0k0ρJ
′′
n(k0ρR)

))
(16)

D4 =
nη0

k0R

(
jk0H

2
n(k0ρR) − sk0ρH

′2
n (k0ρR)

)
(17)

D5 =
jk0zk0ρ

k2
0

(
jk0H

′2
n (k0ρR) − s

R

(
H

′2
n (k0ρR) + R0k0ρH

′′2
n (k0ρR)

))
(18)

D6 =
−nη0

k0R
j−n

(
jk0Jn(k0ρR) − sk0ρJ

′
n(k0ρR)

)
(19)

where k0z = k0 cos θi. For oblique incident, GA can also be used to minimize the average of backward
RCS by optimizing the value of s for a specific radius. Similar to normal incident, the optimization goal
can be expressed as Equation (10) to optimized the values of s. After GA optimizations, the real and
imaginary parts of s, which minimize the average backward RCS are obtained and plotted versus R for
different incident angles θ, shown in Figs. 8(a) and (b), respectively. It is seen that when R < λ0, the
real and imaginary parts of s have oscillation behaviour; however, for R >λ0, the real and imaginary
parts of s have a uniform variation. Fig. 8 shows that when R � λ0, the imaginary parts of s close to
0 for various θ; however, the real parts of s is close to different values, which depends on incident angle
θ. Table 1 shows the final values of s for various θ when R � λ0. From this table, it can be concluded
that for R � λ0, s can be expressed as s = 1/ sin(θ). Therefore, the two surface impedances for R � λ0

are obtained as:
ZTE = η0/ sin(θ), ZTM = η0 sin(θ) (20)

(a) (b)

Figure 8. The optimized values of (a) real and (b) imaginary of ‘s’ versus cylinder radius.
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Table 1. The final values of ‘s’ for various θ when R � λ0.

θ(deg) 90 60 45 30
‘s’ 1 1.154 1.414 2

From Eq. (20), it is observed that by decreasing incident angle θ, the difference of two surface
impedances increases. For example, two surface impedances have the same value in the normal incident;
however, ZTE will be twice of ZTM when the incident angle is θ = 45◦. Fig. 9 shows the optimized
values of two surface impedances ZTE and ZTM for the incident angle θ = 45◦. It is observed that two
surface impedances ZTE and ZTM are 532 and 266 Ω for R � λ0, respectively.

Figure 9. The optimized values of real and
imaginary of ZTE and ZTM versus cylinder radius
for θ = 45◦.

Figure 10. The average backward RCS of PEC
cylinder and a cylinder with optimized values of
ZTE and ZTM for θ = 45◦.

Figure 11. The average backward RCS reduction
of a cylinder with an optimized values of ZTE and
ZTM and a cylinder with impedance surface of η0

in comparison with PEC cylinder for various θ.

Figure 12. The RCS reduction of a cylinder
with an optimized values of ZTE and ZTM in
comparison with a PEC cylinder versus frequency
for different radius and θ = 45◦.

The average backward RCS from a PEC cylinder and a self-dual MI cylinder with optimized values
of s and incident angle of θ = 45◦ is plotted in Fig. 10. The average backward RCS reduction from
a cylinder with optimized value of s with respect to PEC cylinder (TEZ polarization is assumed for
PEC cylinder) is plotted in Fig. 11 for several incident angles. It is seen that by decreasing θ, the RCS
reduction is also decreased. RCS reduction of a cylinder with surface impedances η0 with respect to
PEC cylinder is also plotted in Fig. 11. It is observed that in the oblique incident, cylinder with surface
impedances η0 cannot create remarkable backward RCS reduction in comparison with a PEC cylinder.
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Finally, the backward RCS reduction of an optimized self-dual boundary cylinder with respect to a PEC
one’s for different radii and incident angle of θ = 45◦ is plotted in Fig. 12. This figure shows that by
increasing R, the backward RCS is reduced more.

4. CONCLUSIONS

This paper investigates the problem of backward RCS reduction from cylindrical structures with MI
boundary conditions. It is expressed that in a cylinder with self-dual boundary, RCS has the same value
for both TEZ and TMZ polarizations and can be significantly reduced by properly choosing boundary
conditions. Initially, a normally incident uniform plan wave to the self-dual cylinder was studied, and
optimized boundary conditions was extracted using GA to minimize backward RCS in a frequency range
of 8–10 GHz. It is shown that in this case, when the radius is larger enough than λ0, the optimized
surface impedances will be equal to free space impedance η0.

Then, the backward RCS was studied for the oblique incidents and optimized surface impedances
was extracted for various incident angles. In this case, it is shown that surface impedances η0 cannot
provide remarkable RCS reduction. The optimum values of two surface impedances for R � λ0 can be
formulated as a function of incident angle which is expressed in the literature.
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