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Reciprocity Relations for Nonlinear Galvanomagnetic Transducer

Vyacheslav Ignatjev, Andrey Orlov*, and Sergey Perchenko

Abstract—This paper deals with reciprocity relations derivation for a nonlinear, stationary,
homogeneous and isotropic plasma-like medium in an external homogeneous magnetic field. A special
case of such a medium is the charge carriers collective in semiconductors. It is shown that the classical
reciprocity relations will be valid even in the presence of nonlinearity, and they can be used for Hall
magnetometer bias compensation.

1. INTRODUCTION

Phenomena of interaction between the cross-transfer processes have been studied for a long time. Kelvin
studied the thermoelectric effect, which occurs with the simultaneous flow of electric current and heat
in 1854. Also he obtained the first reciprocity relations on the basis of thermodynamic arguments.
Helmholtz obtained such relations in 1876. He researched transfer processes in electrolytes. Eastman
developed these relations for the diffusion and heat flow in 1926 [1]. The general theory was built in
1931 by Lars Onsager, for which he was awarded the Nobel Prize in 1968.

Onsager’s reciprocity relations are fundamental, and they are valid not only in thermodynamics.
For example, in the mechanics they are expressed in the form of reciprocity displacements (Maxwell-
Betti law) [2]. Reciprocity is widely used in acoustics [3], in the calculation and measurement of the
antennas characteristics [4], and to enhance the accuracy of magnetic measurements [5].

Onsager’s symmetry relations of the kinetic coefficients [6] are obtained in the linear approximation.
They are based on two assumptions: the invariance of the macroscopic motion under time reversal
and the fact that the average relaxation of spontaneous fluctuations in the system takes place in
accordance with the macroscopic laws. The theory of nonlinear permeability, based on the solution of
kinetic equations by expansion in powers of the electromagnetic field, is developed in modern nonlinear
electrodynamics [7]. This method can be used in the particular case of plasma-like media, which include
group of carriers in semiconductors, but the reciprocity relations for susceptibilities are not considered.

A number of studies present reciprocity relations for special cases [8]. The example of these studies
is the conductivity of weakly nonlinear finite size two-dimensional media [9], but as long as they have
not been confirmed by any precise and general method (or experiment) [10]. The influence of magnetic
field on the reciprocity relations has never been investigated for nonlinear media, in contrast to the
linear theory of Onsager.

There is a problem of optimizing the galvanomagnetic transducers design for a specific task [11].
Semiconductor materials with high sensitivity to temperature changes and high nonlinearity are often
used in sensor production. Thus, there are many problems of nonlinearity and temperature dependence
compensation. Studying the conditions under which nonlinear galvanomagnetic converters are reciprocal
allows using standard methods of compensation for their errors well [5].

The question of reciprocity magnetically nonlinear functional electronics devices has not been
considered previously. Generally, this problem does not seem to be solved, because general statistical
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methods reciprocal relations are not applicable to the case of the nonlinear relationship between the
forces and flows [10]. Reciprocity relations are postulated [12] for linear systems in thermodynamics
of nonequilibrium processes, and they are sometimes considered as the fourth law of thermodynamics.
Magnetically active plasma-environment in which the dynamics of charge carriers is described by the
kinetic equation in the relaxation approximation is of great interest. Reciprocity relations for this special
but important case can be obtained for a nonlinear medium in a magnetic field, described by the Vlasov
equation.

2. NONLINEAR CONDUCTIVITY OF PLASMA-LIKE MEDIA

Transport processes in the relaxation approximation are described by the kinetic Boltzmann’s equation.
It takes Vlasovs equation form for the medium in electric and magnetic fields:

∂f

∂t
+ v · ∂f

∂r
+ q(E + v × B) · ∂f

∂p
= −f − f0

τ
, (1)

where f(t, r, p) — distribution function of charge carriers (electrons or holes) on the coordinates and
momenta, f0(p2) — the equilibrium distribution function, q — the charge of the carrier, τ — the
ensemble average relaxation time. Equation (1) is not invariant to simultaneous inversion of the electric
and magnetic fields. Rotation E → −E and B → −B translates it to:

∂f

∂t
+ v · ∂f

∂r
− q(E + v × B) · ∂f

∂p
= −f − f0

τ
(2)

If function f+(p) = f(p,E,B) is the solution of Equations (1) and the function f−(p) =
f(p,−E,−B) is a solution to Equation (1), then generally f+(p) �= f−(p). Accordingly, the current
density is not invariant to the field inversion:

j(E,B) =
∫

qcp

m
f(p,E,B)d3p, (3)

where c is the concentration of charge carriers q. We cannot directly get the connection between functions
f+(p) and f−(p) in the momentum representation, to obtain relationship material equations j(E,B)
and j(−E,−B). However, integral (3) calculation is usually done by changing the variables [9, 13]. We
can perform transformation of variables, which is not invariant to field inversion. Then, Equation (1)
takes the invariant form. Let us turn to the new variables. We consider the case, where magnetic and
electric fields are constant, uniform, not in the same direction and not equal to zero. Let’s

ξ1 = p · E, ξ2 = p · B, ξ3 = p2. (4)

Let us obtain expression of momentum as the function of fields E, B and also variables (4). Then, after
expanding by vectors E, B and E × B,

p = A1E + A2B + A3B × E, (5)

where Ai — scalar coefficients. After scalar multiplying (5) on vectors E, B and p we obtain:

ξ1 = A1E
2 + A2E · B; ξ2 = A1E · B + A2B

2;

ξ3 = p2 = A2
1E

2 + A2
2B

2 + A2
3|B × E|2 + 2A1A2B · E.

Solving this system allows us to find Ai:

p =
B2ξ1 − E · Bξ2

|B × E|2 E +
E2ξ2 − E · Bξ1

|B × E|2 B +
√

D

|B × E|2 B × E. (6)

Conversions (4)–(5) are mutually unambiguous in solution region V

D = D(ξ,E,E) = ξ3|B × E|2 − (ξ2E + ξ1B)2 ≥ 0 (7)

where ξ is the vector with components ξ1, ξ2, ξ3 and
∂f

∂p
= E

∂F

∂ξ1
+ B

∂F

∂ξ2
+ 2p

∂F

∂ξ3
. (8)
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Equations (4), (6) and (8) are transformed to

ξ1 = −p · E, ξ2 = −p · B, ξ3 = p2, (9)

p = −B2ξ1 − E · Bξ2

|B × E|2 E − E2ξ2 − E · Bξ1

|B × E|2 B +
√

D

|B × E|2 B × E, (10)

∂f

∂p
= −E

∂F

∂ξ1
− B

∂F

∂ξ2
+ 2p

∂F

∂ξ3
. (11)

Expression (7) is invariant to the field inversion.
Equation (1) by means of (4), (6) and (8), and Equation (2) by means of (9), (10) and (11) are

converted in the same equation, which is invariant to field inversion(
E2 +

√
D
) ∂F (ξ)

∂ξ1
+ E · B∂F (ξ)

∂ξ2
+ 2ξ1

∂F (ξ)
∂ξ3

=
F (ξ) − F0(ξ3)

qτ
. (12)

New distribution function is

F (ξ,E,B) = f+

(
p =

B2ξ1 − E · Bξ2

|B × E|2 E +
E2ξ2 − E · Bξ1

|B × E|2 B +

√
D

|B × E|2 B × E

)

= f−
(

p = −B2ξ1 − E · Bξ2

|B × E|2 E − E2ξ2 − E · Bξ1

|B × E|2 B +
√

D

|B × E|2 B × E

)
.

An additional condition to Equation (12) can be obtained from physical considerations. In the zero
electric field ξ1 = 0, the function of the electron momentum distribution is determined only by the
magnetic field. This function should not depend on the magnetic field for an isotropic medium:
f(p,E = 0,−B) = f(p,E = 0, B). The distribution function in the zero electric field dependss on
p2 and p · B. Therefore, in view of the relations (4)

F (0, ξ2, ξ3 ≥ 0) = Φ(ξ2, ξ3), (13)

where Φ(ξ2, ξ3) — defined (known) function, and Φ(ξ2, ξ3, B) = Φ(ξ2, ξ3,−B).
The partial differential equation of the first order (12) with an additional condition (13) has a

unique solution in V (7) [13, 14], and

F (ξ,−E,−B) = F (ξ,E,B). (14)

We can note that in Equation (4) variables ξ1, ξ2 are linearly dependent on the E and B, but in
Equation (12), they are considered as independent variables, which are expressed by the momentum
components (6). Therefore, signs of the fields E and B and variables ξ1, ξ2, ξ3 in Equations (12) and
(13) are independent.

The sign change of fields E and B can change momentum components p, but the Jacobian J(ξ) of
transformation (4) does not change. Indeed, using formula (4), we obtain:

J(ξ,E,B) =
∂(p1, p2, p3)
∂(ξ1, ξ2, ξ3)

=
(

∂(ξ1, ξ2, ξ3)
∂(p1, p2, p3)

)−1

=

∣∣∣∣∣ E1 E2 E3

B1 B2 B3

2p1 2p2 2p3

∣∣∣∣∣
−1

=
1

2p [B × E]
=

1
2
√

D
.

Thereby from expression (7) we have

D(ξ,−E,−B) = D(ξ,E,B). (15)
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Hence, J(ξ,−E,−B) = J(ξ,E,B).
Then we can obtain for the constitutive Equation (3), which is based on formulas (6) and designation

ξ = {ξ1, ξ2, ξ3}

ji(E,B) =
∫

qcpi

m
f+(p,E,B)d3p =

qcEi/m

|B × E|2
∫∫∫

V

{
B2ξ1 − E · Bξ2

}
F (ξ,E,B)|J(ξ,E,B)|d3ξ

+
qcBi/m

|B × E|2
∫∫∫

V

{
E2ξ2 − E · Bξ1

}
F (ξ,E,B)|J(ξ,E,B)|d3ξ

+
qcεijkEjBk/m

|B × E|2
∫∫∫

V

√
D(ξ,E,B)F (ξ,E,B)|J(ξ,E,B)|d3ξ = σij

(
E,B

)
Ej , (16)

where

σij

(
E,B

)
= δij

{
K2(E,B)B2 − K1(E,B)E · B}

+K1(E,B)BiEj − K2(E,B)BiBj + εijkK3(E,B)Bk, (17)

— quasi-linear conductivity tensor, εijk — the unit antisymmetric tensor (Levi-Civita’s symbol)

K1(E,B) =
qc/m

|B × E|2
∫∫∫

V

ξ1F (ξ,E,B)|J(ξ,E,B)|d3ξ;

K2(E,B) =
qc/m

|B × E|2
∫∫∫

V

ξ2F (ξ,E,B)|J(ξ,E,B)|d3ξ;

K3(E,B) =
qc/m

|B × E|2
∫∫∫

V

√
D(ξ,E,B)F (ξ,E,B)|J(ξ,E,B)|d3ξ.

(18)

and repeated indices imply summation.
From (6), (14) and (15) it follows that

Kn(−E,−B) = Kn(E,B), n = 1, 2, 3. (19)

In the case of the fields inversion, similar to derivation (16) expression with the help of integral (3) and
(10), we can obtain:

ji(−E,−B) =
∫

qcpi

m
f−(p,−E,−B)d3p = σij

(−E,−B
)
Ej,

σij

(−E,−B
)

= δij

{
K2(−E,−B)B2 − K1(−E,−B)E · B}

+K1(−E,−B)BiEj − K2(−E,−B)BiBj − εijkK3(−E,−B)Bk. (20)

Let’s introduce the vector

j̃i(E,B) =
(
ji(E,B) + ji(−E,−B)

)
/2 =

{
σij

(
E,B

)− σij

(−E,−B
)}

Ej/2. (21)

If we propose
σ̃ij

(
E,B

)
=
{
σij

(
E,B

)− σij

(−E,−B
)}

/2, (22)

than
σ̃ij

(
E,B

)
= σ̃ji

(
E,−B

)
. (23)

3. DISCUSSION

Equation (21) represents the reciprocity relationship for stationary, homogeneous and isotropic medium
in a uniform magnetic field. This equation was obtained in the relaxation approximation of the Vlasov
kinetic Equation (1), and it is valid for plasma-like media described by this equation. Note that the
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following from the Vlasov Equation (1) and Equation (12) based on the Equations (4) and (7) in zero
electric field has trivial solution F (ξ) = F0(ξ3), i.e., f(p,E = 0, B) = f0(p2).

Thus, the magnetic field does not perturb the distribution function in zero electric field. It follows
from the stationary Vlasov Equation (1). This condition does not work for all systems. Ultrahigh
magnetic fields create primarily carrier motion in the direction of B. It takes place when the cyclotron
frequency ωC = qB/m is higher than the frequency of collisions ν = 1/τ . Therefore, the relaxation
approximation (1) does not apply to a magnetic field greater than BC = m/(qτ) = 1/β. For
semiconductors, the characteristic value of BC is about 200 mT. Reciprocal relations for a nonlinear
medium in a strong magnetic fields require special consideration.

Furthermore, reciprocity relations (21) are not applicable to the case of superstrong electric fields
when a plasma medium has fluctuations and other forms of instability. The uniqueness of Equation
(12) solution with the additional condition (13) physically corresponds to the stability of a plasma
environment. Equations (1) and (12) are valid at a constant carrier density. Therefore, reciprocity
relation (21) will not be executed in the modes of carriers avalanche multiplication and intervalley
transitions. The unstable state of a plasma environment and change of the charge carriers concentration
in a solid is possible when the energy acquired by a charge carrier mean free path is comparable to the
material bandgap. In semiconductors, this corresponds to the electric field of the 106 V/m order.

Finally, we note that the reciprocity relations (21) were obtained for the solid-state plasma,
homogeneous and isotropic crystal lattice which is a thermostat for the carriers group. It provides
stationary and the homogeneity of the distribution function in the fields, which vary little during the
Maxwell relaxation time and at a free path distance. In a weakly ionized plasma the role of the
thermostat may perform not the ionized gas molecules; however, the applicability of (21) to such cases
requires special consideration.

Thus, for quasi conductivity (23) classical reciprocity relations are held. They can be used to
improve the accuracy of the magnetosphere diagnosis [5] and optimization of working elements of
functional electronics [15]. The current distribution (21) can be obtained by combining the results
in various modes of the galvanomagnetic element. It follows from (23) that a method for reducing
errors of the Hall magnetometer, based on the use of linear reciprocal relations in crossed fields [5], will
be valid for a highly sensitive transducer Hall with nonlinear current-voltage characteristic. This will
improve the accuracy of magnetic measurements in problems of magnetic microstructural analysis and
nondestructive testing [16].

4. CONCLUSION

We prove the reciprocity relation for quasi-linear conductivity tensor for a plasma environment for
collective carrier of solid. We consider the relaxation approximation. Temporal and spatial scales of
field changes significantly exceed the Maxwell relaxation time and the free path of the charge carriers.
Proven reciprocity relations help to investigate a method using a magnetic device of electronics, including
the Hall effect transducer with significantly more metrological characteristics improving.

Further research will extend the relations of reciprocity from the quasi-linear conductivity tensor
to the integral relations to the defined geometry of magnetoactive devices.
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