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Electromagnetic Fields in Quasi-Fractal Waveguides Coated
with Chiral Nihility Metamaterial

Samina Gulistan, Aqeel A. Syed*, and Qaisar A. Naqvi

Abstract—Solutions of Maxwell’s equations for electromagnetic fields inside a waveguide coated with
chiral nihility meta-material and having one axis fractal are presented in this paper. A two-dimensional
line source placed at the center of the waveguide is taken as an excitation. Power of electromagnetic
fields inside the waveguide is determined, and results are plotted for various fractal dimension values
ranging from 1 < D ≤ 2, and thickness of the chiral nihility coating.

1. INTRODUCTION

Fractional paradigm in electromagnetics has recently gained much attention for its ability to cast new
physical problems of complex geometries and to find innovative solutions of existing ones. Fractional
calculus and the concept of fractional dimensional space are now well established mathematical tools
employed in this paradigm [1–13].

Fractional dimension is a very useful concept to formulate the physical description of a system with
complicated geometry relatively simple by introducing a fractional parameter related to the non-integer
dimension space. By employing the concept of fractional space, a real confining structure of seemingly
complex geometry can be theoretically replaced with an effective space, where the measurement of
its confinement is characterized by the fractional dimension parameter [8, 9]. This concept becomes
more important due to the fact that even our real world dimension is found to be of fractional order,
D = 3± 10−6, and not exactly of integer order as indicated by several experimental measurements [10].
Additionally, it is known that even simple physical geometries of common observance have fractional
dimensions on microscopic level.

Stillinger developed a formalism for constructing a generalization of integer dimensional Laplacian
operator into a non-integer dimensional space [8]. Several applications of this concept were soon
proposed by various researchers in physics [11–13]. The formulation of Schrodinger wave mechanics
and its various applications in an arbitrary D-dimensional space is provided in [14–23]. The
concepts of fractional operators and fractional space have been successfully used by various researchers
in electromagnetics to pose the problems and determine the solutions related to novel physical
geometries [24–36]. Some applications of the concept of fractional space in electromagnetic research
include the description of fractional multipoles in fractional space [24] and the study of electromagnetic
fields in fractional space by solving Poisson’s equation in D-dimensional space with 2 < D ≤ 3 [32].
Also the scattering phenomenon in fractal media is discussed in [35]. Behavior of electromagnetics
waves at dielectric fractal-fractal interface has been discussed in [38, 39]. The transmission and
reflection of electromagnetic waves due to a quasi-fractional slab are discussed in [40]. Electromagnetic
characteristics of a stratified meta-material structure placed in fractional dimension space is discussed
in [41].
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In this paper, we investigate the power propagation inside a quasi-fractal waveguide coated with
chiral nihility meta-material. A quasi-fractal waveguide may be realized by a confining structure
of fractal order along one or more dimensions. A chiral medium is a macroscopically continuous
medium composed of chiral objects, uniformly distributed and randomly aligned. Chiral medium is
characterized by either a left-handedness or a right-handedness in its microstructure. When excited by
an electromagnetic plane wave, such a medium is characterized by two intrinsic eigenwaves; a left-handed
and a right-handed circularly polarized waves, each having a different phase velocity and refractive
index [42–60]. Two wavenumbers k± associated with two eigenwaves are

k± = ω(
√

με ± κ)
where κ is the chirality parameter, and + and − correspond to the right circularly polarized (RCP)
and left circularly polarized (LCP) waves, respectively. The chiral medium is described by constitutive
parameters (ε, μ, κ) using the following relations [50]:

D = εE + iκH
B = μH− iκE

Chiral nihility medium is a special kind of chiral medium for which the real parts of permittivity
and permeability are simultaneously zero for certain frequencies [54–60], i.e.,

D = iκH
B = − iκE

Therefore, the wave number of the two eigenwaves at nihility frequency become
k± = ±ωκ

It may be noted that LCP in the chiral nihility is a backward wave, that is, direction of the phase
velocity will be anti-parallel to that of the Poynting vector.

In the following section, we briefly review general plane wave solutions in fractional dimension
space. Then formulation of fractional solutions for the waveguide will be presented in Section 3. By
using these results, power propagation inside the waveguide is determined and the plots depicting the
effect of fractionality of the dimension and nihility of the coating on the power are presented in Section 4.

2. GENERAL PLANE WAVE SOLUTIONS IN A FRACTIONAL SPACE

For source-free and lossless media, the vector wave equations for complex electric and magnetic fields
are given by the Helmholtz’s equation as follows [36, 37]:

∇2
DE + β2E = 0 (1)

∇2
DH + β2H = 0 (2)

where β2 = ω2με. Time dependency is taken as exp(iωt) and is omitted through out the paper for
brevity. Here ∇2

D is the scalar Laplacian operator in D dimensional fractional space and is defined as
follows [32]:

∇2
D =

∂2

∂x2
+

α1 − 1
x

∂

∂x
+

∂2

∂y2
+

α2 − 1
y

∂

∂y
+

∂2

∂z2
+

α3 − 1
z

∂

∂z
(3)

Here 0 < α1 ≤ 1, 0 < α2 ≤ 1, 0 < α3 ≤ 1, one for each axis, are fractional space parameters. The total
dimension of the space can be written in terms of these parameters as simply D = α1 + α2 + α3. If
solution of any of Equation (1) or (2) is found, other can be determined by the duality. In the following,
we rehash the solution of Equation (1). In a rectangular coordinate system, a general solution for E
can be written as

E(x,y, z) = x̂Ex(x, y, z) + ŷEy(x, y, z) + ẑEz(x, y, z) (4)
Substituting (4) into (1), we arrive at three scalar wave equations:

∇2
DEx(x, y, z) + β2Ex(x, y, z) = 0 (5a)

∇2
DEy(x, y, z) + β2Ey(x, y, z) = 0 (5b)

∇2
DEz(x, y, z) + β2Ez(x, y, z) = 0 (5c)
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By inserting the relation for ∇2
D in (5a), we get

∂2Ex

∂x2
+

α1 − 1
x

∂Ex

∂x
+

∂2Ex

∂y2
+

α2 − 1
y

∂Ex

∂y
+

∂2Ex

∂z2
+

α3 − 1
z

∂Ex

∂z
+ β2Ex = 0 (6)

Now using separation of variables, three ordinary differential equations are obtained. From which the
x dependent is [

∂2

∂x2
+

α1 − 1
x

∂

∂x
+ β2

x

]
f = 0 (7)

with
β2

x + β2
y + β2

z = β2. (8)

Rewriting (7) as [
x

∂2

∂x2
+ a

∂

∂x
+ β2

xx

]
f = 0 (9)

with a = α1 − 1, if we insert f =
√

π
2 (βxx)n1ζ, the equation is reduced to Bessel’s equation as follows[

x2 ∂2

∂x2
+ x

∂

∂x
+ (β2

xx2 − n1
2)

]
ζ = 0, n1 =

|1 − a|
2

(10)

The solution of Bessel’s equation is given as
ζ = C1 Jn1(βxx) + C2 Y n1(βxx) (11)

where Jn1(βxx) is Bessel function of the first kind of order n1, and Yn1(βxx) is a Bessel function of
second kind of order n1. Hence, the solution for Equation (7) becomes

f(x) =
√

π

2
(βxx)n1 [C1 Jn1(βxx) + C2 Y n1(βxx)] , n1 = 1 − α1

2
. (12)

Using above, the fields inside a fractional waveguide are written as

Ex(x, y, z) =
(√

π

2

)3

(βxx)n1(βyy)n2(βzz)n3 [C1 Jn1(βxx) + C2 Y n1(βxx)]

× [C3 Jn2(βyy) + C4 Y n2(βyy)] × [C5 Jn3(βzz) + C6 Y n3(βzz)] (13)

Ey(x, y, z) =
(√

π

2

)3

(βxx)n1(βyy)n2(βzz)n3 [D1 Jn1(βxx) + D2 Y n1(βxx)]

× [D3 Jn2(βyy) + D4 Y n2(βyy)] × [D5 Jn3(βzz) + D6 Y n3(βzz)] (14)

Ez(x, y, z) =
(√

π

2

)3

(βxx)n1(βyy)n2(βzz)n3 [G1 Jn1(βxx) + G2 Y n1(βxx)]

× [G3 Jn2(βyy) + G4 Y n2(βyy)] × [G5 Jn3(βzz) + G6 Y n3(βzz)] (15)
where C ′s, D′s and G′s are constants to be determined using the boundary conditions. These
solution can be used to study the phenomenon of electromagnetic wave propagation in any non-integer
dimensional space. Equation (12) is the generalization of the concept of wave propagation in integer
dimensional space to the wave propagation in non-integer dimensional space. As a special case, for
three-dimensional space, this problem reduces to classical wave propagation. That is, if we take α1 = 1
in Equation (12) then n1 = 1

2 and it gives

f(x) =
√

π

2
(βxx)

1
2

[
C1 J 1

2
(βxx) + C2 Y 1

2
(βxx)

]
(16)

where

J 1
2
(βxx) =

√
2

πβxx
cos

(
βxx − π

2

)
(17)

Y 1
2
(βxx) =

√
2

πβxx
sin

(
βxx − π

2

)
(18)
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Equation (16) can be written as

f(x) =
[
Ć1 sin(βxx) + Ć2 cos(βxx)

]
(19)

where Ć1 = C1 and Ć2 = −C2.
Note that for traveling wave propagation, Bessel functions are replaced with the Hankel functions

of first and second kind in the above expressions, respectively.

3. FIELDS IN FRACTIONAL WAVEGUIDES

The geometry of the guiding problem under consideration is shown in Figure 1. Two perfect electric
conductor (PEC) planes of infinite extent forming a parallel plate waveguide are located at z = d2 and
z = −d2. The whole space inside the parallel plate waveguide is divided into three regions. The regions
are parallel to the walls of the guide. Two regions labeled as Region 1 (−d2 < z < −d1) and Region
2 (d1 < z < d2) consist of chiral nihility material while Region 0 (−d1 < z < d1) is free space with
permittivity ε0 and permeability μ0. In all three regions media is fractal in dimensions and fractionality
is assumed along z-axis only, hence termed quasi-fractal. A two dimensional, time harmonic, exp(iωt),
electric current line source is placed at the origin of the Cartesian coordinate system. Total electric
and magnetic fields in the core of waveguide, region 0, are taken as combination of LCP and RCP
propagating towards ±z. We consider the general case of incident wave decomposed in terms of LCP
and RCP instead of plane wave. As the z axis is taken fractional, therefore, Hankel functions instead
of exponentials will be used for field components in this direction [43–45]. The electric and magnetic
fields for Region 0, in terms of unknown coefficients, can be written as

E0 =
∫ ∞

−∞
dkyζ(k0zz)nexp(−ikyy)

√
π

2
[x̂ H(2)

n (k0zz)

+ A+(N+
R) H(2)

n (k0zz) + B+(N+
L ) H(2)

n (k0zz)

+ A−(N−
R) H(1)

n (k0zz) + B−(N−
L ) H(1)

n (k0zz)], −d1 < y < d1 (20a)

H0 =
∫ ∞

−∞
dkyζ(k0zz)nexp(−ikyy)

√
π

2

[(
1

k0η0

)
[k0zŷ H(2)

n (k0zz) − ky ẑ H(2)
n (k0zz)]

− ı

η0
[ A+(N+

R) H(2)
n (k0zz) − B+(N+

L ) H(2)
n (k0zz)

+ A−(N−
R) H(1)

n (k0zz) − B−(N−
L ) H(1)

n (k0zz)]
]
, −d1 < y < d1 (20b)

Total electric and magnetic fields within each chiral layer, by virtue of multiple reflections at the
slab boundaries, are written as combination of four type of contributions: the spectrum of LCP and
RCP waves propagating towards ±z directions.

Z=d2            PEC

Z=d1

Z=-d1

Z=-d2           PEC

Region 0

Region 1

Region 2

z

0 y

Figure 1. Three layered fractal waveguide.
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The electric and magnetic fields in chiral regions of waveguide may be written in terms of unknown
coefficients as [43–45]

E1 =
∫ ∞

−∞
dkyζexp(−ikyy)

√
π

2
[ C+M+

R(k+
z z)n H(2)

n (k+
z z)

+ D+M+
L (k−

z z)n H(2)
n (k−

z z) + C−M−
R(k+

z z)n H(1)
n (k+

z z)]

+ D−M−
L (k−

z z)n H(1)
n (k−

z z)], −d2 < y < −d1 (20c)

H1 =
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−∞
dkyζexp(−ikyy)

√
π

2
−ı

η
[ C+M+

R(k+
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z z)

− D+M+
L (k−

z z)n H(2)
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R(k+
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n (k+

z z)]
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L (k−

z z)n H(1)
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dkyζexp(−ikyy)

√
π

2
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L (k−
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n (k−
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L (k−
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√
π

2
−ı

η
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n (k+
z z)

− F+M+
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n (k−
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where

N±
R = x̂± i

k0z

k0
ŷ − i

ky

k0
ẑ

N±
L = x̂∓ i

k0z

k0
ŷ + i

ky

k0
ẑ
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k+
z

k+
ŷ − i

ky

k+
ẑ

M±
L = x̂∓ i

k+
z
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ky
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ẑ

The exponential function is used to describe wave propagation in y direction, and Hankel function
of order n is used to represent wave propagation in z direction. Hankel function of 2nd kind represent
waves traveling in ‘z’ direction and Hankel’s functions of 1st kind represents waves traveling in ‘−z’
direction. The subscript R and L refer to the RCP and LCP eigen waves satisfying the dispersion
relations

k2
y + (k±

z )2 = (k±)2 (21)

where k0 = ω
√

ε0μ0, η0 =
√

μ0/ε0, η =
√

μ/ε and ζ = ωμ0I/4πk0z . k0z and ky satisfy the following
dispersion relation

k2
y + (k0z)2 = (k0)2 (22)

The unknown coefficients in the above expressions can be determined using the appropriate
boundary conditions. Application of the boundary conditions leads to following relationships for
unknown coefficients

A+ = A− = B+ = B− = − H
(2)
n (k0zd1)

4 Jn(k0zd1)

C− = E+ =
1

4T
k+

z

k0z

H
(1)
n (k+

z d1)
Jn(k0zd1)

, D− = F+ =
1

4T
k+

z

k0z

H
(2)
n (k+

z d1)
Jn(k0zd1)
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D± = −C∓, F± = −E∓, T =
k0η0k

+
z

k0zηk+
(23)

There are poles in the integration path when Jn(k0zd1) = 0. These poles are written as

k0z = (m + 1/2)
π

d1
+

π

4d1
+

nπ

2d1
, m = 0, 1, 2, . . . (24)

Using residue method of integration, the expressions in Equation (20) may be evaluated. Substitution
of unknowns coefficients in these expressions, yields E1 = E2 = 0.

Note that for α1 = 1 or n = 1
2 the constants takes the form

A+ = A− = B+ = B− = −
exp

[
− i

(
k0zd1 − π

2

)]

4cos
(
k0zd1 − π

2

)

 

 

 
 

 

(a) (b)

(c) (d)

(e) (f)

Figure 2. Power along the guide for d1 = 0.1 and at (a) D = 1.1, (b) D = 1.3, (c) D = 1.5, (d)
D = 1.7, (e) D = 1.9, (f) D = 2 and m = 0.
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C− = E+ =
1

4T

exp
[

i
(
k0zd1 − π

2

)]

cos
(
k0zd1 − π

2

) (25)

with k0z = (m + 1/2) π
d1

+ π
2d1

. These are same results presented in [46] for a non-fractional waveguide.
Also for α1 = 1 in Equation (7), we get back ordinary differential equation. Therefore, the results of [45]
can be thought of as a special case of our present study.

4. RESULTS AND DISCUSSION

In this section, numerical results for field power inside the waveguide are presented for various values
of fractional dimension D and thickness d of the nihility coating. In all figures frequency of 1 GHz is
taken while chirality parameter is κ = 5μoεo. Two modes, corresponding to m = 0 and m = 1, are
considered for this purpose. The results are depicted through Figures 2–7. Each figure depicts the

(a) (b)

 

(c) (d)

(e) (f)

Figure 3. Power along the guide for d1 = 0.1 and at (a) D = 1.1, (b) D = 1.3, (c) D = 1.5, (d)
D = 1.7, (e) D = 1.9, (f) D = 2 and m = 1.



210 Gulistan, Syed, and Naqvi

(a) (b)

 

 

(c) (d)

 

(e) (f)

Figure 4. Power along the guide for d1 = 0.2 and at (a) D = 1.1, (b) D = 1.3, (c) D = 1.5, (d)
D = 1.7, (e) D = 1.9, (f) D = 2 and m = 0.

 

 

(a) (b)
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(c) (d)

(e) (f)

Figure 5. Power along the guide for d1 = 0.2 and at (a) D = 1.1, (b) D = 1.3, (c) D = 1.5, (d)
D = 1.7, (e) D = 1.9, (f) D = 2 and m = 1.

(a) (b)

 

(c) (d)
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(e) (f)

Figure 6. Power along the guide for d1 = 0.3 and at (a) D = 1.1, (b) D = 1.3, (c) D = 1.5, (d)
D = 1.7, (e) D = 1.9, (f) D = 2 and m = 0.

 

 

                                             

       

(a) (b)

 

 

 

(c) (d)

(e) (f)

Figure 7. Power along the guide for d1 = 0.3 and at (a) D = 1.1, (b) D = 1.3, (c) D = 1.5, (d)
D = 1.7, (e) D = 1.9, (f) D = 2 and m = 1.
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power distribution inside the waveguide for a fixed value of thickness of coating and various values of
fractional dimensions, namely, D = 1.1, 1.3, 1.5, 1.7, 1.9, 2. Moreover, even numbered figures correspond
to mode m = 0, where as odd numbered figures to mode m = 1. Although, the fields inside the guide
show no variation along the y-axis, the results are depicted in 2-D plots for comparison with the results
presented in [45].

First we consider the results for m = 0, i.e., Figures 2, 4, and 6. These figures correspond to
thickness d = 0.1m, 0.2m, 0.3m, respectively. As shown in earlier results [45], chiral nihility in each case
confines the power to non-nihility region. Therefore, it can be argued that the power distribution inside
the waveguide bears no effect due to fractionality of the dimension. Inside the core of the waveguide,
for D = 2, there exists only one zone, in which power is distributed around central axis of the guide.
Fractionality of the dimension, on the other hand, causes the power distributed inside the core to split
into two zones each moving away from the central axis with decreasing fractional dimension from D = 2
to D = 1.1. It is also interesting to note that the fractional dimensional waveguide supports additional
modes despite the excitation field having only the zeroth order mode. Therefore, fractionality of the
waveguide dimension causes redistribution of power inside the waveguide with power concentrating to
the original mode of the waveguide with integer dimension D = 2. Similar trend in power distribution is
observed for the m = 1 excitation mode as depicted in Figures 3, 5, and 7. As before, except confining
the power in the non-nihility region of the waveguide, the nihility coating shows no effect due to the
fractionality of the dimension. Additionally, in this case, the central zone carrying non zero power
with integer dimension splits into additional zones each of them moving away from one another with
fractional dimension decreasing from D = 2 to D = 1.1.

5. CONCLUSION

The development of fractional paradigm in electromagnetics, on the one hand, and advent of meta-
materials on the other, motivates one to investigate the geometries composed of meta-materials
possessing the features of fractionality. In this article, we present a study of electromagnetic power
distribution inside a quasi-fractal waveguide coated with chiral nihility meta-material. It has been
noted that although chiral nihility coating plays the role of confining power to the non-nihility region
inside the waveguide, it shows no interaction with the fractional dimension of the waveguide. On the
other hand, it is found that fractionality of the waveguide dimension causes the presence of additional
waveguide modes, which move away from the center while increasing in power with a decrease in fractal
dimension. Or conversely stating, the fractal waveguide modes come close and collapse, i.e., power
concentrates, as the fractal dimension increases from D = 1.1 to D = 2. Therefore, chiral nihility
coating and fractionality of the waveguide dimension can be used to control the power distribution
inside a fractal waveguide. Moreover, fractionality of the dimension can be used to support additional
modes inside a fractal waveguide.
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