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Monitoring of Electromagnetic Environment along High-Speed
Railway Lines Based on Compressive Sensing

Diego Bellan* and Sergio A. Pignari

Abstract—This paper deals with an efficient methodology aimed at monitoring the radiated
electromagnetic emissions along a high-speed railway system in the hundreds of kilohertz range. In
particular, the proposed approach allows a compressed representation of the spatial distribution of the
frequency spectrum of the radiated magnetic field generated by the currents placed on the railway
conductors by electrical apparatus on board of running railway vehicles. The main idea underlying
this work is that the standing wave nature of current distribution along the railway line results in a
spatial distribution of radiated magnetic field which can be effectively represented by resorting to the
emerging compressive sensing theory. To this aim, wireless magnetic-field sensors are assumed to be
deployed along the railway line and used to provide spatial samples of the magnetic field spectrum.
The main advantages of the proposed approach include a smaller number of sensors when compared
with the number foreseen by the straightforward use of the conventional Nyquist-Shannon sampling
approach, and a simple treatment of nonuniform spatial distribution of sensors. Suitability of the
proposed approach is supported by measurement data and electromagnetic models already available in
the related literature, whereas effectiveness of field spatial reconstruction is proved through numerical
simulations. Although the application presented in this work is specific to the magnetic field distribution
in a limited frequency range, the proposed approach has a general validity and could be effectively
exploited for distributed monitoring of other physical quantities, in other frequency ranges, related to
electromagnetic compatibility and safety/security issues in high-speed railway systems.

1. INTRODUCTION

High-speed railway lines are complex systems from the structural, technological, and functional
viewpoints. As a consequence, and in consideration of their impact and relevance to today’s and
future society, smart and optimized management of all the safety aspects related to high-speed lines
is a mandatory and complex task. In this context, monitoring of the electromagnetic environment in
proximity of high-speed railway lines is an important issue for both technical and health-risk evaluation
reasons. Indeed, high levels of electrical power managed by modern railway systems together with
operation of switching devices on board of rolling stock result in conducted emission (CE) of unwanted
currents, mainly in the range of tens-hundreds of kilohertz, from the moving vehicle towards the railway
line [1, 2]. Such currents represent the source of radiated emission (RE) of magnetic field along a
railway system. A compressed representation of the spatial distribution of the magnetic field radiated
by a railway system is the main objective of this paper. Nowadays, the availability of wireless sensors
for magnetic/electric fields leads to the possibility to implement wireless sensor networks for monitoring
wide areas such as railway lines. However, the main problem arising from the need of monitoring an
area with large spatial extent is the huge amount of data to be acquired and processed. To face this
problem, the paper proposes an innovative approach based on the emerging theory of Compressive
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Sensing (CS) [3–12]. CS theory applies when the underlying signals of interest (in the time or in
the space domain) exhibit a degree of sparsity, which means that in an appropriate basis they can
be expressed in terms of a small number of nonzero coefficients with negligible information loss. For
the specific application under analysis, the basic assumption is that the spatial distribution of the
radiated magnetic field spectrum exhibits a proper degree of sparsity in the spatial frequency domain.
This property stems from the standing wave pattern of CE current along the railway line and can
be easily proven from previous works where both measurement data and modeling results have been
reported [1, 13]. Thus, since the field spatial distribution is sufficiently sparse, it can be recovered from
a number of observations smaller than the signal dimension, i.e., smaller than the number of samples
required by the straightforward use of the conventional Nyquist-Shannon approach. It follows that the
main advantage offered by CS in the given context is that the number of needed sensors can be much
less than the number foreseen by the direct and blind implementation of the classical sampling theory.
Moreover, since CS does not require uniform samples, spatial distribution of sensors is not required to
be uniform. Finally, notice that even though the application presented in this work is specific to the
magnetic field distribution in a limited frequency range, the proposed approach has a general validity and
could be effectively exploited for distributed monitoring of other physical quantities, in other frequency
ranges, related to electromagnetic compatibility and safety/security issues in high-speed railway systems.

The paper is organized as follows. In Section 2 the main concepts and background concerning
CS theory are recalled. In Section 3 the main properties of the electromagnetic environment along a
high-speed railway line are described, and the suitability of the CS approach is shown. In Section 4
numerical simulations are presented to validate the effectiveness of the CS approach in reconstructing
spatial distributions of magnetic field spectrum along a railway line. Finally, concluding remarks are
drawn in Section 5.

2. COMPRESSIVE SENSING AND FIELD RECONSTRUCTION

CS theory states that, under proper assumptions, a waveform can be reconstructed from a number of
measurements (or samples) much smaller than the number of measurements required by conventional
methods based on straightforward application of Shannon sampling theorem. CS theory is mainly based
under two assumptions: a) Sparsity of the waveform to be reconstructed; b) Incoherence concerning the
measurement (sensing) procedure. More specifically, sparsity exploits the property of most waveforms to
be represented by a small number of coefficients when a proper basis Ψ is adopted, whereas incoherence
refers to the property of a good sensing matrix Φ to be sufficiently incoherent to the basis Ψ under
which the waveform is sparse [5].

The main idea underlying CS theory is therefore to provide a compressed representation of
the waveform by implementing a measurement/sampling procedure (through the sensing matrix Φ)
consisting in correlating the waveform with a small number of waveforms exhibiting a random behavior
with respect to the sparsity basis Ψ (i.e., random projections). Thus, CS is a procedure performing
simultaneously and efficiently both sensing and compression of the waveform, moving the main
computational burden to the subsequent procedure of waveform recovery.

2.1. Field Sampling

The approach proposed in this paper foresees both time and space sampling. Time sampling is operated
through the conventional approach, whereas space sampling will take advantage of CS theory. More
specifically, it is assumed that each sensor operates in the time domain by sampling the component of
the magnetic field parallel to the ground and orthogonal to the railway line. The distance to the rails
is prescribed by the related Standards [1]. Then the time samples are transformed into the frequency
domain through the well-known Fast Fourier Transform. Thus, for each measurement time window,
each sensor provides the frequency spectrum at the related sensor location. The spatial distribution of
the magnitude of each frequency component of interest represents the space waveform to be sampled
and reconstructed through the CS approach.

Let us consider a discrete waveform f ∈ R
n in the spatial domain representing the spatial

distribution of a spectral component of the field under analysis. The measurement/sampling procedure
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can be described by the linear functional transformation:

yk = 〈f, ϕk〉 = ϕT
k f, k = 1, . . . ,m (1)

where m is the number of signal measurements, and {ϕk}m
k=1 are the measurement waveforms. In (1)

the field f is thus correlated with the measurement waveforms {ϕk}m
k=1. As an important special case,

exploited in the present work, if the measurement waveforms {ϕk}m
k=1 are Dirac’s delta functions then

the measured vector y consists of the samples of the field f .
In the following we are interested in the undersampling problem, i.e., the case where the number

m of measurements is much smaller than the dimension n of the signal. This circumstance is important
from a practical viewpoint since it corresponds to the case where the number of available field sensors
is limited with respect to the dimension of the field spatial distribution to be measured and recovered.

If Φ denotes the measurement matrix consisting of the row vectors {ϕT
k }m

k=1 of the measurement
waveforms, the vector of the measured values can be written as

y = Φf (2)

where y ∈ R
m with m < n. Notice that there exist infinitely many solutions f̃ ∈ R

n that give rise to
Φf̃ = y. Under the assumptions of sparsity and incoherence, however, CS theory provides one solution
of (2).

Moreover, notice that actual measurements are always affected by noise. Thus, in order to evaluate
the impact of noise on the reconstructed field, an additive noise term u should be added in (2) to provide
the analytical description of noise contribution:

y = Φf + u (3)

2.2. Sparsity and Incoherence

It is assumed that the field f can be represented in a proper orthonormal basis Ψ = [ψ1ψ2 . . . ψn]. Thus,
the k-th field component fk can be written as

fk =
n∑

i=1

xiψik (4)

where xi = 〈f, ψi〉 = ψT
i f , and the vector field f can be written as

f = Ψx (5)

In this work, by taking into account the electromagnetic environment described in Section 3, the
trigonometric Fourier basis will be adopted, i.e.,

f =

⎡
⎢⎢⎣

f1

f2
...
fn

⎤
⎥⎥⎦ = Ψx =

[
1n ψc,1 ψc,2 . . . ψc,(n−1)/2 ψs,1 ψs,2 . . . ψs,(n−1)/2

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0

a1

a2
...

a(n−1)/2

b1
b2
...

b(n−1)/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where

ψc,k =

⎡
⎢⎢⎢⎣

cos
(
2πk · 0

n

)

cos
(
2πk · 1

n

)
...

cos
(
2πk · n−1

n

)

⎤
⎥⎥⎥⎦ , ψs,k =

⎡
⎢⎢⎢⎣

sin
(
2πk · 0

n

)

sin
(
2πk · 1

n

)
...

sin
(
2πk · n−1

n

)

⎤
⎥⎥⎥⎦ (7)

and 1n is a column vector consisting of ones.
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A waveform is characterized by sparsity S when it can be represented, with negligible information
loss, by its largest S coefficients xi and by neglecting (i.e., by assuming equal to zero) the remaining
coefficients. By denoting as xS the vector consisting of the largest S coefficients and setting equal to
zero the remaining coefficients, we obtain the strict-sense sparse vector:

fS = ΨxS (8)

which provides an approximation to the field f . Since Ψ is an orthonormal basis,

‖f − fS‖l2
= ‖x− xS‖l2

(9)

it follows that if x is well approximated by xS then the error ‖f − fS‖l2 is small.
Incoherence can be fulfilled by selecting a random sensing matrix Φ. An interesting choice for the

application under analysis is ϕk(z) = δ(z − k), consisting in Dirac’s delta functions placed at sensor
locations. By selecting the Fourier basis as Ψ, the well-known sampling scheme is obtained. It can be
shown [5] that this choice corresponds to the maximal incoherence between Φ and Ψ, not just in one
dimension but in any dimension. Moreover, it is interesting to notice that a uniform sensors displacement
is not required for the adopted sampling scheme. This could be a very advantageous point in practical
applications where uniform displacement of sensors is not feasible or some sensors are not functioning.

2.3. Field Reconstruction

Given the m measurements in (1), CS theory states that the sparsest Fourier representation of the field,
consistent with measurements, can be recovered by �1-norm minimization of a vector x̃ ∈ R

n subject to
yk = 〈f̃ , ϕk〉 = 〈Ψx̃, ϕk〉, i.e., [5]:

min
x̃∈Rn

‖x̃‖�1
subject to yk = 〈Ψx̃, ϕk〉, k = 1, . . . ,m (10)

where ‖x‖l1 =
∑

i |xi|. It means that among all the objects f̃ = Ψx̃ consistent with the measurement
data, the selected object is the one whose sequence of Fourier coefficients is the sparsest and minimizes
the norm �1.

It can be shown that, under the assumption of incoherence, if the number of measurements m is
such that

m ≥ CS log n (11)

with C a positive constant, then the solution is exact with overwhelming probability.
Notice that the required number of measurements is of the order of S log n, therefore for a given

sparsity S the required number of measurements m increases with the signal length n. It means that
for proper signal reconstruction a degree of redundancy is required, i.e., a number of measurements m
greater than the signal sparsity S is necessary. This is the price to pay in order to recover spectral
components whose location on the frequency axis is unknown [12]. This point must be taken into
account when a comparison with the Nyquist-Shannon approach is performed. In fact, while theoretical
signal compression is n/S, the CS compression factor is n/m, i.e., the actual CS compression is lower
than the theoretical one [12]. Many researchers have put into evidence the practical rule m = 4S for m
selection. However, from (11) and the results in [12] it is clear that this is only an empirical rule, which
holds in many practical cases according to the weak logarithmic dependence from the signal length n. A
more accurate and explicit law for m selection is reported in [12]. Finally, it is worth noticing that the
minimum number of measurements has a probabilistic meaning, i.e., a small number of measurements
could result in a high probability to pick particular signal values that do not allow proper signal recovery.

3. ELECTROMAGNETIC ENVIRONMENT ALONG A RAILWAY SYSTEM

Modern high-speed railway systems consist of electrical apparatus involving high power levels and
switching technology for energy conversion. A moving train, in particular, can be seen as a moving source
of electrical disturbances injected into the railway system through the contact line. Such disturbances, in
the form of electrical currents with frequency spectra extended typically to several hundreds of kilohertz,
propagate along the horizontal conductors of the railway system (i.e., the contact line, the feeder, the
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rails, and the ground wires) which, in turn, behave as horizontal antennas generating electromagnetic
field. Measurement techniques for radiated electromagnetic emissions from a railway system have
already received attention in the technical literature. A standard technique foresees measurement of the
radiated field in a given measurement point along the railway line while the train is moving and passing
in front of such point. However, since the electromagnetic field is generated by the whole railway system
acting as an antenna as mentioned above, the maximum electromagnetic field is not measured when the
train is in front of the measurement point, but it could be measured when the train is a few kilometers
away from such point.

A much more complete characterization of the electromagnetic field radiated by a railway system
could be attained by placing electromagnetic field sensors along the whole railway line to provide a
proper spatial sampling of the field such that the field spatial distribution can be reconstructed. To this
aim, the CS theory recalled in Section 2 is very well suited for two main reasons. First, it is reasonable
to assume that the spatial behavior of the radiated field along a railway line has a sparse representation
in the spatial frequency domain. This point is closely related to the standing wave behavior of the
current injected into the railway line and it can be observed in Figures 1 and 2 where a typical spatial
distribution of the radiated magnetic field along a railway line 16 km in length and with the train in
position 4 km is shown. The figures have been obtained by means of a simplified model of a high-speed
railway line [13] showing a good agreement with more complex simulation models and with measurement
data [1]. In particular, in Figure 1 it is clear that by increasing the frequency from 60 kHz to 150 kHz
(vertical axis) the spatial distribution of the field increases its spatial frequency as well (i.e., spatial
maxima are closer each other). In Figure 2, as an example, the spatial distribution of the magnetic
field at 94 kHz and 141 kHz is shown. The spatial behavior is mainly consisting of a mean value and
a sine wave component. Notice that higher field frequency results in higher spatial frequency. It is of
paramount importance to notice that with the conventional Nyquist-Shannon approach, by increasing
the spatial frequency a larger number of sensors would be required for proper sampling. On the contrary,
thanks to the sparsity assumption, the CS approach does not require an increasing number of sensors
because the sparsity degree does not change.

The second reason for which CS is well suited to the problem at hand is that uniform placing of
sensors along the railway line is not required. In fact, uniform deployment of sensors could be not
practical in many situations. In other cases, some sensors could be not functioning. Indeed, uniform
sensor deployment is not required by the CS approach.
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Figure 1. Typical space-frequency distribution
of magnetic field along a simulated high-speed
railway line 16 km in length. The train position is
at 4 km.
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Figure 2. Spatial distribution of the magnetic
field along the simulated railway line considered
in Figure 1, for two specific frequencies, i.e., f =
94 kHz (black line) and f = 141 kHz (blue line).
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4. NUMERICAL VALIDATION

Field reconstruction based on the CS approach reported in Section 2 was validated within the application
context outlined in Section 3. In particular, as a specific example, the main objective was the assessment
of CS capability in the reconstruction of the field spatial distributions reported in Figure 2. The
frequencies in Figure 2 were selected since they correspond to strong frequency components in Figure 1.
However, the same validation could be performed for any frequency component of the magnetic field.
The main parameter to be selected for numerical validation is the number of sensors m, i.e., the number
of samples (or number of measurements) of the field to be reconstructed. The value m = 20 was
selected according to the practical rule of 4S mentioned at the end of Section 2. Indeed, according
to the practical rule, the choice m = 20 corresponds to a sparsity S = 5, i.e., the CS algorithm will
provide the largest 5 Fourier coefficients in the model (6). This seems to be a reasonable choice for
spatial distributions like those shown in Figure 2, since further Fourier components other than the mean
value and the fundamental sinewave component are needed to recover only the waveform details such as
discontinuity at train position and the sharp behavior at the waveform bottom part. A more accurate
selection of m requires the specification of the waveform length n according to redundancy recalled
in Section 2. A reasonable choice for n is 160 (i.e., one sample per 100 meters along the 16-km line)
since with the conventional Nyquist-Shannon approach and by taking into account the current standing
wave distribution, the corresponding maximum frequency of the field to be measured would be 750 kHz,
i.e., a frequency range including the range of practical interest. According to [12], the relative sparsity
S/n = 5/160 corresponds to a degree of redundancy m/S ≈ 4, i.e., the same value provided by the
practical rule mentioned above. Therefore the selected number of sensors is m = 20. The locations
of the m sensors are selected at random within the length of the considered railway line. In Figure 3
the field spatial distribution corresponding to f = 94 kHz (i.e., the black line in Figure 2) is plotted
together with a typical distribution reconstructed through the CS approach (red line). Notice that
the conventional Nyquist-Shannon approach would lead to an aliased reconstruction of the field since
the number of periods in Figures 3 is 10, whereas the number of uniform samples would be m = 20.
Moreover, notice that since the locations of the m sensors were selected randomly, repeated simulation
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Figure 3. Comparison between the original
behavior (black line) of the magnetic field along
the simulated railway line at f = 94 kHz (also
represented by the black line in Figure 2) and
the reconstructed field by means of the CS theory
approach (red line). The number of sensors
randomly distributed along the line is 20.

Figure 4. Numerically estimated pdf of the RMS
reconstruction error for the same field in Figure 3
(f = 94 kHz). Repeated run analysis (5000 runs)
was performed with m = 20 sensors with random
locations. Additive Gaussian noise effect was also
considered (red and blue lines).
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runs will provide slightly different behaviors. For each simulation run the RMS reconstruction error can
be evaluated. In Figure 4 the estimated probability density function (pdf) of the RMS reconstruction
error obtained through 5000 repeated runs is shown. The black line shows the noise-free case, while the
red and blue lines refer to independent additive Gaussian noise with zero mean and standard deviation
(STD) 10−2 and 10−1 respectively. Notice that the peak-to-peak amplitude of the field in Figure 3 is
about 1. The main source of noise in a practical implementation can be ascribed to analog-to-digital
(ADC) conversion of sensor signals. Notice that due to the need of reducing the amount of data to be
processed, low-resolution ADCs are required. In this case it is well known that quantization effects can
heavily affect the acquired data [9, 14–18], therefore the investigation of noise impact is of paramount
importance. In Figure 4 the noise level 10−2 clearly has no substantial effect, whereas the noise level
10−1 has a significant effect. In Figure 5 the numerical pdf of the RMS reconstruction error has been
estimated for a larger number of sensors, i.e., m = 25. A higher accuracy of the reconstructed field was
obtained since a larger number of Fourier coefficients was recovered by the algorithm. In fact, since the
waveform to be reconstructed is not sparse in a strict sense, the assumed sparsity S implies that the
other Fourier coefficients are neglected in the reconstruction.

Figure 6 compares the original and the CS reconstructed fields for the frequency f = 141 kHz
(i.e., the blue line in Figure 2) and m = 20. The same remarks as for Figure 3 hold in this case.
In Figure 6 a third line (i.e., the blue line) is reported, corresponding to the reconstructed field by
means of the conventional Nyquist-Shannon approach based on uniform sampling. Notice that since the
number of samples is m = 20, and the number of the original field periods in Figure 6 is 15, aliasing is
clearly apparent. Of course, it results in a completely wrong reconstruction of the field. This is a key
advantage of the proposed CS approach. In fact, while the Nyquist-Shannon approach would require an
increasing number of (equally spaced) measurement points for increasing spatial frequency of the field
to be reconstructed, the CS approach requires a constant number of measurement points provided that
the field sparsity does not change.

 

Figure 5. Numerically estimated pdf of the RMS
reconstruction error for the same field in Figure 3
(f = 94 kHz). Repeated run analysis (5000 runs)
was performed with m = 25 sensors with random
locations. Additive Gaussian noise effect was also
considered (red and blue lines).
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Figure 6. Comparison between the original
(black line) and the CS-reconstructed (red line)
magnetic field at f = 141 kHz along the simulated
railway line with m = 20. The blue line shows the
reconstructed field by means of the conventional
Nyquist-Shannon theorem, resulting in an aliased
reconstruction due to a number of sensors smaller
than required by such theorem.
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5. CONCLUSION

In the paper, it was proven that CS theory is very well suited for reconstruction of radiated magnetic
field along a high-speed railway line. It was shown that this is mainly due to the fact that a typical
space distribution of each magnetic-field frequency component has a sparse representation in the spatial
frequency domain since it is closely related to the standing wave nature of the corresponding current.
This feature results in a required number of sensors much lower than that required according to the
straightforward application of the conventional Nyquist-Shannon approach. This advantage becomes
more and more evident as the frequency of the magnetic field to be reconstructed increases. Moreover,
CS theory does not require a uniform distribution of sensors. This is of paramount importance in a
practical implementation of the proposed approach, since uniform distribution often cannot be attained
in a real railway system.
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