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One-Step Leapfrog HIE-FDTD Method for Lossy Media
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Abstract—The one-step leapfrog hybrid implicit-explicit finite-difference time-domain (HIE-FDTD)
method for lossy media is presented. By adopting the Crank-Nicolson and Peaceman-Rachford schemes,
the derived method involves calculations of the lossy terms at two different time steps. Different from the
original HIE-FDTD method, the proposed method can also be considered as a second order perturbation
of the conventional FDTD method. To verify the effectiveness of the proposed method, numerical
experiments are performed by using different FDTD methods. It is shown that the proposed method
can be more efficient than the conventional HIE-FDTD method with almost the same accuracy.

1. INTRODUCTION

The conventional finite-difference time-domain (FDTD) is an explicit difference method which is
restricted by the Courant-Friedrich-Levy (CFL) stability condition [1]. To remove this limitation,
the unconditional stable alternating-direction-implicit FDTD (ADI-FDTD) method was proposed in [2]
where one full time step calculations are divided into two sub-step computations. To improve its
efficiency, one-step leapfrog ADI-FDTD method was developed based on the conventional ADI-FDTD
method where the mid time step calculations are removed [3]. Further the leapfrog ADI-FDTD method
was extended to model lossy and other complex media [4–6]. However, the leapfrog ADI-FDTD method
needs to solve six implicit equations in one time step which is very time consuming. To overcome this
drawback, a large CFL number should be chosen. Therefore the leapfrog ADI-FDTD method is optimal
to simulate 3D electromagnetic problems with fine structures at low frequency.

On the other hand, some electromagnetic structures are only fine in one or two directions in
which the update equations should be calculated implicitly in order to remove the relations of stability
condition with such directions. Specifically, one hybrid implicit-explicit FDTD (HIE-FDTD) method [7]
and weakly conditionally stable FDTD (WCS-FDTD)method [8] were developed for modelling structures
with fine grid in one and two directions, respectively. Recently, the one-step leapfrog HIE-FDTD method
for lossless media was proposed in [9] where the stability condition is only determined by one grid size
and a larger CFL number can be selected than that in [7].

In this paper, we further extend the one-step leapfrog HIE-FDTD method for modelling lossy media.
The update equations are derived by using both the Crank-Nicolson (CN) and Peaceman-Rachford (PR)
schemes. Numerical results show that the computational time of one single step is slightly more than
that of conventional HIE-FDTD method but the CFL condition is more relaxed. Therefore the proposed
method can be more efficient by using a larger CFL number.

2. LEAPFROG HIE-FDTD FORMULATION FOR LOSSY MEDIA

In a lossy, non-dispersive medium with permittivity ε, permeability μ, and electric conductivity [σ], the
time-dependent Maxwell’s curl equations can be written in a concise form as

∂u

∂t
= [R]u + J (1a)
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where u = [Ex, Ey, Ez,Hx,Hy,Hz]T , J = [Je, 0]T , Je = [Jx, Jy, Jz ]T = [σ]E and

[R] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1
ε

∂

∂z

1
ε

∂

∂y

0 0 0
1
ε

∂

∂z
0 −1

ε

∂

∂x

0 0 0 −1
ε

∂

∂y

1
ε

∂

∂x
0

0
1
μ

∂

∂z
− 1

μ

∂

∂y
0 0 0

− 1
μ

∂

∂z
0

1
μ

∂

∂x
0 0 0

1
μ

∂

∂y
− 1

μ

∂

∂x
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1b)

[σ] =

[
σx 0 0
0 σy 0
0 0 σz

]
(1c)

By splitting the space operator [R] into two operators as [R] = [A] + [B] and applying the CN scheme
to (1a) at time step n + 1/2, we obtain(
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)

un+1 =
(

I +
Δt

2
[A] +

Δt

2
[B]
)

un + ΔtJn+1/2. (2)

Further, by introducing a second order perturbation Δt2[A][B](un+1 − un)/4, (2) can be approximated
by (
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By introducing an intermediate term un+1/2, (3) can be divided into two sub time step computations
as (
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Note that different [A] and [B] selections can result in different FDTD methods. Assumed that the
narrow grid is along the y direction, to obtain the HIE-FDTD method, [A] and [B] can be set as [9]

[A] =

⎡
⎢⎣ 0

C

ε
D

μ
0

⎤
⎥⎦ , [B] =

⎡
⎢⎣ 0 −D

ε

−C

μ
0

⎤
⎥⎦ , [C] =

⎡
⎢⎢⎢⎣

0 − ∂

∂z

∂

∂y
∂

∂z
0 0

0 0 0

⎤
⎥⎥⎥⎦ , [D] =

⎡
⎢⎢⎢⎣

0 0 0

0 0
∂

∂x
∂

∂y
− ∂

∂x
0

⎤
⎥⎥⎥⎦ .

(5)
Specifically, from (4a), the update equations from n to n + 1/2 can be obtained as

En+1/2 − Δt

2ε
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2
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e (6a)
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Similarly, from (4b), the update equations from n + 1/2 to n + 1 can be obtained as
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To obtain a leapfrog scheme, the similar derivative process as proposed in [3] is performed as follows.
First substituting (6b) into (6a), we have(
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Then replacing n with n − 1 in (7a) and (7b), we have
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Adding (8) and (10) on their both sides, we obtain the leapfrog equation for E as(
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Similarly, the leapfrog equation for H can be obtained as follows.
First substituting (6a) into (6b), we have(
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Adding (12) and (13) on their both sides, the leapfrog equation for H can be obtained as(
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Note that (11) and (14) are the one-step leapfrog HIE-FDTD method for lossy media which can be seen
as the FDTD method with a second order perturbation term Δt2[C][D]/4εμ.

For clarity, the equations of field components are given as(
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3. NUMERICAL RESULTS AND DISCUSSION

To check the accuracy and stability of the proposed leapfrog HIE-FDTD method, a PEC cavity filled
with lossy media was studied as depicted in Figure 1.

y

z

x
o

20 cells

20 cells

20
 ce

lls

5 cellsLine Current
Source

Observation
Point

Figure 1. The schematic of the computational domain: A PEC cavity filled with lossy media.

In the simulations, a nonuniform mesh Δx = Δz = 10Δy = 1mm was used and the cavity was
described by 20 × 20 × 20 cells. The electromagnetic field was excited by a line current source centered
at the computational domain extended from bottom to top along the y-direction as

Jy = exp
[
−4π (t − t0)

2 /τ2
]

(16)

where τ = 150ΔtFDTD/CFLN and t0 = 2τ with ΔtFDTD = 1/(c0

√
1/Δx2 + 1/Δy2 + 1/Δz2) being the

maximum time step of the traditional FDTD method, c being the speed of light in vacuum, CFLN
being the CFL number. The electric conductivity was set as σx = σy = σz = 0.2 S/m. The observation
point was placed at five cells away from the center of the cavity along the x-direction.

Figure 2 shows the recorded Ey at the observation point versus time computed by the proposed
HIE-FDTD method for lossy media. Because the maximum time step of the leapfrog HIE-FDTD method
is Δx/c0 [9] which leads to the maximum CFLN = (Δx/c0)/ΔtFDTD = 10.1, the result simulated with
CFLN = 10.1 is provided. Moreover the results simulated with CFLN = 1, 5, and the traditional FDTD
with CFLN = 1 are also given for comparison. It is seen that the result obtained with the proposed
method with CFLN = 1 agrees well with that of FDTD; the errors increase as CFLN becomes larger;
even for CFLN = 10.1, the numerical errors are acceptable.

Figure 3 provides the recorded Ey versus time computed by original HIE-FDTD method [10],
leapfrog ADI-FDTD method [5], and proposed HIE-FDTD method. All are computed with
CFLN == 7.1 which is the maximum time step of the original HIE-FDTD method [10], i.e.,
[1/(c0

√
1/Δx2 + 1/Δz2)]/ΔtFDTD = 7.1. To comparison, the result obtained by FDTD with CFLN = 1
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Figure 2. Recorded Ey at the observation
point versus time computed by the proposed HIE-
FDTD with CFLN = 1, 5, and its maximum value
10.1. The result computed by the conventional
FDTD method is also given for comparison.
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Figure 3. Recorded Ey computed by the leapfrog
ADI-FDTD, original HIE-FDTD, and proposed
HIE-FDTD, all with CFLN = 7.1 which is the
maximum time step of the original HIE-FDTD
method. The result computed by FDTD with
CFLN = 1 is also given for comparison.

Table 1. Comparison of the CPU time and Memory used by FDTD, leapfrog ADI-FDTD, original
HIE-FDTD, and proposed HIE-FDTD.

FDTD
leapfrog

ADI-FDTD
Original

HIE-FDTD
Proposed HIE-FDTD

CFLN 1 7.1 7.1 7.1 10.1
Number of iterations 1,000,000 140845 140845 140,845 99,010

Time (s) 140.4 79.6 50.8 55.8 39.7
Memory (Mb) 0.366 0.366 0.427 0.488

is also given. It can be seen that both the errors computed by original HIE-FDTD and proposed HIE-
FDTD are in the same level but smaller than that of leapfrog ADI-FDTD method. This is because, as
a hybrid explicit-implicit method, the numerical dispersion of the original HIE-FDTD method is nearly
the same as that of leapfrog HIE-FDTD method but both are smaller than that of leapfrog ADI-FDTD
method [9].

To make a further comparison in terms of CPU time and Memory, the results obtained by
FDTD, leapfrog ADI-FDTD, original HIE-FDTD, and proposed HIE-FDTD are given in Table 1. The
simulation platform was Lenovo PC with Intel i7 4770 k of 3.5 GHz and RAM of 16 GB; the source code
was written in Fortran language. It is seen that when CFLN = 7.1 the simulation time of the proposed
method is 55.8 s which is larger than that of original HIE method. This is because (15c) and (15f) of
the proposed method in this paper are a little bit more complex than those of the original HIE-FDTD
method [10]. However, this drawback can be made up by a large CFLN selection, e.g., CFLN = 10.1
which is the largest time step of the proposed HIE method. In terms of the memory used, the leapfrog
ADI-FDTD and FDTD method uses the same and the least. This is because there are only six field
components need to be stored for leapfrog ADI-FDTD and FDTD methods while the original HIE-
FDTD needs to store another one and the proposed HIE-FDTD method needs to store another two
field components of the passed time step.

To check the stability condition, numerical experiments were carried out by using the proposed
HIE-FDTD method with CFLN = 10.2 which is not satisfied the condition given in [9]. As a result, it
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was found that the field was unstable. To make a further investigation, more experiments were carried
out with different parameters and it was found that the stability condition of the proposed HIE-FDTD
method for lossy media was always the same as that proposed in [9].

4. CONCLUSION

The one-step leapfrog HIE-FDTD method for lossy media has been provided in this paper. This method
is derived based on the CN and PR schemes and can be extended for developing other one-step methods
for lossy media. Numerical results have shown that the proposed method can be more efficient than the
original HIE-FDTD method.
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