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Electrodynamic Characteristics of Horizontal Impedance Vibrator

Located over a Finite-Dimensional Perfectly Conducting Screen

Nadezhda P. Yeliseyeva, Sergey L. Berdnik,
Victor A. Katrich, and Mikhail V. Nesterenko*

Abstract—A problem of electromagnetic waves radiation by an impedance vibrator located over finite-
dimensional perfectly conducting screen is solved. The vibrator may have surface impedance distributed
over its length. The solution is derived using asymptotic expressions for the current in a horizontal
impedance vibrator placed over an infinite plane, obtained by averaging method. The problem was
solved provided that the diffracted fields from the edges of the screen have little effect on the vibrator
current amplitude, i.e., if the screen dimensions are comparable to or larger than the wavelength. Full
radiation fields in all observation space in the far zone were found by the uniform geometrical theory of
diffraction. The vibrator dimensions, value and type of surface impedance, removing from the screen and
screen sizes were used as parameters. The multivariable electrodynamic characteristics of the resonant
impedance vibrators placed above an infinite plane and square screen were studied. Characteristics
dependences upon the vibrator dimensions, value and type of the surface impedance, removing from
the screen, and screen dimensions were obtained.

1. INTRODUCTION

For solving the problem of diffraction of electromagnetic waves on material bodies, with characteristic
dimensions much larger than the wavelength, the concept of the diffracted rays was successfully used,
and geometrical theory of diffraction (GTD) was developed by Keller [1–3]. An analysis of the short-
wavelength asymptotics of the known rigorous solutions of the problem of diffraction of electromagnetic
waves on a wedge, cylinder, sphere has shown that an infringement of the laws of geometrical optics
(GO) occurs only in the narrow transition zones where there are excited diffracted fields. Propagation
of these fields away from the excitation region is determined by the laws of GO. Both GO and GTD
laws are local, i.e., fields on the adjacent rays do not interact. Therefore, Keller had found diffraction
coefficients using the exact solution of the model problem, which has the same local features of the
body geometry and the geometry of the incident wave front. The basic idea of this theory is that the
solution is determined everywhere, except the narrow transition zones in vicinity of the light-shadow
boundary of the GO waves as a sum of the fields satisfying the first approximation GO. However, the
GO field should be corrected by the diffraction terms corresponding to the short-wavelength asymptotic
expansion for the exact solution of the model diffraction problem. Field at any point in space (in the
Fresnel and Fraunhofer zones) outside the transition zone can be calculated using the formulas for the
edge wave fields and diffraction coefficients. The field in the transition zones (half-shadow field) is
expressed by the special functions obtained from the analysis of model problem.

The transition zones for the electromagnetic waves diffraction on bodies, with characteristic
dimensions comparable with the wavelength, are expanding. Therefore, for numerical calculation, one
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can use uniform diffraction coefficients suitable for both the far and near light-shadow boundaries of
GO waves. Thus, the GTD development can be divided into two stages: the ray representation of the
diffracted fields and uniform geometrical theory of diffraction (UGTD). Uniform diffraction coefficients
at the edge of a perfectly conducting half-plane for the cases when the source is an elementary electric or
magnetic dipole with axes parallel to the edge of the half-plane were defined in [4, 5]. These coefficients
are continuous for any angular coordinates defining the position of the source and observation points.
The matrix form of the uniform diffraction coefficient for the diffraction problem of the arbitrarily
oriented electric Hertz dipole field at the edge of the half-plane was obtained in [6, 7].

The UGTD developed in [6] for three-dimensional diffraction problems of an arbitrarily oriented
perfectly conducting half-wave vibrator field on the perfectly conducting infinitely thin finite size
rectangular screen, and on the corner reflectors of various configurations, has been used to calculate
the amplitude and polarization patterns of radiating systems. Experimental studies in the centimeter
wavelength [6, 8] have confirmed the high degree of reliability of the radiation patterns calculated by
UGTD method for half-wave vibrator over the rectangular screen, with sides equal to the wavelength.

Electrodynamics characteristics of vibrators with constant and variable along their length surface
impedance distribution were studied in [9, 10]. The vibrator can be located in an unbounded material
medium and over an infinite perfectly conducting plane. It has been shown that the vibrator with
fixed geometrical dimensions can be resonant tuned using the distributed inductive or capacitive surface
impedance. Thus, the length of the vibrator can be less or greater than half of the operating wavelength.
In the present paper, on the base of asymptotic solution of the integral equation for the current in the
horizontal impedance vibrator located above the infinite plane, we will find the field of such a vibrator
placed above a rectangular screen in all observation space in the far zone using UGTD. This structure
is considered the first time and creates new opportunities for formation electromagnetic fields with the
specified characteristics. The multivariable electrodynamic characteristics of the resonant impedance
vibrators above an infinite plane and square screen were studied. Dependences of the characteristics
upon the vibrator dimensions, value and type of the surface impedance, removing from the screen, and
screen dimensions were obtained.

2. PROBLEM FORMULATION

Let us consider a radiating system consisting of a thin impedance vibrator placed over a perfectly
conducting infinitely thin rectangular screen, with sides L and W . The vibrator radius is r, and its
length is 2l. The vibrator is located at a distance h above the middle of the screen. Let us introduce a
Cartesian coordinate system XY Z, with origin O in the middle of the screen and a spherical coordinate
system R̃, θ, ϕ, wherein the angles ϕ and θ are measured from the axes X, and Z, respectively (Fig. 1).
For an arbitrary orientation of the vibrator relative to the screen, the angle between the vibrator axis
and its projection on the plane XY is ν, and the angle between the vibrator axis projection onto the
plane XY andaxis X is ζ. In Fig. 1, the vibrators 1, 2 and 3 are directed along axes Z, Y and X,
respectively.

In accordance with the method UGTD (k → ∞, k = 2π/λ is the wave number and λ the wavelength
in free space), the field E(θ, ϕ) of radiating system in the far zone using the primary diffraction
approximation is the sum of incident (p = 1) and reflected (p = 2) GO fields of spherical waves
Ep, and the fields EDpn of once diffracted waves excited by the incident and reflected waves at each
n-th edge of the screen (n = 1 ÷ 4), and can be presented as

E(θ, ϕ) =
2∑

p=1

Epχp +
4∑

n=1

2∑
p=1

EDpnχpn . (1)

Since the screen dimensions are finite, each field has its own regions of light and shadow, whose boundary
equations in all observation space in the far zone are defined in [6]. In expression (1), shading coefficients
χp, χpn are equal to one and zero in the light and shadow regions of the incident, reflected and eight
diffracted waves, respectively.

In [11–13], the radiation patterns (RP) of the incident and reflected waves were calculated using
expressions for the far field of a thin perfectly conducting vibrator with sinusoidal current distribution
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Figure 1. Geometry of the problem and notations.

J(z) = J0 sin k(l − |z|), where J0 is the current amplitude. Now, we have used a thin vibrator as a
radiator distributed along its length surface impedance. Before finding the far GO field Ep and diffracted
fields EDpn for the impedance vibrator, we will focus on determining the current distribution on the
impedance vibrator, located in free space and above an infinite plane.

3. SOLVING THE EQUATION FOR CURRENT ON A THIN IMPEDANCE
VIBRATOR PLACED IN AN ARBITRARY ELECTRODYNAMIC VOLUME

Let a cylindrical conductor (vibrator) placed in an arbitrary electrodynamic volume bounded by a
smooth surface. The radius of the vibrator is r, and its length is 2l. The vibrator is excited by the field
of extraneous sources 	E0(	r), and 	r is the radius-vector of the observation point. The time dependence
is eiωt, and ω is the angular frequency. Material parameters of media filling the volume, dielectric
permittivity and magnetic permeability, are ε1 and μ1, respectively.

The vibrator is characterized by distributed surface impedance, which may be non-uniform along
its length. Since the vibrator is thin, following inequalities

r

2l
� 1,

∣∣∣∣ r

λ1

∣∣∣∣� 1 (2)

hold. Here λ1 is the wavelength in the medium. The starting point for the analysis is a quasi-one-
dimensional integral equation for the current in a vibrator [9, 10]

(
d2

ds2
+ k2

1

) l∫
−l

J(s′)GV
s (s, s′)ds′ = −iωε1E0s(s) + iωε1zi(s)J(s), (3)

Here s is the local coordinate associated with the axis of the vibrator, k1 = k
√

ε1μ1 the wave number
in the medium, GV

s (s, s′) the s-component of the tensor Green’s function of the electric type for the
volume V , E0s(s) the projection of extraneous sources on the vibrator axis, and zi(s) an internal linear
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impedance of the vibrator ([Ohm/m])

ĜV (	r,	r′) = Î
e−ik1|�r−�r′|

|	r − 	r′| + ĜV
0 (	r,	r′), (4)

where Î e−ik1|�r−�r′|
|�r−�r′| is the Green’s function of an unbounded space, Î the unit tensor, 	r′ the radius-vector

of the source point, and ĜV
0 (	r,	r′) the regular function satisfying the homogeneous equation [14]

ΔĜV
0

(
	r,	r′

)
+ k2

1Ĝ
V
0

(
	r,	r′

)
= 0 (5)

and guarantees, together with ÎG(	r,	r′), the fulfillment of boundary conditions on the surface volume for
the field of a point source located at 	r′. If S is an infinite perfectly conducting plane, the Green’s function
(4) can be constructed in two ways: by the mirror image method or by the eigenfunctions method [15].
These methods from the point of view concerning the physical interpretation are equivalent. The
advantage of the mirror image method is its obviousness, especially when V is half-space over a perfectly
conducting plane. However, this method is not always possible to be applied to other geometries of
volume V , and practical calculations, which in many cases, leads to a relatively complex analytical
expressions. The eigenfunctions method is more general and applicable to various forms of volume V ,
for example, for cylindrical waveguides and resonators [10], spherical resonators, unlimited space outside
the bodies of different configurations [16], etc. Using the eigenfunctions method we can write

GV
s (s, s′) =

e−ik1

√
(s−s′)2+r2√

(s − s′)2 + r2
+ GHs

0s (s, s′) + GD
0s(s, s

′), (6)

where e−ik1

√
(s−s′)2+r2√

(s−s′)2+r2
= e−ik1R(s,s′)

R(s,s′) = GFs
s (s, s′) kernel of the integral equation for the vibrator in an

unbounded space corresponding thin wire approximation [17], the function GHs
0s (s, s′) corresponds to

the presence of an infinite perfectly conducting plane located at a distance h from the vibrator axis,
and the function GD

0s(s, s
′) is defined by the waves diffraction on the edges of the screen.

3.1. Impedance Vibrator in the Free Space and over the Infinite Ideally Conducting
Plane

The solution of the equation for the current in the free space (ε1 = μ1 = 1) for zi = const was obtained
in [9, 10] by asymptotic method of averaging within the accuracy of order α2, (α = 1

2 ln[r/(2l)] is a natural
small parameter of the problem, |α| � 1). The symmetric (index “s”) and antisymmetric (index “a”)
current components, for an arbitrary vibrator excitation, have the form

J(s) = Js(s) + Ja(s) = α
iω

k

⎧⎨
⎩

s∫
−l

E0s(s′) sin k̃(s − s′) ds′

− sin k̃(l + s)
sin 2k̃l + αP s(kr, 2k̃l)

l∫
−l

Es
0s(s

′) sin k̃(l − s′) ds′

− sin k̃(l + s)
sin 2k̃l + αP a(kr, 2k̃l)

l∫
−l

Ea
0s(s

′) sin k̃(l − s′) ds′

⎫⎬
⎭ , (7)

where P s and P a are the functions of vibrator eigenfield equal to

P

{
s
a

}
(kr, 2k̃l) =

l∫
−l

[
e−ikR(s′,−l)

R(s′,−l)
± e−ikR(s′,l)

R(s′, l)

]
sin k̃(s − s′) ds′, (8)
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k̃ = k + i(α/r)Z̄S , Z̄S = R̄S + iX̄S = 2πrzi/Z0 is the distribution surface impedance of the vibrator,
normalized to Z0 = 120π Ohm.

Let us consider now the problem of the vibrator excitation by a concentrated electromotive force
with amplitude V0 in its geometrical center. The model of excitation can be represented as

E0s(s) = Es
0s(s) = V0δ(s − 0), (9)

where δ(s − 0) = δ(s) is Dirac delta-function. Then expression (7) for the current can be written as

J(s) = Js(s) = JFs
0 f(s) = −αV0

(
iω

2k̃

)
sin k̃(l − |s|)

cos k̃l + αPFs(kr, k̃l)
. (10)

Using the generalized integral functions [17] and expression (2) the function PFs(kr, k̃l) =
l∫

−l

e−ikR(s,l)

R(s,l) cos k̃sds can be written in explicit form:

PFs(kr, k̃l)
∣∣∣

r
λ
�1

≈ 1
2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos k̃l

[
2 ln(4l/r) − Cin(2k̃l + 2kl) − Cin(2k̃l − 2kl)
−i[Si(2k̃l + 2kl) − Si(2k̃l − 2kl)]

]

+ sin k̃l

[
Si(2k̃l + 2kl) + Si(2k̃l − 2kl)
−i[Cin(2k̃l + 2kl) − Cin(2k̃l − 2kl)]

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (11)

where Si(x) and Cin(x) are the integral sine and cosine of a complex argument.
The current distribution (10) allows calculation of electrodynamic characteristics of the impedance

vibrator in free space. For example, the input impedance of the vibrator at the feed point is

Zin[Ohm] =
V0

J(0)
=

(
60ik̃
αk

)
cos k̃l + αPFs(kr, k̃l)

sin k̃l
. (12)

If the vibrator is located horizontally at a distance h above the infinite perfectly conducting plane,
the function GHs

0s (s, s′) in formula (6) has the following form

GHs
0s (s, s′) = − e−ik

√
(s−s′)2+(2h+r)2√

(s − s′)2 + (2h + r)2
= −e−ikRh(s,s′)

Rh(s, s′)
. (13)

Then, the expressions for the current and input impedance of the vibrator are

J(s) = JHs
0 f(s) = −αV0

(
iω

2k̃

)
sin k̃(l − |s|)

cos k̃l + αPHs[k(r + h), k̃l]
, (14)

Zin[Ohm] =
V0

J(0)
=

(
60ik̃
αk

)
cos k̃l + αPHs(kr, k̃l)

sin k̃l
. (15)

In formulas (14)–(15) the function PHs(k(h + r), k̃l) =
l∫

−l

e−ikRh(s,l)

Rh(s,l) cos k̃sds can also be represented in

explicit form

PHs(k(h+r), k̃l)
∣∣∣

r
2l
�1

≈PFs(kr, k̃l) − 1
2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cos k̃l

⎡
⎣ ln

B + 2kl

B − 2kl
+ Cin(B − 2kl) − Cin(B + 2kl)

−i[Si(B + 2kl) − Si(B − 2kl)]

⎤
⎦

+sin k̃L

[
Si(B + 2kl) + Si(B − 2kl) − 2Si(A)
−i[Cin(B + 2kl) + Cin(B − 2kl) − 2Cin(A)]

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(16)
where A = k(2h + r) and B =

√
(2kl)2 + A2.

Figure 2 shows the results of comparative calculations of the vibrator eigenfield functions PFs(kr, k̃l)
and PHs(k(h+r), k̃l) by the numerical integration and by the approximate relations (11) and (16). As
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Figure 2. The functions of the vibrator eigenfield, versus the surface impedance value.

can be seen, the coincidences of the numerical and analytical values are satisfactory, especially at the
relatively low values of the surface impedance.

As shown in [13], the resonant electrical length of a half-wave vibrator with account of diffraction
effects at the screen edges coincides with the resonant length of an electric vibrator above the infinite
plane if the screen size greater than the wavelength. In our problem, we may assume that for the screen
dimensions comparable to or greater than the wavelength, the influence of the diffracted field upon the
vibrator current can be small. Therefore, the current in Eq. (6) can be found setting GD

0s(s, s
′) = 0. The

influence of the screen edges on the total field amplitude will be taken into account by the diffracted
fields using UGTD according to Eq. (1). Further, we will use this approach.

3.2. Resonant Properties of Impedance Vibrators

Since resonances are observed, when the imaginary part of the vibrator input impedance in Eq. (12) is
equal to zero (Xin = 0), we arrive at the transcendental equation for the resonant electrical length of
the impedance vibrator in the free space

cos(k̃l)res + αRePFs
[
kr, (k̃l)res

]
= 0, (17)

where RePFs is the real part of the function PFs, defined by Eq. (11).
Let us find an approximate solution of Equation (17), expanding the unknown quantity in powers

of the small parameter α
(k̃l)res = (k̃l)0 + α(k̃l)1 + α2(k̃l)2 + . . . (18)

Substituting Eq. (18) into Eq. (17) and equating terms of equal powers of α, up to terms of order α2,
we have:

(k̃l)res ≈ π

2
+ αRePFs

(πr

2l
,
π

2

)
=

π

2
+

α

2

[
Si
(

2π + α
2l
r

X̄Sres

)
− Si

(
α

2l
r

X̄Sres

)]
. (19)

The formula for the value of the surface impedance of the resonant vibrator in the free space, depending
on its dimensions and the wavelength, can be obtained by setting X̄Sres ∼ r

2l as:

X̄Fs
Sres =

Ωr

l

[
π

2
− kl − Si(2π)

2Ω

]
, Ω = 2 ln

2l
r

. (20)

Analogously, X̄Hs
Sres for the vibrator over the plane may be presented as

X̄Hs
Sres =

Ωr

l

⎡
⎣π

2
−kl−

Si(2π)−Si
(
π
√

1+(h/l)2+π
)
−Si

(
π
√

1+(h/l)2−π
)
+2Si (π(h/l))

2Ω

⎤
⎦ . (21)

Formulas defining specific realizations of the vibrator surface impedance are given in Appendix A.
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4. DETERMINATION OF GO AND DIFFRACTED FIELDS

4.1. Field Radiation Pattern for the Impedance Vibrator in Free Space and over the
Plane

The field RP of an arbitrarily oriented impedance vibrator in the free space (ε1 = μ1 = 1) can be found
by substituting expression for the current Eq. (10) into the formula for the Hertz vector potential in
the far zone and integrating it over the length of the vibrator. If the observation angle θ is measured
from the axis Z, the RP of impedance vibrator 1, parallel to the axis Z, has the following form

F‖(θ) = kk̃ sin θ
cos k̃l − cos(kl cos θ)

(k cos θ)2 − k̃2
. (22)

The RP of the vibrator oriented at an angle ζ to the axis X, i.e., for vibrators 2 and 3 (Fig. 1), can be
presented as

F⊥(θ, ϕ) = kk̃
cos k̃l − cos(kl cos θ′)

(k cos θ′)2 − k̃2
, (23)

where cos θ′ = sin θ cos(ϕ−ζ). For the vibrator 2 and 3 the angle ζ is equal to π/2 and zero, respectively.
Taking into account of Eq. (22), the far field of the impedance vibrator 1 in the spherical coordinate
system ρ, θ, ϕ associated with the middle of the vibrator has only one component

Eθ∞(θ) = i
JFs

0 Z0

2π
exp(−ikρ)

ρ
F‖(θ), (24)

where JFs
0 is the current amplitude of the impedance vibrator in the free space (10).

If the impedance vibrator 1 is located at a distance h from a perfectly conducting plane, the far
field of the incident and reflected waves (p = 1, 2) in the coordinate system R̃, θ, ϕ associated with the
plane according to the boundary condition and the expression (24) has the following form

Eθp|| (θ, ϕ) = (−1)p+1 i
JHs

0 Z0

2π
exp(−ikρp)

ρp
F‖(θ). (25)

Here JHs
0 is the amplitude of current on the impedance vibrator in the presence of a perfectly conducting

plane (14), and ρp is the distance from the GO wave radiator (p = 1, 2) to the observation point.
The eikonals of the incident sinc and reflected sref waves are equal

sinc,ref = ρp =
[
h2 + R̃2 − 2R̃h sin θ cos (ϕ − ϕ0p)

]1/2
, (26a)

where ϕ0p = 0 and π are elevation angles of the radiators p = 1, 2 in the coordinate system R̃, θ, ϕ. In
the far field in the dominator of Eq. (25) ρp = R̃ and the eikonals of the incident sinc and sref reflected
waves in the phase factor of Eq. (26a) take the form

sinc,ref = R̃ − h sin θ cos (ϕ − ϕ0p) . (26b)
The final expressions for the incident and reflected fields in the GO approximation when the screen is
excited by the vibrator 1 can be written, using the expressions (25)–(26b) in the form

Eθ‖p (θ, ϕ) = (−1)p+1JHs
0 E0F‖(θ) exp(ikδp), (27a)

where

E0 = 60i
exp(−ikR̃)

R̃
, δp = h sin θ cos (ϕ − ϕ0p) , (27b)

δp is the path difference of parallel rays passing from the origin O in the coordinate system R̃, θ, ϕ and
from the middle of the p-th GO wave radiator in the observation direction (θ, ϕ); F‖(θ) is the RP of
the impedance vibrator 1 in the free space (22).

The electric field vector for the vibrator 2 in the same coordinate system has two components [6]
Eθ⊥p (θ, ϕ) = −JHs

0 E0F⊥(θ, ϕ) cos (ϕ − ζp) cos θ exp (ikδp) , (28a)

Eϕ⊥p (θ, ϕ) = JHs
0 E0F⊥(θ, ϕ) sin (ϕ − ζp) exp (ikδp) , (28b)

where F⊥(θ, ϕ) is the RP for the impedance vibrator 2 in the free space (23); the angles ζp = π/2
(p = 1), ζp = 3π/2 (p = 2).
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4.2. Fields of Waves Diffracted on the Screen Edges

Let us now define the fields of impedance vibrator 1 diffracted by four sharp edges of the perfectly
conducting rectangular screen. Let us introduce the rectangular proper coordinate systems (PCS)
XnYnZn at each edge of the screen (see Fig. 1) so that the Xn axis lies in the plane of the screen;
the axis Zn is directed along its edge; the middle of the vibrator is in a plane XnYn. In the spherical
coordinate systems Rn, θn, ϕn, associated with the rectangular PCS, the angles θn and ϕn are measured
from the axes Zn and Xn, respectively. A virtual diffraction radiator is allocated on each edge of
the screen in the PCS origin. The RP of the radiator corresponds to that of the edge wave which is
excited by the Hertz dipole field at the edge of the perfectly conducting half-plane. Expressions for the
components of the edge wave field in the far zone, uniform for all observation angles, are obtained using
the approximation of rigorous solutions [18] by zero terms of their asymptotic expansions on degrees of
(kρ)−1 in the PCS on the edge of the half-plane. Approximation expressions of field components for
the dipoles parallel and perpendicular to the half-plane edge are valid for any distance r0 between the
dipole and the half-plane edge if the inequality R̃ � r0 holds.

If the n-th screen edge is excited by the vibrator parallel to this edge, the asymptotic fields of unit
edge waves excited by the incident and reflected waves (p = 1, 2) in the coordinate system Rn, θn, ϕn

are the product of the GO field amplitude Eθ‖p(θn, ϕn) in the observation direction and function T (ξpn)
describing transition from light to shadow regions of the GO waves [6]

Eθ‖pn (θn, ϕn) = Eθ‖p (θn, ϕn) T (ξpn) . (29)

If the n-th screen edge is excited by the vibrator perpendicular to this edge, the uniform approximation
of diffracted field excited by the incident wave (p = 1) has the form

Eθ⊥pn (θn, ϕn) = Eθ⊥p (θn, ϕn)T (ξpn) −
√

2
πkrpn sin θn

cos θn sin
ϕn

2
sin

(
γpn − ϕpn

2

)
× exp [−i (krpn sin θn + π/4 − kδn)] , (30a)

Eϕ⊥pn (θn, ϕn) = Eϕ⊥p (θn, ϕn)T (ξpn) −
√

2
πkrpn sin θn

cos
ϕn

2
sin

(
γpn − ϕpn

2

)
× exp [−i (krpn sin θn + π/4 − kδn)] , (30b)

while the diffracted field excited by the reflected wave (p = 2), can be written as

Eθ⊥pn (θn, ϕn) = Eθ⊥p (θn, ϕn)T (ξpn) , Eϕ⊥pn (θn, ϕn) = Eϕ⊥p (θn, ϕn) T (ξpn) . (30c)

Here Eθ‖p(θn, ϕn), Eθ⊥p(θn, ϕn), Eϕ⊥p(θn, ϕn) are the GO field components in the material medium
surrounding the vibrator; rpn, ϕpn are the polar coordinates of the p-th GO wave radiator in the PCS
on the n-th edge; γpn is the angle between the axis of the p-th radiator and OnXn axis. The polar
coordinates of the p-th radiator in the PCS are

rpn =
(
x2

pn + y2
pn + z2

pn

)1/2
, ϕpn = arctg(ypn/xpn). (31a)

For the problem geometry of Fig. 1, the radius vector for the p-th GO radiator in the PCS on the lateral
1, 2 and transverse edges 3, 4 can be written as

r1,2 =
√

h2 + (L/2)2, r3,4 =
√

h2 + (W/2)2 . (31b)

4.3. Transition Functions from Light to Shadow

The uniform field asymptotics for the edge waves in Eqs. (29)–(30c) contain the transition function from
light to shadow T (ξpn) for the incident (p = 1) and reflected (p = 2) waves diffracted at the n-th screen
edge

T (ξpn) = ±Φ
(|ξpn|

√
i
)− 1

2
, Φ

(
ξpn

√
i
)

= 2π−1/2 exp (iπ/4)

ξpn∫
0

exp
(−it2

)
dt, (32a)
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where “+” and “−” signs are used respectively in the light and shadow regions of the GO fields. Here
Φ(|ξpn|

√
i) is the probability integrals of complex arguments, where

|ξ1n| =
√

k(sed1n − sinc), |ξ2n| =
√

k(sed2n − sref). (32b)

Here, sed2pn is eikonal of the edge wave, excited by the p-th GO radiator on the n-th edge, and sinc and
sref are eikonals of the incident or reflected waves, determined by formulas (26a)–(26b).

The edge wave eikonal sedpn is equal to the sum of optical paths s′pn along the GO ray from the p-th
source to the diffraction point Q on the n-th screen edge, and spn from the point Q to the observation
point M(θn, ϕn) along the diffracted ray QM

sedpn = s′pn + spn, s′pn = rpn/sin θn. (33)

In the far-field arguments in Eq. (32b), expressions for ξpn can be simplified

|ξpn| =
√

2krpn sin θn cos
ϕn − ϕpn

2
. (34)

Here we have taken into account the ratio in Eq. (33) and the facts that the distance spn = R̃− rpn cos2 θn

sin θn
,

while sinc,ref are defined by formula (26b), and rpn and ϕpn by formulas (31a)–(31b).
When GO wave crosses the light-shadow boundaries ϕn = π − ϕpn in the PCS, argument of the

probability integral ξpn in Eq. (34) changes its sign. Since the probability integral is antisymmetrical, the
sign of the transition function T (ξpn) in Eq. (32a) also changes its sign. At the light-shadow boundaries,
the argument of the probability integral is ξpn = 0, hence Φ(0) = 0 and T (0) = ±1/2. Owing to this
jump in the phase of unite edge wave, the amplitude of the total field at the light-shadow boundary of
the GO waves remains continuous. Following from Eqs. (32a) and (34), the functions T (ξpn) for the
incident and reflected waves depend on the wavelength, medium parameters, vibrator position (rpn, ϕpn)
relative to the screen edge, and observation direction (θn, ϕn).

4.4. GO Fields in the Coordinate Systems on the Screen Edges

The diffracted fields are defined in the PCS on n-th edge by expressions (29)–(30c), depending on the
fields of the incident and reflected waves in the observation direction (θn, ϕn). The expressions for the
GO fields of the vibrator parallel to the screen edge can be defined using Eq. (27a) as

Eθ‖pn (θn, ϕn) = (−1)p+1 JHs
0 E0F‖(θn) exp [ik(δn + δpn)] , (35)

and for the vibrator perpendicular to the screen edge can be written using Eqs. (28a)–(28b)

Eθ⊥p (θn, ϕn) = −JHs
0 E0F⊥ (θn, ϕn) cos (ϕn − γpn) cos θn exp [ik(δn + δpn)] , (36a)

Eϕ⊥pn (θn, ϕn) = JHs
0 E0F⊥ (θn, ϕn) sin (ϕn − γpn) exp [ik(δn + δpn)] . (36b)

The terms in the exponentials of expressions (35)–(36b) are defined as follows: δpn is the path difference
for the rays passing from the middle of the p-th radiator and from the PCS origin On on the n-th screen
edge in the observation direction (θn, ϕn); δn is the path difference for the rays passing from the origin
O and from the point On in the coordinate system R, θ, ϕ in the observation direction

δpn = rpn sin θn cos (ϕn − ϕpn) , δn = x0n sin θ cos ϕ + y0n sin θ sin ϕ + z0n cos θ. (37)

The rectangular coordinates x0n, y0n, z0n of the PCS origin On on n-th screen edge in the coordinate
system XY Z with origin at the screen middle are equal to

x01,2 = 0, y01,2 = ±L/2, z01,2 = 0(n = 1, 2);x03,4 = 0, y03,4 = 0, z03,4 = ±W/2(n = 3, 4). (38)

The RP of the impedance vibrator F‖(θn) and F⊥(θn, ϕn) in Eqs. (35) and (36a)–(36b) can be obtained
using Eqs. (22) and (23), and replacing the angles θ and θ′ by θn and θ′n, ϕ, ζ by ϕn and γpn.

The components of diffracted field defined in the PCS on the n-th screen edge are projected on the
axis of the coordinate system R, θ, ϕ and are summarized according to Eq. (1).
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5. NUMERICAL RESULTS

As shown above, the electric vibrator of fixed geometrical sizes (2l, r) located above the screen at the
distance h can be tuned to resonance using the surface impedance X̄Sres. For practical applications, it
is important to know the values of X̄Sres depending on the distance between the screen and vibrator
having different electrical lengths, and corresponding radiation characteristics. There are some criteria
for determining the values of the resonant surface impedance X̄Sres: the maximum field amplitude and
equality to zero the reactive part of the input impedance Xin. In this paper, the resonant impedance
as a function of the relative distance between the vibrator and screen is determined by formula (21)
derived from the condition Xin = 0 for the vibrator placed over the infinite-plane (in this approximation
X̄Sres = X̄Hs

Sres).
The resonance values X̄Sres and corresponding to them the field intensity |En|2 and directive gain

D along the normal to the screen, depending on the distance between the screen and vibrator h/λ, were
calculated for the electrical impedance vibrators with lengths 2l/λ=0.4, 0.5 and 0.6. The directive gain
was found using the formula

D(0, 0) = 120
|En|2
RΣ

, (39)

where RΣ = 30IΣ/π, IΣ =
2π∫
0

dϕ
π∫
0

f2(θ, ϕ) sin θdθ, f2(θ, ϕ) = |fθ(θ, ϕ)|2 + |fϕ(θ, ϕ)|2, fθ(θ, ϕ) and

fϕ(θ, ϕ) are the RP-s for the orthogonal linear polarized field components. All numerical results are
given for the horizontal vibrator 1 with radius r = 0.1 mm at the wavelength of 30 mm.

To determine the influence of the surface impedance upon the far zone field of the vibrators with
various lengths, the normalized field intensity |En|2/|En max|2 in the normal direction to the perfectly
conducting plane was calculated in dependence on the surface impedance X̄S , which varies within ±0.15
(Fig. 3). The electrical length of the vibrator 2l/λ was equal to 0.4, 0.5 and 0.6, and the distance between
the vibrator and the plane was equal h = 0.25λ.

Figure 3 shows that the maximum amplitude of the field, i.e., resonance, occurs at different values
of the surface impedance, depending on the vibrator length. The maximum amplitudes correspond
to the resonant impedance X̄Hs

Sres equaled to 0.033, −0.012, and −0.043 when the 2l is equal to 0.4λ,
0.5λ, and 0.6λ, respectively. Thus, the resonance can be observed for the positive impedance (inductive
type) if the vibrator electrical length is less than the half-wavelength and for the negative impedance
(capacitive type) if the vibrator length is equal to or greater than half-wavelength.

Figure 4 shows the resonant values of the surface impedance X̄Hs
Sres for the vibrators with the same

length located over the plane versus the distance h/λ between the vibrator and screen that varies within
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to the case vibrators location in free space and
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0.1÷1. The values were calculated using formula (21) and the condition Xin = 0. When h = 0.25λ we
have for the vibrators with length 0.4λ, 0.5λ, and 0.6λ that X̄Hs

Sres is equal to 0.035, −0.016 and −0.051,
respectively. Fig. 4 also shows the surface impedance values X̄Fs

Sres for the resonant vibrator in the free
space (h � λ), calculated using the formula (20). Depending on the vibrator length we have: X̄Fs

Sres is
equal to 0.038, −0.01, and −0.044 if the 2l is 0.4λ, 0.5, and 0.6λ, respectively.

Figure 5 shows the dependences of the normalized field intensity |En|2/|En max|2 in the normal
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Figure 5. Normalized field intensity versus the
distance between the vibrator and plane h/λ.
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Figure 7. The normalized field intensity versus the screen dimensions, straight lines correspond to the
case vibrators location over an infinite plane and referred to as L � λ.
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direction to the plane on the distance h/λ for the resonant vibrators with 0.4λ, 0.5, and 0.6λ of length
2l. The maximum field intensity |En max|2 is achieved at 2l = 0.6λ. The impedance X̄Hs

Sres for each h/λ
corresponds to that in Fig. 4. The maximum of field intensity reaches at following hmax/λ: 0.124, 0.101,
and 0.087 if the 2l is equal to 0.4λ, 0.5λ, and 0.6λ, while the impedance of the resonant vibrators X̄Hs

Sres
being 0.028, −0.0148 and −0.045, respectively (Fig. 4). For the above hmax/λ values, the RΣ for the
vibrator 1 are small, which leads to large values of the directive gain D (see Fig. 6).

Figure 6 illustrates varying the directive gain D of the resonant impedance vibrators with length 2l
equal to 0.4λ, 0.5, and 0.6λ in the normal direction to the perfectly conducting plane depending on the
distance h/λ. This figure also shows the D-values in the free space (h � λ) that are equal to 1.59, 1.64
and 1.74 if the 2l is equal to 0.4, 0.5 and 0.6, respectively. Character of varying D-values as functions
of h/λ is defined by the RP of the vibrator 1. The maximum occurs at distances h equal to an odd
number of quarter waves, while the zero minima are at an integer number of half wavelengths. At the
distance h = 0.25λ, the D-values of the resonant impedance vibrators, with length 2l/λ equal to 0.4,
0.5 and 0.6, reaches 5.45, 5.6 and 5.76, respectively. These values coincide with that of the perfectly
conducting vibrator located above the plane [6].

Let us compare the normalized field intensity |En|2/|En max|2 of the resonant impedance vibrator
(X̄S = X̄Hs

Sres, see Fig. 4) and perfectly conducting vibrator (X̄S = 0) of the same electrical length
located at h = 0.25λ above a perfectly conducting screen with sizes L = W (see Fig. 1). Figs. 7(a)–7(c)
show the values of |En|2/|En max|2 for the vibrators with lengths 2l/λ equal to 0.4, 0.5 and 0.6 depending
on the relative screen dimension L/λ. These figures also show the |En|2/|En max|2 in the case of the
vibrators located over the plane (L � λ).

The calculations have shown that the maximum of field intensity for the impedance and perfectly
conducting vibrators if the current JHs

0 f(s) is defined by Eq. (14) does not depend upon the vibrator
length. The maximum of field is achieved at the optimal screen dimensions Lopt being in the range
1.05÷ 1.1λ. Significant differences between |En|2/|En max|2 for the impedance and perfectly conducting
vibrators are observed when their length 2l = 0.6λ.

Figure 8 shows the dependences of the normalized field intensity |En|2/|En max|2 for the resonant
vibrators of the same lengths on the screen dimensions L/λ, when the distances between the vibrator
and screen hmax/λ (see Fig. 5) ensure the maximum field amplitude. In this case, the optimal screen
dimension Lopt is equal to 1.2λ for the half-wave vibrator and 1.15λ for vibrator with 0.4λ and 0.6λ of
length 2l.
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Figure 8. The normalized field intensity versus the screen dimensions, straight lines correspond to the
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6. CONCLUSION

The paper presents the solution to the problem of electromagnetic waves radiation by the vibrator with
distributed along its length surface impedance. The vibrator is located above the perfectly conducting
rectangular screen of finite size. The solution is derived based on the asymptotic expression for the
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current in the horizontal impedance vibrator over the perfectly conducting infinite plane, obtained by
averaging method. The problem is solved under the assumption that the influence of the fields diffracted
by the screen edges upon the current amplitude in the vibrator is negligible. This assumption is valid
when the screen dimensions are comparable with or greater than the wavelength. The full radiation field
of the analyzed structure for all viewing angles in the far zone was found by uniform geometrical theory
of diffraction. Multiparameter study of the electrodynamic characteristics for the resonant impedance
vibrators located over the infinite plane and square screen, depending on the size of the vibrator, the
value and type of the surface impedance, removing from the screen and the screen dimensions are
presented. The research results can be useful in the design of radiating systems, part of which are thin
vibrators and finite dimensional screens.

APPENDIX A. SURFACE IMPEDANCE OF VIBRATORS

Formulas determining the distributed surface impedance of electrically thin vibrators (material
parameters are ε, μ, σ) have the following form

 

No The vibrator design  Vibrator model  Impedance 

1 Solid metal cylinder. The radius sa-

tisfy inequality 0r Δ , 0Δ  is skin 

layer thickness. 

 0

1

120S

i
Z

+

πσΔ
 

2 Metallized dielectric cylinder. Metal 

layer thickness is 0
Rh . 

 
1

120 ( 1) / 2S
R

Z
h ikrπσ ε −

 

3 Metal-dielectric cylinder. 1L  is the 

thickness of a metal discs, 2L  is the 

thickness of a dielectric disks. 

 2

1 2

2
S

L
Z i

L L kr
= −  

4 Magnetodielectric metalized cylind-

er. ir  is the radius of internal con-

ducting cylinder. 

 
1

120 / ln( / )S
R

Z
h i kr r rπσ − μ

5 Metal cylinder coated with magne-

todielectric layer, which thickness is 

ir r− , or corrugated cylinder 

1 2( )L L , where 1L  is crests 

thickness where 0SZ , 2L  is the 

notch width where 0SZ . 

   

    

 

ln( / )SZ ikr r r  

 

 

 

( ) ( )S SZ s Z s  

6 Metal monofilar helix. r is helix 

radius 1kr ,  is winding angle. 
 

 
2( / 2) ctgSZ i kr  

 

>>

>>

Δ +

+ ε

+ >> λ

=

=/

= μ

= φ

>> ψ = ψ

=

=

=

i

i

Formulas for surface impedances of vibrators obtained in the frame of the impedance concept [10]
and are valid for thin cylinders |(k√εμr)2 ln(k

√
εμri)| � 1 both for finite and infinite cylinders, located

in the hollow electrodynamic volume. If vibrators are in a material medium with parameters ε1 and μ1,
all above formulas must contain the factor

√
μ1/ε1.
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