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Exact Analytical Solution for Fields in a Lossy Cylindrical Structure
with Linear Gradient Index Metamaterials

Mariana Dalarsson1, *, Martin Norgren1, and Zoran Jaksic2

Abstract—We investigate the electromagnetic wave propagation across a finite inhomogeneous and
anisotropic cylindrical metamaterial composite containing both positive and negative effective refractive
index parts with linear spatial gradient. Exact analytical solutions for the electric and magnetic field
distributions are obtained for a linear variation of effective refractive index across the structure. The
exact analytical results for the electric and magnetic fields are compared to the numerical results
obtained using the numerical simulation software HFSS. The model allows for general temporal
dispersion and uniform losses within the composite.

1. INTRODUCTION

In the present paper, we study the electromagnetic wave propagation through cylindrical structures
including artificial material composites, with electromagnetic properties not readily found in nature,
usually called metamaterials (MM). In particular, we are interested in a special class of MMs, the
left-handed materials (LHM), theoretically described by Veselago in 1967 [1]. The first practical
implementations of LHM were proposed by Pendry et al. [2, 3]. LHM are produced as arrays
of subwavelength structural units (“particles”) with negative effective relative permittivity and
permeability. First LHM-“particles” were split-ring resonators and nanowires, providing negative
permeability and permittivity of the composites [3]. Other frequently used LHM-“particles” include
complementary split-ring resonators [4], cut-wire pairs/plate pairs [5] and double fishnets [6, 7, 8]. The
first experimental confirmation of LHM-properties in the microwave range of frequencies was reported
in [9], and the experimental fishnet-type LHM in the visible range of frequencies was reported in [10].

Based on the specific properties of LHM, such as the negative index of refraction, radiation tension
instead of pressure, inverse Doppler effect etc. [11, 12] a number of potential applications have been
proposed and studied. These include superlenses/hyperlenses enabling imaging far below the diffraction
limit [13, 14], waveguides and resonant cavities with dimensions orders of magnitude smaller than the
operating wavelength [15], invisibility cloaks and transformation optics [16] etc..

The above-mentioned studies usually consider structures with constant effective permittivity and
permeability within the LHM part and abrupt transitions to the surrounding “right-handed media”
(RHM). However, there is a growing theoretical and practical interest in composites with gradual
spatially varying effective permittivity and permeability between LHM and RHM as well as within
the LHM structure. Graded refractive index is of interest for both transformation optics including
hyperlenses [17] and invisibility cloaks [18]. Other proposed applications of graded metamaterials include
beam shaping and directing, enhancement of nonlinear effects [19], superlenses [20], etc.

The first paper dedicated to gradient refractive index LHM was published in 2005 [21]. Analytical
approaches to graded index metamaterial structures are of special interest, since they ensure fast, simple
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and direct route to the determination of the field distribution and the calculation of the scattering
parameters within such materials [22, 28].

The LHM structures with gradient index are of importance for transformation optics [29, 30], the
most well-known example being the invisibility cloaks. For instance, optical carpet cloaks [31] were
reported with effective index gradient obtained by drilling hole arrays with varying geometry [32].
Other important applications include optical and generally electromagnetic concentrators based on
metamaterials, beam shapers and beam steering devices, as well as different kinds of metamaterial
lenses, including hyperlenses [17], for the transformation of near field into the far field. Finally, an
important application is gradient index circuitry utilizing metamaterial waveguides [33].

The present study is a generalization of our previous work [25–28] to coaxial cylindrical structures
with radial propagation of the electromagnetic wave. We present an exact analytical solution of
Helmholtz’ equations for the radial propagation of electromagnetic waves through a lossy linear gradient-
index RHM-LHM composite, and compare the results with the corresponding results obtained using
the simulation software ANSYS HFSS.

2. PROBLEM FORMULATION

The geometry of the present problem is shown in Fig. 1. We assume that there is a metallic cylindrical
antenna of radius a which transmits the plane electromagnetic waves in the radial direction. The electric
field points in the azimuthal angular ϕ-direction and has the form �E = E(r)�eϕ, while the magnetic field
points in the z-direction and has the form �H = H(r)�ez . The wave propagates along the radial r-
direction. Around the emitting metallic antenna there is a coaxial layer of gradient index LHM of radial
thickness a. Around the LHM-layer, there is a coaxial layer of gradient index RHM of the same radial
thickness a. The structure is enclosed by a metallic cylinder at the radius 3a. For the sake of simplicity,
in the present paper we assume that both LHM and RHM layers are of the same thickness a being
equal to the radius of the inner metallic cylinder. This does not imply any loss of generality, since
the exact analytical results are available for any radii of the metallic boundaries and any thicknesses
of the LHM and RHM layers. In principle, one could choose the diameter of the outer boundary as
very large compared to the diameter of the thin-wire inner boundary, such that the present model can
be applied also to situations of fields far away from the emitting structure. Furthermore, we assume
that the boundary effects in the axial direction (along the z-axis) can be neglected, such that any fields
generated by these boundary effects are much smaller than the fields radiated by the inner cylinder.

The spatial variation of the refractive index along the radial direction is described by a linear
function. Maxwell equations in cylindrical coordinates for our coaxial composite are of the following

Figure 1. Propagation of an electromagnetic wave through a finite coaxial cylindrical graded index
structure with a linear profile.
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form
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From the Maxwell Equation (1) it is possible to eliminate either E(r) or H(r) to obtain the following
two Helmholtz equations for H(r) and E(r) respectively
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where ε = ε(ω, r) and μ = μ(ω, r) are the frequency-dependent dielectric permittivity and magnetic
permeability, respectively. The spatial dependency of the functions ε(r) and μ(r) may be completely
arbitrary. The only limit of applicability of the present approach, in terms of wavelength of the radiation
versus the structural period of the metamaterial, is posed by the requirement that the effective medium
approximation remains valid, i.e., that the structure periodicity is much smaller than the operating
wavelength.

3. ANALYTICAL SOLUTIONS OF FIELD EQUATIONS

Let us now consider a finite and inhomogeneous periodic structure, where the real parts of the effective
dielectric permittivity and magnetic permeability vary from negative values (LHM) to positive values
(RHM) as suitably chosen functions to ensure the linear gradient of the refractive index. The thickness a
of the LHM part is equal to that of the RHM part. In the present paper we use the following permittivity
and permeability functions

ε(ω, r) =
[
ε0εR(ω)

r − 2a
a

− jε0εI(ω)
]

r

a
, μ(ω, r) =

[
μ0μR(ω)

r − 2a
a

− jμ0μI(ω)
]

a

r
. (3)

where −εR(ω) and −μR(ω) are the frequency dependent real parts of the effective permittivity and
permeability in the LHM material just outside r = a, respectively. Analogously, εI(ω) and μI(ω) are the
imaginary parts of the effective permittivity and permeability in the LHM material just outside r = a,
respectively. An example of the spatial dependence of the real parts of the two functions ε = ε(ω, r) and
μ = μ(ω, r) is shown in Fig. 2. For a material to be passive, i.e., without gain, and to satisfy causality,
the imaginary parts of both the permitivitty and permeability must be positive. Otherwise, the model
is valid for arbitrary temporal dispersion and losses as long as the general mathematical and physical
constraints are satisfied (e.g., Kramers-Kronig relations). From the definitions (3) we readily see that
the present choices of the effective permittivity and permeability functions are such that the functions
(ε/r) and (μr) occurring in the Helmholtz Equation (2) respectively are indeed linear functions.

Practical realization of the functions ε = ε(ω, r) and μ = μ(ω, r), shown in Fig. 2, can be done
using thin layers of LHM and RHM in the coaxial cylindrical structure shown in Fig. 1. Examples of

(a) (b)

Figure 2. Example of the real parts of the functions, (a) ε = ε(ω, r) and (b) μ = μ(ω, r).
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structures that actually exploit the layered approach to inhomogeneity, in the context of GRIN lenses,
can be found in, e.g., [34, 35]. The practical realization approach to be used in the present study would
typically be similar to that described in these papers, and references therein. Following the approach
adopted in [26–28], we also require that the real and imaginary parts of the effective permittivity and
permeability satisfy the condition

μI(ω)
μR(ω)

=
εI(ω)
εR(ω)

= β(ω). (4)

The condition (4) is a restrictive mathematical requirement on the complex permittivity and
permeability that reduces our analysis to a special case. A justification for the requirement (4) is
based on the fact that both permittivity and permeability of a significant part of LHM structures
reported until now can be described by Drude or Lorentz models, i.e., that ε(ω) and μ(ω) are strongly
resonant and thus quite narrowband. In order to obtain the widest possible frequency range of negative
refractive index, it is then useful to have the best possible overlap between the ranges of negative values
of real parts of ε(ω) and μ(ω). In an ideal situation their dispersions in the resonant range would be
therefore identical. On the other hand, in order to preserve causality, the imaginary parts of both ε(ω)
and μ(ω) must be positive and their dispersions are determined by the real parts. Thus the imaginary
parts should also overlap. Actually (4) can be seen as a condition, although very stringent, for the
maximum bandwidth of Drude- or Lorentz-type resonant LHM structures. Using (4), we readily obtain

ε(ω, r) = ε0εR(ω)
[
r − 2a

a
− jβ

]
r

a
, μ(ω, r) = μ0μR(ω)

[
r − 2a

a
− jβ

]
a

r
. (5)

Except for the condition (4), our method allows for arbitrary temporal dispersion. Upon the
condition (4), the inverse of the wave impedance Z(ω, r) as well as the refractive index n(ω, r) become

(a)

(b)

Figure 3. Comparison of the analytical (full line) and numerical (dashed line) results for the amplitudes
of (a) electric field E(r) and (b) magnetic field H(r), with E0 = 1, H0 = 1, a = 1m, k = 8π1/ m and
β = 0.5 × 10−2.
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linear spatial functions throughout the entire structure
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The Equation (2), with ε = ε(ω, r) and μ = μ(ω, r) given by (5), allow for exact analytic solutions of
the form
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[
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2
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2

]
(8)

where H0 = H(a) is the amplitude of the emitted magnetic field strength at the inner cylinder (antenna)
surface r = a, and E0 is the emitted electric field strength defined by E0 = Z(a)H0. The wave number
k is defined by k(ω) =

√
ε0μ0εR(ω)μR(ω).

(a) (b)

(c) (d)

Figure 4. Amplitudes of the electric field E(r), with E0 = 1 a = 1 m, k = 8π1/ m, (a) β = 0,
(b) β = 0.5 × 10−2, (c) β = 0.5 × 10−1, and (d) β = 10−1.

(a) (b)

(c) (d)

Figure 5. Amplitudes of the magnetic field H(r), with H0 = 1, a = 1 m, k = 8π1/ m, (a) β = 0,
(b) β = 0.5 × 10−2, (c) β = 0.5 × 10−1, and (d) β = 10−1.
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4. RESULTS AND DISCUSSION

The amplitudes of the exact analytical solutions (full lines) for the electric field E(r) and magnetic
field H(r), given by Eq. (8), are compared to the corresponding numerical solutions (dashed lines) in
Figs. 3(a) and 3(b) respectively. From Figs. 3(a) and 3(b) we see that there is an excellent agreement
between the exact analytical results (full lines) and the corresponding numerical results (dashed lines),
as expected. In Figs. 3(a) and 3(b) we also see the expected phase change, indicating the change of the
direction of the wave vector [24–28] at the boundary between LHM and RHM at r = 2a. Furthermore,
we note that the tangential electric field E(r) satisfies the usual boundary conditions on the metallic
boundaries at r = a and r = 3a where it becomes equal to zero.

The dependencies of the amplitudes for the electric field E(r) and magnetic field H(r), given by
Eq. (8), on the loss parameter β are illustrated in Figs. 4 and 5, respectively. From Figs. 4 and 5 we
see that the attenuation of the field amplitudes increases with increasing loss factor β as expected. The
dependencies of the amplitudes for the electric field E(r) and magnetic field H(r), given by Eq. (8),
on the permittivity and permeability, i.e., on the wave number parameter k, are illustrated in Figs. 6
and 7, respectively. From Figs. 6 and 7 we see that the field amplitudes display shorter wavelengths with

(a) (b)

(c) (d)

Figure 6. Amplitudes of the electric field E(r), with E0 = 1, a = 1 m, β = 0.5×10−2, (a) k = 24π1/ m,
(b) k = 16π1/ m, (c) k = 8π1/ m, and (d) k = 4π1/ m.

(a) (b)

(c) (d)

Figure 7. Amplitudes of the magnetic field H(r), with H0 = 1, a = 1m, β = 0.5 × 10−2,
(a) k = 24π1/ m, (b) k = 16π1/ m, (c) k = 8π1/ m, and (d) k = 4π1/ m.
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increasing wave number factor k as expected. Furthermore the phase change, indicating the change of
the direction of the wave vector [24–28] at the boundary between LHM and RHM at r = 2a, becomes
even more distinct for the waves with higher k.

5. CONCLUSIONS

We obtained the exact analytical solutions of the Helmholtz equations for radial electromagnetic wave
propagation through a coaxial cylindrical structure with radially graded permittivity and permeability
profiles changing along the direction of propagation. We compared these results with the corresponding
numerical results obtained using the standard numerical simulation software ANSYS HFSS, whereby
we obtained an excellent agreement between the analytical and numerical results. The model is valid
for arbitrary temporal dispersion and arbitrary losses, as long as the general mathematical and physical
constraints are satisfied. The exact analytical results are available for any radii of the metallic boundaries
and any thicknesses of the LHM and RHM layers. In principle, one can choose the diameter of the outer
boundary as very large compared to the diameter of the thin-wire inner boundary, such that the present
model can be applied also to situations of fields far away from the emitting structure. We analyzed
a special case of a linear model of the refractive index gradient. The present study can be extended
to a number of other practical axially symmetric geometries, and to a number of other models of the
refractive index gradient (notably hyperbolic tangent functions or periodic trigonometric functions).
Such studies will be a part of our continued efforts.
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