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Wide-Band Chaotic Noise Signal for Velocity Estimation and
Imaging of High-Speed Moving Targets

Qilun Yang1, 2, *, Yunhua Zhang1, 3, and Xiang Gu1, 3

Abstract—This paper proposes a burst model of chaotic noise signals with randomly stepped carrier
frequencies for velocity estimation and high-resolution range imaging of high-speed moving targets.
The random stepping of carrier frequencies is controlled by a combination chaotic map (CCM), which
is generated by embedding a Logistic map into a Bernoulli map. The baseband noise signal adopts the
CCM based frequency-modulation (CCM-FM) signal, which has good randomness and a thumbtack
ambiguity function as well. The velocity estimation includes a coarse search and a precise search,
where the coarse search is conducted with a fixed step to makes the velocity deviation less than the
velocity resolution, while the precise search adopts the Golden Section Search (GSS) algorithm to get
an accurate estimation of velocity. What should be emphasized is that the velocity estimation process
can be completed with just a burst of subpulses. Then the spectra are coherently synthesized to obtain
ultra-wide bandwidth and high-resolution range imaging. Finally, numerical simulations demonstrate a
good performance of the proposed signal model and the processing algorithm.

1. INTRODUCTION

Modern radars are facing increasingly complicated electromagnetic environment along with the
development of electronic warfare [1, 2], so the electronic counter-countermeasures (ECCM) capability,
low probability of detection and interception (LPD/LPI) characteristics are becoming important
research and development directions for military radars [3, 4]. Noise radars have attracted more and
more attention owing to their random waveforms, efficient spectrum utilization, good ECCM capability
and LPD/LPI characteristics [5–7].

High-resolution radar usually needs wideband signal, so correspondingly very high rate of data
sampling is required according to the Nyquist sampling theorem. To obtain ultra-wide synthesized
bandwidth while keep low instantaneous bandwidth, stepped-frequency signal is proposed [8, 9].
But the size of frequency step restricts the non-ambiguity range interval [10], so it may suffer
from ambiguous peaks, known as “grating lobes” [11]. To overcome this drawback, researchers
proposed stepped-frequency Chirp signal (SFCS), which consists of narrow-band sub-chirps with linearly
increased/decreased carrier frequencies [12–14], but SFCS is susceptible to coherent jamming [15, 16].
After that, Chirp signal is replaced by noise signal, so as to obtain the stepped-frequency noise signal
(SFNS) [17], which can further elevate the anti-jamming capability.

However, the hostile jammer can still easily detect the linearly increased/decreased carrier
frequencies and make jamming [18, 19]. In order to further increase the LPD/LPI characteristics and
ECCM capability, we incorporate randomly stepped carrier frequencies with a baseband noise signal to
form a wideband noise signal.
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In early times, noise sources are mainly thermal noises [20–22], but their generation is hard to
control and their performance is hard to predict as well. With the development of chaotic theory, more
and more researchers adopt chaotic signals as pseudo-noise signals. Chaotic signal is a kind of pseudo-
random signal generated from a deterministic system. Compared with traditional noise signals, chaotic
signal is much easier to generate and control, also the cost is lower [23, 24].

Noise radars not only demand random waveforms, but also incoherent waveforms, i.e., each
waveform should be incoherent with one another. It has been shown in [25] that using digital devices,
e.g., FPGA chip, to real-time generate chaotic noise signals is a good choice. However, the quantization
length is usually very low in FPGA [26], which may destroy the chaotic property. Therefore, we
proposed the combination chaotic map (CCM), which is insensitive to the quantization and can keep
good chaotic property even though the quantization length is low [25, 27]. The stepping of carrier
frequencies is controlled randomly by a CCM sequence and the baseband noise signal adopts the CCM
based frequency-modulation (CCM-FM) signal [27].

The high-resolution imaging of high-speed moving targets requires that the velocity should be
accurately estimated first. Based on the thumbtack ambiguity function of CCM-FM signal, we propose
a new search algorithm for velocity estimation, which just needs a burst of subpulses. The algorithm
includes a coarse search and a precise search, where the coarse search is conducted with a fixed step
to make the velocity deviation be less than the velocity resolution, while the precise search adopts
the Golden Section Search (GSS) algorithm to get the accurate velocity estimation. Next, the high-
resolution range imaging can be realized by coherent synthesis of subpulses bandwidths [17, 28].

The rest of the paper is organized as follows. Section 2 introduces the signal model; Section 3
presents the high-resolution range imaging algorithm of high-speed moving targets; Section 4 conducts
numerical simulations; Finally, Section 5 draws the conclusion.

2. SIGNAL MODEL

2.1. Wide-Band Chaotic Noise Signals with Randomly Stepped Carrier Frequencies

The investigated wide-band chaotic noise signal consists of a burst of subpulses, whose carrier frequencies
are stepped randomly rather than linearly, and each subpulse adopts a narrowband chaotic signal as
the pseudo-noise signal. Hence, the sampling rate only needs to satisfy the Nyquist sampling rate for
narrowband chaotic signal.

Suppose the start carrier frequency is f0 and frequency step is Δf . Thus the randomly stepped
carrier frequency of the nth subpulse is fn = f0 + cnΔf , where cn ∈ {0, 1, . . . , N − 1} is the frequency-
hopping code and N is the number of subpulses in a burst. Here, the frequency-hopping code is
controlled randomly by a CCM sequence. The bandwidth of each subpulse is B, so the synthesized
bandwidth is Bsyn = (N − 1) ·Δf + B. In order to avoid grating lobes, the subpulse bandwidth should
be equal to or larger than the frequency step [29].

Figure 1 shows the structure of the proposed signal model, which can be mathematically expressed

Tp
Tr

t

f

Bsyn

f0

B

N subpulse

Figure 1. Wide-band chaotic noise signal with randomly stepped carrier frequencies.
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as

s(t) = gn

(
t̂
) · exp(j2πfnt) · rect

(
t − nTr

Tp

)
t̂ = t − tn, 0 ≤ t̂ ≤ Tp;

tn = nTr, n = 0, 1, . . . , N − 1;

(1)

where gn(t̂) is the baseband noise signal of the nth subpulse, which adopts the CCM-FM signal, tn the
instant time of the nth subpulse, Tr the subpulse interval, t̂ the fast-time, Tp the time duration (TD)
of each subpulse, and rect(·) the rectangle window,

rect(x) =
{

1, 0 ≤ x ≤ 1
0, otherwise (2)

2.1.1. Combination Chaotic Map

Chaotic maps are sensitive to the control parameters and initial values, i.e., if the control parameter or
the initial value have a very tiny change, the generated chaotic sequences will be completely different [30].

General digital devices, e.g., FPGA, usually have limited quantization length. When a chaotic
signal is generated in a digital device, the maximum period of a chaotic signal is restricted by the
quantization length, and short quantization length may destroy the chaotic property. To keep a good
chaotic property even if the quantization length is short, the CCM was proposed [27].

Table 1. One-dimensional chaotic maps for CCM.

Map Definition Range of parameter Range of function
Logistic xn+1 = u · xn · (1 − xn) 3.569945 < u ≤ 4 0 < xn < 1

Bernoulli xn+1 =
{

Bxn + 1
2 , xn < 0

Bxn − 1
2 , xn ≥ 0

1.4 < B < 2 −1
2 ≤ xn ≤ 1

2

The CCM is generated by embedding a Logistic map into a Bernoulli map, which are shown
in Table 1 [31]. The generation procedure of CCM is: 1) employ the Logistic map to generate the
parameters for Bernoulli map; 2) combine the Bernoulli map sequences under different parameters to
obtain the CCM sequence. In addition, the formulation of the CCM is as follows,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xp+1 = u · xp · (1 − xp) 0 < xp < 1
Bp = 1.4 + 0.6 · xp 0 ≤ p ≤ P

yp,q+1 = g(yp,q) =
{

Bpyp,q + 0.5, yp,q < 0
Bpyp,q − 0.5, yp,q > 0 0 ≤ q ≤ Q

φ = {{y0,0, y0,1, . . . , y0,Q} , {y1,0, y1,1, . . . , y1,Q} , . . . , {yP,0, yP,1, . . . , yP,Q}}

(3)

where {xp} is the Logistic map sequence, {yp,q} the Bernoulli map sequence under the parameter Bp,
and {φ} the generated CCM sequence. In (3), the range of Logistic map sequence is (0, 1), so it needs
to be transformed to the interval of (1.4, 2) so as to get the parameters for Bernoulli map.

If the quantization length is K bit, then the maximum period of a general one-dimensional chaotic
map will not exceed 2K . Suppose the period of a Logistic map is 2K1 (K1 ≤ K) and that of a
Bernoulli map is 2K2 (K2 ≤ K), then the maximum period of CCM will be at the magnitude of
2K2 · 2K2 · · · 2K2︸ ︷︷ ︸

2K1

= 2K1·K2 [27], which is much longer than 2K . Therefore, the CCM is insensitive to

the quantization length, i.e., it can keep good chaotic property even though the quantization length is
short.

2.1.2. Randomly Stepped Carrier Frequencies

The CCM is adopted to control the stepped carrier frequencies randomly, and the generation of a
frequency-hopping code based on CCM is as follows:
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1) Generate the CCM sequence, whose range is φn ∈ [−1
2 , 1

2 ].
2) Transform the range of CCM sequence to the range of a frequency-hopping code cn ∈

{0, 1, . . . , N − 1} by the following transformation:

φ∗
n =

⌊(
φn +

1
2

)
∗ N

⌋
(4)

where �(φn + 1
2) ∗ N� is the largest integer which is equal to or less than (φn + 1

2 ) ∗ N .
3) Owing that the adjacent values of φ∗

n are of strong iterative relationship, so we extract one from
every m values to form a new sequence, i.e.,

φ̂n = φ∗
n∗m, n ∈

[
0,
⌊

N

m

⌋]
(5)

4) The sequence φ̂n may have some equivalent values, so we just extract the different values from start
to end to obtain the hopping-frequency code cn.

Owing the chaotic map is sensitive to the initial value, so we can easily generate different frequency-
hopping codes by using different initial values. Next in Section 4, we will conduct simulations to
demonstrate this.

2.1.3. Baseband CCM-FM Signal

The CCM sequence is once again utilized to modulate the radar signal frequency so as to obtain the
CCM-FM signal, which is used as the baseband noise signal. The discrete formulation of the CCM-FM
signal can be expressed as

g(n) = A exp

{
j2π

n∑
i=0

φi

}
(6)

The ambiguity function describes the matched-filtering results when the time delay is τ and the
Doppler frequency is fd, and it is a common tool for investigating radar signals [32]. The ideal ambiguity
function should be thumbtack, and the definition of the ambiguity function of g(t) [33] is

|χ(τ, fd)|2 =
∣∣∣∣
∫ ∞

−∞
g∗(t)g(t − τ) exp(−j2πfdt)dt

∣∣∣∣2 (7)

Let fd = 0, we obtain the range cut of the ambiguity function

|χ(τ, 0)|2 =
∣∣∣∣
∫ ∞

−∞
g∗(t)g(t − τ)dt

∣∣∣∣2 (8)

Obviously, the range cut of the ambiguity function is just the matched-filtering output [34, 35]. Owing
to the noise-like property, the range cut is close to a Dirac function. We know that τ = 2r

c and dr = c
2B ,

where r is the range, c is the light speed, dr is the range resolution and B is the signal bandwidth,
respectively. Hence, the time delay resolution is

dτ =
2dr

c
=

2 · c
2B

c
=

1
B

(9)

Let τ = 0, we have the Doppler cut of the ambiguity function

|χ(0, fd)|2 =
∣∣∣∣
∫ ∞

−∞
g∗(t)g(t) exp(−j2πfdt)dt

∣∣∣∣2 =
∣∣∣∣
∫ ∞

−∞
|g(t)|2 exp(−j2πfdt)dt

∣∣∣∣2

=

∣∣∣∣∣
∫ Tp/2

−Tp/2
A2 exp(−j2πfdt)dt

∣∣∣∣∣
2

=
∣∣∣∣A2 sin(πfdTp)

πfdTp

∣∣∣∣2 (10)
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where Tp is the TD of the CCM-FM signal. We can see that the Doppler cut is a SINC function, and
the Doppler resolution dfd is determined by Tp

dfd =
1
Tp

(11)

The relation between the velocity v and the Doppler frequency fd is

fd =
2vfc

c
(12)

Hence the velocity resolution is
dv = dfd · c

2fc
=

c

2fc · Tp
(13)

It is indicated that the velocity resolution is related to both the TD and the carrier frequency. Moreover,
longer TD and higher carrier frequency will lead to better velocity resolution. When the carrier frequency
is fixed, the velocity resolution is inversely proportional to the TD. Similarly, when TD is fixed, the
velocity resolution is inversely proportional to the carrier frequency.

Let τ = 0 and fd = 0, then the ambiguity function will have the maximum output

|χ(0, 0)|2 =
∣∣∣∣
∫ ∞

−∞
g∗(t)g(t)dt

∣∣∣∣2 =
∣∣∣∣
∫ ∞

−∞
|g(t)|2 dt

∣∣∣∣2 (14)

However, when |τ | > dτ and |fd| > dfd, g(t) is incoherent with g(t − τ). So g∗(t)g(t − τ) is just the
noise floor, and its Fourier transformation is also the noise floor. Therefore, the ambiguity function of
CCM-FM signal is thumbtack.

2.2. Echo Signal

Suppose that the initial distances between a radar and targets (scattering centers) are Rk (k =
1, 2, . . . ,K) and that the targets have the same initial velocity v and same acceleration a. v is positive
when the targets move toward the radar, while it is negative when the targets move away from the
radar. The same is true for a. The instant ranges of radar targets are

Rk

(
tn, t̂

)
= Rk − v

(
tn + t̂

)− 1
2
a
(
tn + t̂

)2 (15)

Therefore, the echo signal is

sr

(
tn, t̂

)
=

K∑
k=1

Akgn

[
t̂ − 2Rk(tn, t̂)

c

]
· exp

[
j2πfn

(
t − 2Rk

(
tn, t̂

)
c

]
(16)

The baseband echo signal is obtained through down-conversion by a radar receiver:

sbr

(
tn, t̂

)
=

K∑
k=1

Akgn

[(
1 +

2v + 2atn + at̂

c

)
t̂ − 2Rk

c
+

2vtn
c

+
at2n
c

]

· exp

[
−j2πfn

(
2Rk

c
− 2v

(
tn + t̂

)
c

− a
(
tn + t̂

)2
c

)]

≈
K∑

k=1

Ãkgn

[
t̂− 2Rk

c
+

2vtn
c

]
·exp

(
j4πfnvtn

c

)
· exp

(
j4πfnvt̂

c

)
· exp

[
j2πfna(tn + t̂)2

c

]
(17)

where Ãk = Ak exp(−j4πfnRk
c ), and the time scaling of the echo can be ignored owing to v 	 c and

a 	 c, i.e., 1 + 2v+2atn+at̂
c ≈ 1. We further transform the baseband echo signal from time domain to
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frequency domain, i.e.,

Sbr(tn,f) =

{
K∑

k=1

ÃkGn(f−fdn) · exp
(−j4πfRk

c

)
· exp

[
j4π(f + fn)vtn

c

]}

⊗
{

F

[
exp

[
j2πfna

(
tn + t̂

)2
c

]]}
(18)

where Gn(f) is the spectrum of gn(t̂);
fdn = 2vfn

c is the Doppler frequency corresponding to the nth carrier frequency fn;
exp(−j4πfRk

c ) attributes to the initial range induced phase of the kth target;
exp( j4πfvtn

c ) accounts for the range migration during the nth subpulse;
exp( j4πfnvtn

c ) is induced by the Doppler effect of the nth subpulse;

⊗ is the convolution operation, F is the Fourier transform and exp[ j2πfna(tn+t̂)2

c ] is resulted from the
acceleration.

3. RANGE IMAGING OF HIGH-SPEED MOVING TARGETS

The high-resolution range imaging algorithm for high-speed moving targets using the investigated signal
can be briefly summarized as two steps: 1) subpulse compression and velocity estimation; 2) coherent
synthesis of subpulses’ bandwidths after motion compensation according to the estimated velocity.

3.1. Subpulse Compression and Velocity Estimation

We just need a burst of subpulses, whose TD is usually very short for velocity estimation of high-speed
targets. Hence the velocity variation resulted from acceleration is very small, thus we can ignore the
acceleration in signal processing.

The echo of a stationary target is just the time delayed version of the transmitted signal, while the
echo of a moving target will be incorporated with the Doppler frequency besides time delay. Suppose
the reference velocity and the reference range are vref and Rref , respectively. Similar to Eq. (18), the
baseband reference signal in frequency domain is

Sref (tn, f) = Gn (f − fdn ref ) · exp
(−j4πfRref

c

)
· exp

[
j4π(f + fn)vref tn

c

]
(19)

where fdn ref is the Doppler frequency corresponding to the reference velocity. Then the subpulse
compression by matched-filtering in frequency domain is conducted as

S(tn, f) = Sbr(tn, f) · S∗
ref (tn, f)

=

{
K∑

k=1

ÃkGn(f − fdn) · G∗
n (f − fdn ref ) · exp

[−j4πfΔRk

c

]
· exp

[
j4π(f + fn)Δvtn

c

]}

⊗
{

F

[
exp

[
j2πfna(tn + t̂)2

c

]]}
(20)

where ΔRk = Rk −Rref , and Δv = v− vref . Moreover, the subpulse compression result in time domain
is:

�n = F−1 {S(tn, f)} (21)
Notice that the ambiguity function of the CCM-FM signal is thumbtack, when the Doppler

frequency is larger than the Doppler resolution, i.e., the velocity deviation is larger than the velocity
resolution; the ambiguity function output will locate at the sidelobe region. Meanwhile, the mainlobe of
the Doppler cut is a SINC function. Therefore, we propose a search algorithm based on the thumbtack
ambiguity function, which just need a burst of subpulses to estimate the velocity of a high-speed
moving target. The search algorithm includes a coarse search and a precise search, which are presented
as follows.
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3.1.1. Coarse Search

We know that the velocity cut of the ambiguity function of the CCM-FM signal is a SINC function.
Only when the deviation between the reference velocity and the target velocity is less than the velocity
resolution, there will be a prominent peak after subpulse compression. In addition, as for the SINC
function, when the velocity deviation is dv

2 , where dv is the velocity resolution, the pulse compression
peak just decreases about 3 dB [36]. Therefore, in the coarse search, the reference velocity increases
from zero with a fixed step of dv

4 , by which we can guarantee that the reference velocity will not exceed
the target velocity. Meanwhile, owing that we do not know the target direction in advance, so we need
to search in two directions, i.e., toward or depart from the radar.

In order to get stable results, we average the matched-filtering results of the N subpulses to obtain
�̄. Then we set the objective function as the peak-average ratio, i.e., the ratio of the peak amplitude
�̄peak to the average amplitude �̄mean . The threshold of �̄peak

�̄mean
can be determined based on the peak-

sidelobe ratio (PSLR) of the CCM-FM signal, whose unit is decibel. When

20 ∗ log 10
( �̄peak

�mean

)
> −PSLR (22)

it is thought that the velocity deviation is less than the velocity resolution. When a target moves toward
the radar, the velocity after the coarse search will be vcoarse ⊂ (v−dv, v). On the contrary, when target
moves apart from the radar, the velocity after the coarse search will be vcoarse ⊂ (v, v + dv).

3.1.2. Precise Search

We know that the mainlobe of SINC function is a convex function, and it has only one peak. Therefore,
we can take the simple GSS algorithm to get an accurate estimation for the velocity. The Golden
Section Search is to find the extremum (maximum or minimum) by sequentially narrowing the range
within which the extremum exists [37–41].

Figure 2 shows the GSS algorithm, whose steps are explained as follows:
Step 1): Set the initial velocities. When the velocity after coarse search is positive, i.e., the target

moves toward the radar, the initial value is set as va = vcoarse and vb = vcoarse + dv. Meanwhile, when
the velocity after coarse search is negative, i.e., the target moves away from the radar, the initial value
is va = vcoarse − dv and vb = vcoarse . Next, we turn to Step 2).

Step 2): Select the two reference velocities as x1 = vb−0.618∗(vb−va) and x2 = va+0.618∗(vb−va),
respectively. Then calculate the corresponding peak amplitudes of the average matched-filtering results
of N subpulses of �̄peak (x1) with vref = x1 and �̄peak (x2) with vref = x2, respectively. Next, we turn to
Step 3).

Step 3): Compare �̄peak (x1) with �̄peak (x2), if �̄peak (x1) = �̄peak (x2), it means that the accurate
velocity has been achieved. In practical signal processing with noise existing in the echo, we compare
| �̄peak (x1)

�̄peak (x2)
− 1| and set a very small threshold ε, e.g., 0.0001. If | �̄peak (x1)

�̄peak (x2)
− 1| < ε, we go to Step 5),

otherwise we go to Step 4).
Step 4): If �̄peak (x2) > �̄peak (x1), we set va = va and vb = x2; otherwise if �̄peak (x2) < �̄peak (x1),

we set va = x1 and vb = vb. Then we go back to Step 2).
Step 5): We get an accurate estimation of velocity as x = x1+x2

2 and stop searching.

3.2. Coherent Bandwidth Synthesis

After the accurate velocity estimation is obtained, it is used for motion compensation, i.e., it is used
for matched-filtering on the echo signal to get the spectrum of each subpulse. Then we coherently
synthesize the spectra of all subpulses of the whole burst to get a much wider signal spectrum, on
which inverse fast Fourier transform (IFFT) is performed and finally high-resolution range imaging is
obtained [17, 42–44].
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The formulation of coherently synthesized wide-band spectrum is

Ssyn(f) ≈
N∑

n=1

K∑
k=1

Ãk |S(tn, f − cnΔf)|2 · exp
{−j4π[f − cnΔf ]ΔRk

c

}
(23)

The synthesized bandwidth is (N−1)Δf +B ≈ NΔf , hence the corresponding range resolution is about
N times higher than that of a single subpulse signal. Thus high-resolution range imaging is obtained
by:

s(t) = IFFT{Ssyn(f)} (24)

4. SIMULATION

4.1. Frequency-Hopping Code

In the simulation, the length of frequency-hopping code is 20, the quantization length is 16 bit, the
difference of the initial values of these two CCM sequences is just the smallest quantization cell, i.e.,
1

215 , and m = 3 is used. Figure 3 shows the CCM sequence and the corresponding frequency-hopping
codes.

Even though the initial values are just tinily different, the generated two CCM sequences are very
different. In addition, the frequency-hopping code corresponding to the first CCM sequence is [0, 15,
12, 16, 14, 10, 6, 13, 2, 8, 9, 7, 11, 1, 5, 17, 19, 18, 3, 4], while the frequency-hopping code corresponding
to the second CCM sequence is [0, 16, 1, 5, 18, 7, 4, 15, 6, 13, 9, 11, 17, 10, 3, 2, 19, 8, 14, 12]. Only
the first elements of the two frequency-hopping codes are the same, while the others are completely
different. Therefore, we can control the frequency-hopping code by simply changing the initial value of
a CCM sequence.

:

If the target moves toward the radar, we set the 
initial velocities as: v  = v        , v  = va coarse b coarse

+dv, otherwise we set the initial velocities as:
v  = v         -dv, v  = va coarse b coarse

Select the two reference velocities:
x  = v  -0.618*(v  -v  ),1 b b a

Calculate the average matched-filtering
results of N carrier frequencies with the two
reference velocities: and 

The estimated
target velocity is:

Start:

YES

NO

YES

NO

End

x  +x1x = 2

2peak (x  ) >2 peak (x  )1

v   = v
v   = x 

b

a

b
1

v   = x
v   = v 

b

a

2

a

peak(x  )2

peak (x  )1 -1 < ε

peak(x  )1 peak (x  )2

x  = v  +0.618*(v  -v  )2 a b a

Figure 2. Algorithm diagram for accurate velocity estimation by GSS algorithm.
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4.2. Ambiguity Function of CCM-FM Signal

In the simulation, the TD and the bandwidth of the generated CCM-FM signal are respectively 10µs
and 100 MHz, the carrier frequency is 34 GHz and the quantization length is 16 bit. Meanwhile, a Chirp
signal with the same parameters is also simulated for comparison.

Figure 4 shows that the ambiguity function of the CCM-FM signal is thumbtack, and the peak
locates where both the velocity and the range are zero. However, the ambiguity function of the Chirp
signal is ridge-like, even if the velocity deviation is larger than the velocity resolution there still appears
a peak after matched filtering. In fact, the peak appears at fd = kτ , where fd is the Doppler frequency,
k is the chirp rate and τ is the delay time [32].

Next, we plot both the range cut and the velocity cut of the ambiguity function. As shown
in Figure 5, both the range resolutions of CCM-FM signal and Chirp signal are 1.5 m, which just
corresponds to the 100 MHz bandwidth. However, the sidelobes of CCM-FM signal and Chirp signal
are −22.86 dB and −13.45 dB, respectively. Meanwhile, both the velocity cuts of CCM-FM signal and
Chirp signal are the same SINC function. This is because the time-domain amplitudes of both CCM-FM

(a) (b)

(c) (d)

Figure 3. Comparison of CCM sequences and their corresponding frequency-hopping codes, whose
initial values are different with just a quantization cell. (a) The first CCM sequence with a random initial
value. (b) Frequency-hopping code corresponding to the first CCM sequence. (c) The second CCM
sequence with an initial value just a quantization cell larger than that of the first one. (d) Frequency-
hopping code corresponding to the second CCM sequence.

(a) (b)

Figure 4. Normalized ambiguity function of (a) CCM-FM signal, as well as that of (b) chirp signal.
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(a) (b)

Figure 5. (a) Range cut and (b) velocity cut of the ambiguity function of CCM-FM signal, as well as
those of Chirp signal.

Table 2. Normalized matched filtering outputs at different velocities.

Velocity 0m/s 220 m/s 440 m/s 660 m/s 880 m/s

CCM-FM signal
Peak 0dB −3.88 dB no peak no peak no peak

Location 0 m 0 m no peak no peak no peak

Chirp signal
Peak 0 dB 0 dB 0dB 0dB 0 dB

Location 0 m 0.75 m 1.5 m 2.25 m 3 m

signal and Chirp signal are the same rectangle window. The velocity resolution is about 441 m/s, which
is just accordance with Eq. (13).

In addition, we compare the peak amplitudes and their corresponding locations obtained from the
matched filtering outputs at different velocities, as shown in Table 2. For the Chirp signal, the peaks
still appear even though the velocity is larger than the velocity resolution, and the peak locations are
different when the velocities are different. This is because the ambiguity function of a Chirp signal is
ridge-like, where the range and the velocity couples with each other. Therefore, the range and velocity
of moving targets cannot be distinguished by just one single Chirp signal.

However, for CCM-FM signal, the peaks appear only when the velocity is less than the velocity
resolution, and all the peaks locate at range position of 0 m. When the velocity is larger than the velocity
resolution, there will be no peaks any more. This is due to the thumbtack ambiguity function of CCM-
FMs, where the range and the velocity are decoupled. Therefore, we can simultaneously estimate the
range and the velocity of a moving target by using just one single CCM-FM signal.

4.3. High-Resolution Imaging of Moving Targets

Table 3 lists the simulation parameters of high-resolution one-dimensional imaging for high-speed moving
targets. The subpulse bandwidth is 105 MHz, and the corresponding range resolution is about 1.5 m,
so with single subpulse we cannot distinguish the four targets in Table 3. However, the synthesized
bandwidth can be as large as 2005 MHz, and thus the corresponding range resolution can be as high
as 0.075 m, so the four targets can be totally distinguished after bandwidth synthesis. The highest
carrier frequency is 34 GHz, and the TD is 10 µs, so the velocity resolution is about 441 m/s according
to Eq. (13). The frequency step is smaller than the subpulse bandwidth in order to suppress the grating
lobes.

The subpulse interval is 15 µs and the number of subpulse is 20, so the burst time is 300 µs. The
acceleration is 200 m/s2, so the velocity variation in a burst is 0.06 m/s2, which is just deviate 0.00067%
relative to the targets’ velocity and can be ignored in signal processing.
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Table 3. Parameters for high-resolution range imaging of high-speed moving targets.

Subpulse TD (Tp) 10 µs
Subpulse interval (Tr) 15 µs

Subpulse bandwidth (B) 105 MHz
First carrier frequency (f0) 32.1 GHz
Stepped frequency (Δf) 100 MHz

Number of stepped frequency (N) 20
Synthesized bandwidth 2005 MHz
Targets initial location [49998, 49998.5, 50002, 50003] m

Normalized targets RCS [1, 1, 1, 1]
Velocity 9000 m/s

Acceleration 200 m/s2

SNR of echo signal 10 dB

(a)

(b)

Figure 6. Transmitted randomly stepped noise signal waveforms, the upper (a) is the inphase
components of the baseband signals and the lower (b) is the randomly stepped carrier frequencies.

Figure 6 shows the transmitted randomly stepped noise signal waveforms, where the upper is the
inphase components of the baseband CCM-FM signals and the lower is the randomly stepped carrier
frequencies. As one can see, the baseband CCM-FM signals have random waveforms, and they are
different with each other. At the same time, the stepped carrier frequencies also exhibit the random
property.

Figure 7 shows the average subpulse matched-filtering results of 20 subpulses at different reference
velocities. We can see that when the deviation between the reference velocity and targets’ velocity is
larger than the velocity resolution, there is no prominent peak. However, when the deviation is less than
the velocity resolution, e.g., when the reference velocity is 8690 m/s and the deviation is just 310 m/s,
the average matched-filtering result exhibits two prominent peaks.

The threshold of peak-average ratio in coarse search is set as 20 dB and the step of coarse search set
as dv

4 ≈ 110 m/s. Figure 8 shows the reference velocity and the peak-average ratio of matched-filtering
output in each step, from which one can see that when the velocity deviations are larger than the
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Figure 7. Average subpulse matched-filtering results of 20 subpulses at different reference velocities.

Figure 8. Peak-average ratios of matched-filtering results along with coarse search steps, the upper is
the reference velocity in each step, while the lower the peak-average ratio of matched-filtering results.

velocity resolution, the peak-average ratios are much smaller than 20 dB. However, when the deviations
are less than the velocity resolution, the peak-average ratios are close to or larger than 20 dB. The coarse
search is terminated when the reference velocity reaches to 8690 m/s with the peak-average ratio being
as large as 21.58 dB.

Table 4 shows the precise velocity search steps and the corresponding results. There are nine steps
in total in the precise search procedure. One can see that, as the search step goes on, the velocity
estimation is more and more close to the targets’ true velocity, and finally we get the precise velocity
estimation as (8995.83 + 9005.19)/2 = 9000.52 m/s with a relative error of just 0.0058%. It is to say we
can accurately estimate the targets’ velocity by using just a burst of subpulses.

After obtaining the precise velocity estimation, the velocity induced phase of a moving target can
be accurately compensated and then it can be treated as a stationary target. With that we can conduct
coherent bandwidth synthesis and show the synthesized spectrum in Figure 9, whose bandwidth is about
2GHz.
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Table 4. Precise velocity search steps and the corresponding results.

Search index 1 2 3 4 5
a (m/s) 8690 8858.08 8961.95 8961.95 8961.95
b (m/s) 9130 9130 9130 9065.80 9053.113
�̄peak (x1)

�̄peak (x2)
0.10704 0.94056 1.3169 1.0466 0.98617

Search index 6 7 8 9
a (m/s) 8986.47 8986.47 8995.83 8995.83
b (m/s) 9026.13 9010.98 9010.98 9005.19
�̄peak (x1)

�̄peak (x2)
1.0074 0.99846 1.0014 0.99996

Figure 9. Synthesized power spectrum.

 

Figure 10. Final high-resolution range imaging
result of four high-speed moving targets as
compared with that of just a single subpulse.

Figure 10 shows the final high-resolution range imaging result as compared with that of just a single
subpulse. The distance between the 1st and the 2nd targets is 0.5 m, and that between the 3th and
the 4th targets is 1 m, i.e., they are smaller than the range resolution of a single subpulse. Therefore,
the 1st and 2nd targets cannot be distinguished using just a single subpulse, and the same is true for
the 3th and 4th targets. However, after coherent bandwidth synthesis, the range resolution reaches to
0.075 m, so all the four targets are clearly differentiated.

5. CONCLUSION

This paper proposes a burst model of chaotic noise signals with their carrier frequencies stepped
randomly for velocity estimation and high-resolution range imaging of high-speed moving targets. The
random stepping of carrier frequencies is controlled by a CCM sequence. The simulations show that
even though the initial values are tinily different, the resulted frequency-hopping codes are completely
different. Therefore, we can simply change the initial value to control the frequency-hopping code.

The baseband noise signal adopts the CCM-FM signal, which has a thumbtack ambiguity function.
Therefore, the range and the velocity are independent with each other, and it is good for estimating
the range and the velocity of a moving target simultaneously.

Based on the investigated signal with thumbtack ambiguity function, we propose a search algorithm
to estimate the target velocity by using just a burst of subpulses. The search algorithm includes a coarse
search and a precise search. The coarse search is conducted with a fixed step, which can make the velocity
deviation less than the velocity resolution. The precise search adopts the GSS algorithm, which can
lead to very accurate velocity estimation. After the accurate velocity is obtained, the velocity induced
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phases can be compensated for all the subpulses, then their echoes can be coherently synthesized and
finally high-resolution range imaging is achieved. Simulation results validate the effectiveness of the
signal model and the processing algorithm.
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