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Off-Grid Direction-of-Arrival Estimation Using a Sparse Array
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Abstract—An off-grid direction-of-arrival (DOA) estimation method that utilizes a sparse array
covariance matrix is proposed. In this method, the array covariance matrix is sparsely represented
in the form of a vector and then modified to become an off-grid DOA estimation model according to the
first-order Taylor series. By solving for the two sparse vectors in the resulting array covariance matrix,
the off-grid DOA estimation can thus be achieved. We present an alternating iterative algorithm that
exploits the alternating update of a convex optimization problem and a least-squares problem to solve
for these two sparse vectors. Our method also extends the aperture. The effectiveness and efficiency of
the proposed method are demonstrated in the simulation results.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is of great importance in applications of radar, sonar, and
communication [1]. In this respect, many subspace-based methods as represented by multiple signal
classification (MUSIC) [2] have been proposed to estimate directions of arrival (DoAs). When signals
are uncorrelated and the number of snapshots is large, the MUSIC method is proven to be equivalent
to the maximum likelihood (ML) method [3].

In recent years, the exploration of the sparsity of signals facilitates the progress of DOA estimation
and a variety of sparse representation-based methods [4–8] have been advanced to estimate DoAs. �1-
SVD [4] and sparse covariance-based estimation (SPICE) [5] are prevalent ones. The former exploits
the �1 norm to reconstruct sparse signals and applies singular value decomposition (SVD) to reduce
computational complexity and noises, whereas the latter employs the array covariance matrix to improve
its accuracy. Nevertheless, in these sparse representation-based methods the true values of all DoAs
are assumed to be located on a selected sampling grid. When the assumption fails, the performance of
such methods deteriorates due to the problem of mismatch. Accordingly, several methods have been
raised to study the off-grid DOA estimation (i.e., estimating DoAs under the circumstance that the
true values of all or some DoAs are out of the selected sampling grid), and they are built upon the
principle of sparse signal reconstruction in the presence of the off-grid problem introduced in [9]. The
authors of [10] present an off-grid model and put forward the sparse total least-squares (STLS) method.
However, this model is not appropriate for the off-grid DOA estimation. The performance of the STLS
method is thus poor in this sense. Mixed norm-based methods are then proposed to estimate off-grid
DoAs in [11–13]. These methods still perform unsatisfactorily since they require the reconstruction of
a sparse matrix rather than a sparse vector. In [12], the authors also advance the joint orthogonal
matching pursuit (J-OMP) method, but the performance of J-OMP relies on the number of sensors.
The methods in [14, 15] utilize off-grid sparse Bayesian inference (OGSBI) to estimate off-grid DoAs.
Yet, the drawback of them is that their performance is sensitive to initial parameters. The method
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developed in [16] poses a block sparse estimator for the off-grid DOA estimation. Since the estimator
works only with a single snapshot, its accuracy is low.

In this paper, we attempt to obtain the off-grid DOA estimation using a sparse array covariance
matrix, so the method proposed here is referred to as off-grid sparse array covariance matrix (OGSACM).
The OGSACM method converts the array covariance matrix into a vector and then sparsely represents
the resulting vector in an over-complete Kronecker basis. Afterwards, the sparse array covariance matrix
is turned into an off-grid DOA estimation model by means of the first-order Taylor series. Finally, an
alternating iterative algorithm that utilizes the alternating update of a convex optimization problem
and a least-squares (LS) problem is presented to solve for the two sparse vectors in the modified sparse
array covariance matrix and the off-grid DOA estimation is then achieved. The reason for employing
the alternating iterative algorithm is concluded in [17] that a single �1-norm minimization cannot deal
with this solution. Our OGSACM method overcomes the aforementioned drawbacks of the state-of-the-
art methods. Moreover, in OGSACM the vector resulting from the transformation of array covariance
matrix extends the aperture. The simulation results show that the OGSACM method is valid and
performs better than the state-of-the-art methods in the off-grid DOA estimation.

Nomenclature: The superscripts T , H, ∗, −1, and † denote the transpose, conjugate transpose,
conjugate, inverse and pseudo inverse, respectively. The notations E[·], vec(·), IM , ⊗, diag(·), ‖ · ‖P , and
| · | represent the mathematical expectation, vectorization, M ×M identity matrix, Kronecker product,
diagonal matrix, �p norm, and absolute value, respectively.

2. OFF-GRID MODEL

Consider a uniform linear array (ULA) with M isotropic sensors and inter-element spacing d as shown
in Figure 1. Suppose that K uncorrelated far-field narrowband signals of wavelength λ impinge on this
ULA from distinct directions [θ1, θ2, . . . , θK ].

The received signals x at time t can then be written as
x(t) = A(θ)s(t) + n(t). (1)

The matrices and vectors in (1) take the following forms:

x(t) = [x1(t), x2(t), . . . , xM (t)]T ∈ C
M×1,

A(θ) = [a(θ1),a(θ2), . . . ,a(θK)] ∈ C
M×K ,

a(θk) =
[
1, e−jϕk , . . . , e−j(M−1)ϕk

]T
, ϕk =

2πd

λ
sin θk,

s(t) = [s1(t), s2(t), . . . , sK(t)]T ∈ C
K×1,

n(t) = [n1(t), n2(t), . . . , nM (t)]T ∈ C
M×1,

(2)

where A(θ) represents the array flow pattern, a(θk) the steering vector, s(t) the incident signals, and
n(t) the additive Gaussian white noise vector with the mean and variance of each element equal to zero
and σ2 respectively. The array covariance matrix R of the received signals can thus be derived by

R = E
[
x(t)xH (t)

]
= A(θ)RsAH(θ) + σ2IM , (3)

where Rs = diag(r1, r2, . . . , rK) with ri, i = 1, 2, . . . , K being the power of incident signals. We then
convert the array covariance matrix R into a vector r, which yields

r = vec (R) = G(θ)rs + σ2vec (IM ) , (4)

Figure 1. The configuration of an ULA.
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where G(θ) = [g(θ1),g(θ2), . . . ,g(θK)] ∈ C
M2×K and rs = [r1, r2, . . . , rK ]T with

g(θk) = vec
(
a(θk)aH(θk)

)
= a∗(θk) ⊗ a(θk), k = 1, 2, . . . ,K (5)

We further have

a∗ (θk) ⊗ a (θk) =
[
aT (θk) , ejϕkaT (θk) , . . . , ej(M−1)ϕkaT (θk)

]T
(6)

From (2) and (6), it can be seen that the number of different entries in g(θk) is greater than M , so the
aperture is extended. The sparse representation of r is thus given by

r = G(θ̃)̃rs + σ2vec (IM ) , (7)

where θ̃ = [θ̃1, θ̃2, . . . , θ̃N ] is the selected sampling grid ranging from −90◦ to 90◦, and r̃s=[r̃1, r̃2, . . . , r̃N ]
is the K-sparse vector with r1, r2, . . . , rK being its K nonzero elements.

Note that solving for r̃s we can get [θ1, θ2, . . . , θK ] if and only if G(θ) ∈ G(θ̃). However, the case
G(θ) /∈ G(θ̃) is more common and the performance of DOA estimation deteriorates in the presence of
such case. Therefore, we modify the sparse representation of r in (7).

We first expand g(θk), k = 1, 2, . . . , K by the first-order Taylor series, namely,

g (θk) ≈ g
(
θ̃sk

)
+ h

(
θ̃sk

)(
θ̃sk

− θk

)
, (8)

where |θ̃sk
− θk| = min{|θ̃1 − θk|, |θ̃2 − θk|, . . . , |θ̃N − θk|} and h(θ̃sk

) = dg(θ̃sk
)

dθ̃sk

. Since there is

correspondence between θ and sin θ when θ ranges from −90◦ to 90◦, θ can be substituted by sin θ.
(8) is then rewritten as

g (sin θk) ≈ g
(
sin θ̃sk

)
+ h

(
sin θ̃sk

)
βk, (9)

where βk = sin θ̃sk
− sin θk. By (9), the calculation is simplified. Accordingly, (4) becomes

r=
[
G
(
sin θ̃s

)
+H

(
sin θ̃s

)
diag (β)

]
rs+σ2vec (IM )=G

(
sin θ̃s

)
rs+H

(
sin θ̃s

)
diag(rs)β+σ2vec(IM ) (10)

where θ̃s = [θ̃s1, θ̃s2, . . . , θ̃sK
] and β = [β1, β2,. . . , βK ]T . The sparse representation of r is thus modified

as
r = G

(
sin θ̃

)
r̃s + H

(
sin θ̃

)
diag (r̃s) β̃ + σ2vec (IM) , (11)

where β̃ ∈ C
N×1 is the K-sparse vector with β1, β2, . . . , βK being its K nonzero elements.

3. OFF-GRID DOA ESTIMATION

From (11) and [17], we can solve for r̃s and β̃ by minimizing the �1 norm. It is then immediate that(
r̃s, β̃

)
= arg min

r̃i�0,β̃
‖r̃s‖1 + δ

∥∥∥r− σ2vec (IM) − G(sin θ̃)̃rs − H(sin θ̃)diag (r̃s) β̃
∥∥∥

2
(12)

where r̃i is the ith element of r̃s. Nevertheless, the above optimization problem is nonconvex [17].
Consequently, the following alternating iterative algorithm is presented to solve respectively for r̃s and
β̃, that is,

r̃(j)
s = arg min

r̃i�0
‖r̃s‖1 + δ

∥∥∥r − σ2vec (IM) − G(sin θ̃)̃rs − H(sin θ̃)diag (r̃s) β̃(j−1)
∥∥∥

2
(13)

and
β(j) = arg min

β

∥∥∥r− σ2vec (IM ) −G(j)(sin θ̃s)r(j)
s − H(j)(sin θ̃s)diag

(
r(j)
s

)
β
∥∥∥

2
(14)

where j denotes the jth iteration and δ is a parameter generally set to be 0.5 [18, 19]. σ2 is estimated

by 1
M−K

M−K∑
i=1

λi with λi being the M − K smallest eigenvalues of R [2].
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In the jth iteration, G(j)(sin θ̃s) and H(j)(sin θ̃s) in (14) are formed respectively by the vectors of
G(sin θ̃) and H(sin θ̃) located according to the indices of the K peaks of r̃(j)

s and the elements of r(j)
s

in (14) take on the same values as the K peaks of r̃(j)
s . In the (j + 1)th iteration, β(j) is extended to

become an N × 1 vector β̃(j) whose K elements located by the indices of the K peaks of r̃(j)
s have the

same values as the elements of β(j) and remaining N − K elements equal zero.
The iteration starts with β̃(0) = 0N×1, where 0N×1 = [0, 0, . . . , 0]T ∈ C

N×1 and proceeds until
|‖r̃(j+1)

s ‖1−‖r̃(j)
s ‖1|

‖r̃(j)
s ‖1

� e, where e is a threshold set to be 10−4. Since β̃(0) = 0N×1 is constant and implies

that no true values of DoAs are off grid, the iteration is not affected by initial parameters.
In (14), since H(j)(sin θ̃s) and diag(r(j)

s ) are the column full-rank and full-rank matrices respectively,
there is a unique LS solution to β(j). We can then solve for β(j) by

β(j) =
[
diag

(
r(j)
s

)]−1[
H(j)

(
sin θ̃s

)]† [
r−σ2vec (IM ) − G(j)

(
sin θ̃s

)
r(j)
s

]
(15)

The optimal solution (̃rs, β̃) is thus obtained by the alternating update of (13) and (15). Following the
proof in [17], we can easily show that (̃rs, β̃) is also the optimal solution of (12).

Assume that the number of iterations is m and the indices of the K peaks of r̃(m)
s are

[s(m)
1 , s

(m)
2 , . . . , s

(m)
K ] respectively. The off-grid DOA estimation of the kth signal is thus achieved

by
θK = arcsin

(
sin θ̃

s
(m)
k

− β
(m)
k

)
, k = 1, 2, . . . ,K, (16)

where β
(m)
k is the kth element of β(m).

4. SIMULATION

Numerical examples are presented to test the validity of the OGSACM method and compare the accuracy
of OGSACM, OGSBI [12], sparse spectral fitting with modeling uncertainty (SSFMU) [8], and �1-
SVD [4] in the off-grid DOA estimation. In the simulation, M = 8 isotropic sensors with inter-element
spacing d = λ/2 are assumed to be on the ULA. There are two uncorrelated far-field narrowband
signals impinging on this ULA from directions −14.5◦ and 36.3◦ respectively. A uniform sampling grid
[−90◦,−90◦ + Δ, . . . , 90◦ − Δ, 90◦] is selected, where Δ denotes the grid interval. We define the input
signal-to-noise ratio (SNR) as 10 lg(γs/σ

2), where γs is the total power of signals and σ2 is the power
of noise.

In the first numerical example, we illustrate the effectiveness of the OGSACM method. The measure
adopted here is the residual and error of r̃s defined respectively as

Residual =
∥∥∥r̃(j+1)

s − r̃(j)
s

∥∥∥
1

(17)

and
Error =

∥∥∥r̃(j)
s − r̃true

s

∥∥∥
1
, (18)

where r̃true
s is the true value of r̃s. In this numerical example, Δ = 2◦. In addition, the SNR is 10dB

and the number of snapshots is 250.
Figure 2 depicts the changes in the residual and error of r̃s with the increase in the number of

iterations. It is observed that both the residual and the error get closer to zero as the number of
iterations goes from 1 to 10. These results indicate that r̃s converges to its true counterpart as the
number of iterations increases. The same is true for β̃ according to (15). Therefore, our OGSACM
method is valid.

In the second numerical example, we compare the estimated accuracy of OGSACM with that of
OGSBI, SSFMU, and �1-SVD. The measure is the root mean square error (RMSE) defined as

RMSE =

√√√√ 1
L

1
K

L∑
i=1

(
K∑

k=1

(
θk − θ̂

(i)
k

)2
)

, (19)
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Figure 2. The residual and error versus the
number of iterations.

-4 0 5 10 15 20
10

10

10

10

SNR (dB)

R
M

S
E

 (
d

eg
)

 

 
OGSACM
OGSBI
SSFMU
L1 SVD
CRLB

-2

-1

0

1

Figure 3. The RMSE versus the SNR.
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Figure 4. The RMSE versus the number of
snapshots.
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Figure 5. The RMSE versus the grid interval.

where L = 500 is the number of times of Monte Carlo experiments and θ̂
(i)
k the estimated angle of the

Kth signal in the ith experiment.
We plot the RMSEs for OGSACM, OGSBI, SSFMU, and �1-SVD under three different conditions

in Figures 3, 4, and 5 respectively. The Cramer-Rao lower bound (CRLB) [3] also appears in Figures 3
and 4. In Figure 3, the SNR ranges from −4 dB to 20 dB and the number of snapshots is fixed at 250.
In Figure 4, the number of snapshots ranges from 100 to 400 and the SNR is fixed at 10 dB. In both
Figures 3 and 4, Δ = 2◦. In Figure 5, Δ ranges from 1◦ to 4◦, and the SNR and the number of snapshots
are fixed at 10dB and 250 respectively.

As displayed in Figures 3, 4, and 5, there exist sustained error in �1-SVD, suggesting that this
method cannot estimate off-grid DoAs. This is because it is assumed in its DOA estimation model that
the true values of all DoAs are located on the selected sampling grid. Figures 3, 4, and 5 also reveal that
the accuracy of OGSACM is higher than that of OGSBI and SSFMU. The reason for outperforming
the OGSBI method is that the performance of OGSACM is unaffected by initial parameters while the
performance of OGSBI is vulnerable to its initial random vector (e.g., the OGSBI method performs
poorly when the value of the initial random vector is far different from its true counterpart), and the
reason for performing better than SSFMU is that OGSACM requires the reconstruction of merely a
sparse vector whereas SSFMU a sparse matrix. Furthermore, the extended aperture also makes the
OGSACM method more accurate.

5. CONCLUSION

In this paper, we propose a method referred to as OGSACM to study the off-grid DOA estimation.
In this method, the off-grid DOA estimation is obtained via an alternating iterative algorithm that
exploits the alternating update of a convex optimization problem and an LS problem since a single
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�1-norm minimization is not capable of doing so. Besides, the aperture is extended in this method.
Both the alternating iterative algorithm and the extended aperture lead to an improvement in the
performance of OGSACM. As shown in the simulation results, our OGSACM method is effective and
performs better than the state-of-the-art methods.
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