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Analysis of the Proximity Coupling of a Planar Array Quasi-Lumped
Element Resonator Antenna Based on Four Excitation Sources

Seyi S. Olokede1, * and Clement A. Adamariko2

Abstract—In this paper, a simple-fed, low profile, 9× 10 elements quasi-lumped planar antenna array
is presented. The proposed resonator employs a quasi-lumped element resonator that uses interdigital
capacitor (IDC) in parallel with a straight strip inductor shorted across the capacitor. The array
elements were designed and then excited by a feed network of four coaxial probes situated at the
bottom plane but separated from the ground plane using a plastic material. The entire array is divided
into four sub-array lattices of 5× 5 elements and excited by a coaxial probe located at the centre of the
sub-arrays antenna structure, thus exciting the centre resonator who in turn excites the neighbouring
elements via proximity coupling. The probes are connected based on Wilkinson power divider principle
to provide in-phase excitation. An explicit method is introduced to quickly obtain the array factor (AF)
characteristics for such proximity coupled rectangular planar array. Radiation pattern and the array
factor are presented, and are further compared with those obtained by the simulation and experimental
results. The proposed antenna comprises 9 × 10 elements array, each of which is 5.8 × 5.6 sq. mm in
size, and the entire antenna structure is about 120 × 80 sq. mm.

1. INTRODUCTION

Usually, lumped element resonators are formed by lumped inductors and capacitors. These lumped
element resonators are passive components whose sizes across any dimension are much smaller than the
operating wavelength to ensure that there is no appreciable phase shift between the input and output
terminals. Their no-phase shift tendency underscores their usefulness. As a result, most literatures
recommend that the length of an equivalent inductor and capacitor elements should not be longer
than λ/20 or 12% of its wavelength of operation. Otherwise, it will lose its lumped equivalency
effect. However, Janhsen et al. [1] asserted that a general definition of quasi lumped elements cannot
be established particularly with reference to its length, because it would be somewhat arbitrary.
Incidentally (according to them), the width w of an impedance sections has only a small effect on
the scattering parameters in comparison with the length l, where the height h of the sections is oriented
transversely to the current flow. Of particular interest therefore is the definition of Hong where he defined
quasi-lumped element as microstrip line short sections and stubs whose physical lengths are smaller
than a quarter of guided wavelength at which they operate, and as such, are common components for
approximate microwave realization of lumped elements in microstrip filters structures, and are termed
quasi-lumped elements [2]. It is on the basis of this definition that the proposed derives its lumped
element equivalency. They therefore have the relative advantage of smaller size, wider bandwidth, and
more particularly, lower cost characteristics. Thus, impedance transformation close to 20:1 is feasible
using quasi-lumped element resonator [1].
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Analysis of linear and planar arrays either for large or compact antennas, including dipole antenna,
monopole antenna, and planar antenna configurations, have been extensively studied and well reported
in some publications. These works, though efficient suffer significant large antenna size. However, in [2],
the authors reported the design of an efficient miniaturized UHF planar antenna employing spiral slot
radiating elements. This work is noteworthy and adequate for UHF applications but suffer serious
disadvantage most especially at high frequencies range of applications as it becomes unrealizable due
to etching limitations. This paper therefore presents an efficient compact planar array quasi-lumped
element resonator antenna for WLAN applications. The objectives of this paper in the first instance is
to present the single quasi-lumped element resonator’s performance profile with the view to determining
its compactness; the second is to derive the requisite surface current density equations of the proposed
resonator bearing in mind the edge and boundary condition singularity requirement; the third is to
investigate the proximity coupling between the radiating elements, and much more to derive explicit
formulae for the coupling and array factor (AF) using a numerical method; the fourth objective is
to design the proposed planar array configuration having proved that the single quasi-lumped element
resonator footprint is compact and efficient, in order to provide requisite platform to further validate the
derived explicit numerical formulae; and finally, design a conventional microstrip patch planar array for
performance profile comparison with the proposed antenna so as to demonstrate its specific advantages.
To this effect, the proposed antenna becomes attractive for wireless communication applications.

2. THEORETICAL BACKGROUND

2.1. Single Quasi-Lumped Element Resonator Antenna

The single quasi-lumped element resonator consists of quasi-lumped microstrip line sections and stubs,
which employs an interdigital finger capacitor (IDC) in parallel with a single narrow straight conductor.
A meander-line inductor may also be used alternatively to improve the capacitance. The inductor (L)
is the centre finger shorted across the capacitor. The pads connected at both ends of the structure act
as capacitors to ground (CP ), which can be adjusted to tune the resonant frequency of the resonator.
The layout of the quasi-lumped element resonator and equivalent circuit of the structure are shown
in Figure 1(a). The capacitor C is an interdigital capacitor (IDC), an inductor L is the microstrip
inductor whereas capacitor Cp1 and Cp2 are pad capacitances. The interdigital capacitor C is a comb-
like, digit-like or finger-like periodic pattern deposited on a broad types of substrates which could be
porous, transparent or opaque [3]. In order to create high-Q (a figure of merit, which is a measure of
the performance or quality of a resonator) a planar IDC is deposited on the surface of a relatively high
dielectric constant substrate. The Q-factor can be enhanced by using high-conductivity conductors, low-
loss tangent dielectric materials, Q-enhancement techniques including suspended substrate, multilayer
structures and macro-machining [4]. The essence of IDC is to build up the capacitance associated
with the electric field that penetrates into the substrate. Generally, it relies on the strip-to-strip (gap)

(a) (b)

Figure 1. Quasi-lumped element resonator. (a) Subcomponent, (b) dimensioned.
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capacitance of parallel conducting fingers on a substrate, and uses the capacitance that occurs across a
narrow gap thin-film conductors. These gaps are essentially very long but folded to use a small amount
of area, therefore compact area is obtained. In order to achieve maximum capacitance density, the
finger width (w1) must be approximately equal to inter-finger space (ge). Also, the substrate thickness
(h) should be much larger than the finger width. The capacitance can be increased by increasing the
number of fingers, using a thin layer of high dielectric material between the substrate and conductor,
or using an overlay high-k [5].

In this work a moderate dielectric constant was used and the equation to determine the IDC of
the resonator was stated by Avenhaus in [6] and also appropriately stated in Eq. (2) of [7] for the same
design specifications and considerations, where N is the number of fingers, CL is the overlap length of
IDC fingers, and Δ = 0.5(weff −w1) (which is equal to 0.5 for this design) is the correction factor due to
the effect of fringing field. The Q-factor of an inductor depends directly on the inductance, whereas the
inductor is a single narrow straight inductor shorted across the IDC as shown in Figure 1(a). Normally,
when inductor is narrow, it becomes more inductive but carry less current. As such, the inductance of
a narrow strip inductor is decreased by the presence of a ground plane. Hence, an inductor width of
1.2 mm can comfortably carry sufficient current, while the entire structure of length 5.8 mm is broad
enough to neutralize the effect of the presence of ground plane. The inductance of the structure is
dominated by the magnetic field close to the centre strip and the value is dependent on the total length,
spacing, and line width. The inductance L produced by the straight inductor can be calculated by
Eq. (2) as stated in [8–13], and more specifically in Eq. (1) of [7] where IL is the inductor length, W1

is the inductor width, and t is the metal thickness as shown in Figure 1(b).
The IDC capacitor C and the inductor L are approximately calculated on the basis of ge/h < 1

where ge is the inter finger spacing, and h is the substrate thickness. It is evident from finite integration
technique (FIT) analysis that the magnetic field lines do not loop around each finger but rather loop
around the entire cross section of the interdigital width. Thus, the structure can be treated using
microstrip transmission line theory, with � as the length of the structure. The resonant frequency of the
resonator is given in [12], also stated as Eq. (7) of [7] and it’s dependent on, the inductor strip L, the
capacitive inductance from the IDC (the length of the finger, the line width of the finger), and the pad
capacitances, Cp where C is the IDC defined by Eq. (2) of [7], and L is the strip inductance defined by
Eq. (1) of [7]. Cp1 = Cp2 are pad capacitances defined by Eq. (6) of [7], and are formed between the gaps
and the ground. The equation to determine the pad capacitance is also stated similarly in [13] where �
is the resonator length, and h is the substrate thickness. It is noteworthy that the pad capacitances do
not depend on the size and the number of fingers, but rather on the substrate thickness, the length of
the IDC, and finally, the effective line width. Therefore, it is also not impossible to have a large value of
IDC without increasing the pad effect [14]. Essentially, the pads connected at both ends of the IDC acts
as capacitor to ground with the sole aim of adjusting (tuning) the resonant frequency of the resonator,
weff is the effective line width given in Eq. (2) [15] and εeff is the effective dielectric constant defined
in Eq. (1).

εeff =
(εr + 1)

2
+

(εr − 1)
2

[
1 +

10h
w

]−0.5

(1)

weff = w +
t

π
ln

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10.872√√√√√
(

t

h

)2
⎡
⎣ 1

π
(w

t
+ 1.10

)
⎤
⎦

2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

2.2. Problem Formulation of the Array

A planar array comprises definitely arranged finite sized identical antenna radiators which are fed by
an appropriate feed network. In a way, the fields radiated from one radiator is received by the other
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radiators. Hence, the signal get reflected, re-radiated, or scattered. The properties of these signals
depends on the power of the signal, reflection coefficients, and possibly an additional electrical phase
introduced due to propagation delay from one element to the other. This kind of interaction between the
antenna elements and hence, can alter the array characteristics. Assume therefore that a planar array
has m×n elements and are arranged in the xy-plane. In the x-direction, the number of array elements is
m = 9, and in the y-direction the number of array is n = 10. If all the elements are fully excited by the
proposed feed network, the pattern of the proposed array can be expressed as the product of the excited
(actives) element factors and the array factor, in an analogous fashion to traditional array theory. To
achieve this, it is assumed that 1) the element factor, f(θ) is identical to the pattern of a single element
taken in isolation from the array, and is the same for any element in the array; 2) the overall pattern
Σf(θ) obtained is called the active patterns of the array; and finally, 3) f(θ) will depend on the position
of the feed elements in the array such that edge elements will have active element patterns than the
elements near the centre of the array, and for large array however, most of the elements will see a
uniform neighbouring environment, and eventually, f(θ) can be approximated as equal for all elements
in the array.

2.3. The Coupling Excitation

To achieve the conditions set in Section 2.2, the proposed array is fed by a feed probe network consisting
of four coaxial probes located at the coordinates p1(xs, ys), p2(xs, ys), p3(xs, ys) and p4(xs, ys) to form
two dimensional 2×2 source distribution as shown in Figure 1(a). The entire array elements were excited
due to proximity coupling from the adjacent elements as a result of these four excitation coaxial probes
to produce efficient excitation distribution. The antenna array lattice is arranged with four rectangular
array lattices of 5 × 5 each (with the fifth column doubly overlapped to form the fifth column in each
of the four lattices) and each is excited by a probe. The nodes of the array lattice are arranged in
horizontal rows and vertical columns of similar inter element spacing of λg/2, where λg is the guided
wavelength. The effective spacing between adjacent nodes in each column (dy) is 0.159λ5.8 GHz whereas
that of horizontal (dx) is 0.162λ5.8 GHz as shown in Figure 2(b). Let the planar array antenna be arranged
in a plane z = 0 as shown in the Figure 2(a), which consists of xy-plane and the xz -plane cross sections of
the proposed rectangular planar antenna. Also, let the beam direction be determined by the coordinates
of the nodes in a periodic Cartesian in the plane of direction cosines x = sin θ sinφ and y = sin θ cos φ,
where θ and φ are the angles measured at the axes z and x respectively. The excited elements (p(xs, ys))
in the figure with above coordinates are referred to as line sources (otherwise known as active elements
or drivers). Consider the fact that a periodic lattice forms (m×n) nodes in the xy-plane of the Cartesian

(a) (b)

Figure 2. The array configuration. (a) The feed network, (b) the spacing.
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coordinates with the polar radius of

R =
[
(mdx)2 + (ndy)2

]0.5 (3)

from the centre of each p(xs, ys) element. The periods of each lattice are dx and dy, as demonstrated
in Figure 2(b). The positions of the nodes are denoted by p = (m,n) and these nodes corresponds to
the possible positions of the quasi-lumped element resonators where the black-undesignated elements of
Figure 2(a) represent the passive elements. The nodes are excited by the coaxial feed probe network of
four feeds, and consequently create radiation excitation patterns shown in Figure 3(a). The excitation
of one of the elements of the array at each of the four lattices produces fringing field patterns that
contribute to capacitance entries with the given array. These fringing fields also caused current to be
induced in other nodes (passive elements) that in turn became active elements. Each radiating element is
loaded with a via as shown in Figure 3(b) thus creating additional parallel inductance L. The inductance
results from the current flowing through the vias, whereas capacitances C is simultaneously created due
to the gap effect between the adjacent radiating elements. The combination of the inductance L and
capacitance C forms the resonant tank LC. Equations to determine the values of the inductor L as well
as the capacitor C are stated in Eq. (4) [16]. The advantage of this technique firstly, is that both the
feed and the radiating elements lies on the surface of the substrate. As such, the otherwise pronounced
surface waves are suppressed resulting in the provision of right impedance match between the radiating
elements and the feeds. It also improves the antenna gain, and reduces back radiation.

L = μ0h, C =
wε0 (1 + εr)

π
cosh−1

(
2w + dx

dx

)
(4)

Seeing that the antenna radiation pattern depends on the impedance at the antenna elements, the
variation in the self- and mutual impedances due to the presence of coupling between the array elements
for an array of N × M elements is as stated in Eq. (5) based on Figure 3(c) [17]. These impedance

(a) (b)

(c) (d)

Figure 3. Radiation excitation pattern. (a) Excitation mechanism of one probe [18], (b) geometry
showing the vias loading, (c) geometry of the four feed probes w.r.t S-parameters, (d) the in-phase feed
network.
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matrices of the excited self- and mutual impedances are dependent on 1) the type, and 2) configuration
of the array. The mutual coupling of the four probes with respect to the incident waves and reflection
coefficients are stated in matrix of Eq. (6) where a1, a2, . . ., a3 and b1, b2, . . ., b4 are the normalized
excitation voltage waves. The respective currents and voltages as a results of the coaxial feed probes
are stated in Eq. (7)
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From Eq. (7), IS = [I1 I2 I3 I4] where IS is the current in the active (source) nodes. For the N -element
array, it is expected that the radiating elements can be characterized by these radiation modes as a result
of the excitation from the active elements, in particular, the radiation characteristics of the proposed
antenna as demonstrated in Figure 5. Therefore, the currents in the active nodes due to excitation of
the probes is [19]

Is(z = 0) = I(i, j) =

⎧⎨
⎩

I0, for j = 0
I0

2n
, Otherwise

(8)

Equation (8) explicitly defined the current in the proposed active resonators where (i, j) represent
current distributions along the horizontal and vertical cross section of each radiating element, whose
values is I0 at j = 0 indicating that the values of currents in the shorted inductors of inductance L. The
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feed network shown in Figure 3(d) is employed to provide in-phase excitations of the four active sources
through the coaxial feed probes in order to forestall the occurrence of main beam steering seeing that
phased array is not our objective. From this point of view of harmonic time dependence, the current
in each of the active element formerly stated in Eq. (8) can be re-written as given in Eq. (9) below,
where kz is the z-direction propagation constant of the wave along the coaxial feed probes aperture (by
which the active elements are excited) with its arbitrary value chosen in order to obtain the radiation
characteristics of the radiating sources by spatial Fourier transform in the subsequent section.

Is(z) = Is(z = 0)e(−jk)z (9)
Since the current is along the z-direction via the coaxial feed probes, the electromagnetic problem
becomes a scalar one. The induced currents at various radiating elements will have different values
for different radiating elements, but on the average, the induced currents in the radiating elements are
expected to have the same excitation patterns as shown in Figure 3(a). The current Iind(kz; z) at an
arbitrary pth radiator is induced by the local fields Eloc

s and thus have the relation stated in Eq. (10).
The local field is the field produced by the excitation currents and the induced currents at all the
radiating nodes except the p(xs, ys) elements itself.

Eloc
s =

1
αs(kz)

Iind(z = 0) (10)
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z

)0.5
, and k = ω(ε0μ0)0.5 (12)

σ is the electrical conductivity of the elements, H
(2)
0 the Hankel function of the second kind and d the

diagonal of each element.

2.4. The Radiation Pattern

Assume all of the currents are along the z-direction, and that, the electric field is polarized along the
z-direction. Thus, electromagnetic propagation problem assumes a scalar dimension as earlier said.
The active elements are located at point p(xs, ys) = [p1(xs, ys), p2(xs, ys), p3(xs, ys), p4(xs, ys)] to create
sufficient excitation density distributions, and the nearest neighbouring passive elements (p

′th) is at the
point p(xs, ys − g) = [p1(xs, ys − g), p2(xs, ys − g), p3(xs, ys − g), p4(xs, ysg)]. The effective electric
field acting on the nearest passive elements under consideration is the addition of the field produced
by the active elements and that of the passive nodes. Therefore, this generated electric field creates
interactions between the active elements and the surface of these nearest passive elements located at
p(xs, ys − g). The electric field generated by the active elements (sources) already reported in [19, 20] is

Eactive-element (P (x, y), z = 0) = −γ

4
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where
|R| = |Rs − Rs′ | (14)

is the distance between the pth(m,n) and p
′th(m,n) nodes on the same xy-plane, i.e.,

|Rs − Rs′ | =
[
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x + (n − n′)2d2
y

]0.5 (15)

p
′th node =

{
ps(xs, ys − g), for Is(z) = 0
ps(xs, ys), Is as given in Eq. (4) (16)

The overall possible p′(m,n) nodes except the source elements p(xs, ys) gives the local field

Eloc
s =

∑
p′(m,n)�=p(xs,ys)

Ep′(m,y)th−node (17)
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Note that when p(xs, ys) is very close to p(xs, ys−g), the induced currents in other passive elements are
quite small compared to the source element p(xs, ys). Therefore, the main contribution to the local field
at the surface of p(xs, ys − g) element is the field radiated by each of the element source. Henceforth,

Eloc
s ≈ Es (xs, ys − g, z = 0) (18)

Substituting Eq. (11) into Eq. (10), and using Eq. (13), this system of linear equations are obtained for
the induced currents Iind(m,n) as∑

p(m,n)p(xs,ys)

kp(m,n)p(xs,ys−h)Iind(m,n)(kz ; z = 0) =
1
4
αs(kz)γ

∑
p(xs,ys)

H
(2)
0 (kr|Rs|)Is(0) (19)

where
kp(m,n)p(xs,ys−h) = δp(m,n)p(xs,ys−h) + αp(m,n)γ(kz)H

(2)
0 (kr|R|)/4 (20)

δi,j is the Kronecker delta function. Subsequently, the field at arbitrary point P (x, y) produced by the
whole structure can be calculated as shown in Eq. (21) below having obtained the induced currents
Iind(kz; z = 0) by solving the above system of linear equations.

Eactive-element (P (x, y), z = 0) = −γ

4

⎡
⎣ ∑

P (m,n)

Iind(kz; z = 0)H(2)
0 (kr|R|)+

∑
P (xs,ys)

Is(0)H
(2)
0 (kr|R|)

⎤
⎦ (21)

Consider a quasi-lumped resonator sources which has the following current distributions

IS = IS(0)J(z) (22)

Therefore, the current distributions can be stated as

J(z) =

∞∫
−∞

G(kz)ejkzzdkz (23)

Hence, G(kz) can be determined as stated in Eq. (24) by performing the inverse Fourier transform of
Eq. (23)

G(kz) =

∞∫
−∞

Jz(z)e−jkzdkz (24)

where G(kz) is the Fourier transform of the current distribution function of the radiating element sources
located at point p(xs, ys). It is then apparent that the z-component of the electric field at any arbitrary
point p(x, y, z) generated by these sources can be determined by Fourier transform with respect to the
parameter kz seeing the solution for a radiating source problem gives the solution for the Fourier spatial
harmonic of the antenna current. Hence, the linearity of the problem allow the use of the principle of
superposition and as such, the electric field at any arbitrary point p(x, y, z) produced by the sources is
given as

Ez(x, y, z) =

∞∫
−∞

G(kz)EActive-element (R, z = 0) e−jkzdkz (25)

where EActive−element(R, z = 0) is the electric field produced by each of the active element source
IS(0)ejkzz stated in Eq. (21). The said radiating active element source exhibit the current distribution

Jz(z) =
N∑

i=1

[Jx(x, y) + Jy(x, y)] (26)
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where i is the i-th finger of each of the proposed radiating element; Jx(x′, y′) & Jy(x′, y′) are as stated
in Eqs. (26) and (27); N is the number of fingers in the quasi-lumped radiator.
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Using Eq. (24) as defined by [20], the electric far field can be express as

EFar =
Earray

z

sin θ
(29)

EFar-field(r, θ, ϕ) =
jk0G(kz)e−jkr

2πr
×

[∑
p

IpG(kz)ejkr(xp cos θ+yp sin ϕ) sin θ

+
∑

s

IsG(kz)ejkr(xs cos θ+ys sinϕ) sin θ

]
(30)

EFar-field(r, θ, ϕ) =
jk0G(kz)e−jkr

2πr
× 2

∑
p(x,y)

IpG(kz)ejkr(x cos θ+y sinϕ) sin θ (31)

Assume
f(x, y) = (θ, ϕ) = Ip(x,y)G(kz) (32)

where f(x,y)(θ, φ) is the vector element radiation pattern. Hence, the far field radiation pattern can be
further simplified as

EFar-field(r, θ, ϕ) =
jk0G(kz)e−jkr

2πr
f(x,y)(θ, ϕ) × 2

∑
p(x,y)

ejkr(x cos θ+y sin ϕ) sin θ (33)

EFar-field(r, θ, ϕ) = EP × AF (34)

It can subsequently be simplified as shown in Eq. (34) where EP is the radiation intensity of the
element, and AR is the array factor.

EP =
jk0G(kz)e−jkr

2πr
f(x,y)(θ, ϕ) (35)

AF = 2
∑

p(x,y)

ejkr(x cos θ+y sinϕ) sin θ (36)
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where x′ = mdx, y′ = ndy, z′ = 0, k = 2π/λ, x = x′ sin θ cos φ, and y = y′ sin θ cos φ. Therefore, Eq. (34)
represents the radiation pattern of the proposed array in 3-D. Hence, the radiation pattern of an array
of N × M -identical elements evaluated at location (θ, φ) in the far-field can be approximated by the
product of radiation intensity of the element (EP ) and the array factor (AR).

3. VALIDATION AND DESIGN SPECIFICATIONS

To explore the present explicit method numerically, the antenna was designed for 5.8 GHz to cover
IEEE 802.11a WLAN U-NII Upper band based on the above-derived equations. The single element
was first designed to confirm the performance of the proposed radiator first and foremost, as antenna
candidate, and secondly, as a radiator with compact size capability and good directional characteristics.
Subsequently, the planar array configuration was designed. The antenna was designed using 3D EM
CST microwave studio, and printed on a grounded Roger Duroid RO4003C microwave substrate of
0.813 mm thickness (h) and relative permittivity of 3.38 with a metal thickness (t) of 0.035 mm. The
antenna was excited by four coaxial feed probes network based on the principle of Wilkinson power
divider as shown in Figure 3(d). The four probes are then soldered to the microstrip feed line and fed
by a 50 Ω connector. The entire feed network is photo etched on a plastic spacer made from polyamide
material (similarly demonstrated in [21, 22]) and mounted on the bottom of the structure in order to
separate the feed network from the ground plane as shown in Figure 8(c). The horizontal probes are
separated by distance of 2λ5.8GHz apart whereas, the vertical by 5λ5.8 GHz/2 apart, where � = 5λ5.8GHz/4,
w50 = 1.9 mm, w70.7 = 1.05 mm, and w100 = 0.46 mm as shown in the figure. The radiating element
dimensions were obtained from Eqs. (3) to (5) of [7], and are stated as follows: l = 5.8 mm, w = 5.6 mm,
CL = 3.05, ge = 0.3 mm, W = 1.2 mm, w1 = 0.35, N = 8, and IL = 3.35 mm. These values were then
substituted into Eqs. (1), (2), and (6) to determine the values of the strip inductance, interdigital
capacitance, and the pad capacitances. The values are thereafter substituted into Eq. (3) to eventually
obtain the desired resonance frequency of the design. Parametric optimization was further done using
EM solver to ensure that resonance occur at the design specification. Using the explicit formula stated as
Eq. (33) numerically, Figure 4(a) shows the array geometry of the proposed rectangular planar antenna
array. A similar one was also designed as shown in Figure 4(b) but with microstrip patch (instead
of the proposed radiator) for the purpose of comparative analysis. In both, the numbers of nodes in
the structure are 9 × 10. The supposedly active elements were positioned at the centre of each 5 × 5
sub-array lattice at coordinate of p(xs, ys). The inter-element spacing of λg/2 was used on both axes
where λg is the guided wavelength calculated to be 28 mm at a resonant frequency of 5.8 GHz, whereas
the elements are periodic with periods dx and dy equal to 0.162λ5.8 GHz and 0.159λ5.8 GHz respectively
at λ5.8GHz which is equals 51.72 mm, where λ0 is the free space wavelength at the antenna resonance

(a) (b)

Figure 4. Geometry of the antenna array. (a) Proposed, (b) patch.
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(a) Normalized array factor (AF) (b) E-Plane (c) H-Plane

(d) E-Plane (e) H-Plane (f) E-Plane of the patch array

Figure 5. Radiation pattern of the antenna. (a) Normalized array factor (AF ), (b), (c) single element
proposed antenna, (d), (e), (f) proposed planar array antenna.

frequency using Eq. (3). The radiation pattern at H-plane along broadside for such antenna systems was
calculated at the resonance frequency. E-polarization was also determined using the explicit formula
stated in Eq. (33). Subsequently, the design was simulated, fabricated and measured. The results
were then compared with the numerical formula stated in the said explicit equation. Each radiating
element of the proposed antenna and microstrip patch were 5.8 × 5.6 and 17 × 13 mm2 in dimensions
respectively. The array factor (AF ) of the proposed planar antenna array configuration was computed
using Eq. (31) and the 3-D plot which is dependent on both θ = 90◦ and ϕ = 0 where (m, n) equal 9
and 10 respectively is as shown in Figure 5(a). The design was also simulated and measured, and the
radiation patterns both in E- and H-planes for both the single element and the array were presented.
Figures 5(b) & (c) show the simulated and experimental radiation patterns of the proposed single
element whereas Figures 5(d) & (e) depict that of the array configuration. For the simulation results
of the single element, the main magnitude was 8.4 dB in a direction of zero degree with an angular
width (HPBW) of 32.6 degree, and side lobe level of −6.13 dB. The measured values indicated that the
main lobe magnitude was 7.6 dB, main lobe with spatial radiation of 5 degree away from the boresight
with an angular width (HPBW) of 30.4 degree, and a side lobe level of −4.2 dB in xz -plane (E-plane).
Similarly in yz -plane (H-plane), the simulation results show that the main lobe magnitude was 8.4 dB
with a main lobe direction of zero degree at an angular width (HPBW) of 88.19 degree, whereas the
measured results show that the main lobe magnitude was 7.6 dB, and a main lobe direction of 6 degree
at an angular width (HPBW) of 87.4 degree. In Figure 5(d), the main lobe magnitude was 19 dB,
the only major lobe was oriented along θ = 10 degrees and the angular width (3 dB) is 13 degrees,
whereas the side lobe level was less than −10.2 dB. In H-plane shown in Figure 5(e), the major lobe
was oriented along θ = 8 degrees with magnitude of 19 dB, angular width (at 3 dB) of 22 degrees and
side lobe level of −4.3 dB. The reasons for these 5, 6, 10 and 8 degrees squint from the principal axis
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as demonstrated in Figures 5(d)–(f) is as a result of spacing differential between the horizontal and
vertical periods (dy − dx) which is equals to 0.159λ5.8 GHz − 0.162λ5.8 GHz of the array. Comparing the
explicit numerical result with the simulation and experimental results demonstrates to a large extent, a
reasonable degree of agreement, though with minor discrepancies particularly as shown in Figure 5(e).
The reason for this dissimilarity is not unconnected with the inability to precisely locate the excitation
feeds positions during fabrication with respect to the simulated feed positions. In both, one major main
lobe is observed, whereas a side-lobe level of −10.2 dB is noticed in both the simulated and experimental
results particularly in xz -plane. Figure 5(f) shows the Eθ component radiated by a rectangular array
in the plane cut by ϕ = 0 of the microstrip patch antenna, where the major lobe is oriented along 5
degrees. The antenna beamwidth (HPBW) is 41 degrees with a side lobe level of −13.4 dB. However, a
minor level of back lobe is formed in the lower part of the hemisphere which may be due to the existence
of radiations from the surrounding objects. Generally, the radiation patterns of the antennas obtained
are close to a directional type, and the beam width of the proposed antenna is 31.7% narrower than
the patch antenna. The radiation pattern of the antenna is acceptable, and there is a good agreement
between the theory and the measured results.

Comparing the radiation pattern of the proposed shown in Figure 4(a) with the patch antenna of
Figure 4(b) shown in Figure 5 (and in particular Figures 5(c) & (d) indicates that the proposed E-plane
radiation pattern exhibits a narrow beamwidth of about 13 degree compared to the 41 degree width
exhibited by the patch with a beamwidth differential of about 28 degree. However, the patch antenna
exhibited a lower sidelobe level differential of about 3 dB. The orientation of the major lobe of the
E-plain pattern away from boresight as shown in Figure 5(d), as well as the major lobe E-plain squint
was investigated to determine the cause. It was discovered that the vertical spacing dy is 0.159λ5.8 GHz

(which is equal to 4.45 mm) whereas that of horizontal (dx) is 0.162λ5.8 GHz(= 4.54 mm) as shown in the
figure. The overall spacing distance of λ/2 is employed to ensure that the spacing is not greater than
λ/2. If it does, multiple maximal of equal magnitude can be formed. To avoid grating lobes in x-z and
y-z planes of rectangular array, the spacing between elements should in x and y-directions respectively
must be less than λ/2. This is the very reason why the entire spacing is λ/2 whereas, the differential
spacing on both directions are [dy is 0.159λ5.8 GHz & (dx) is 0.162λ5.8 GHz].

Figure 6(a) demonstrates the simulated and experimental return loss results for a single quasi-
lumped element resonator whereas Figure 6(b) shows the simulated and measured return loss results
of the proposed array along its patch counterpart. In Figure 6(a), the experimental pattern bandwidth
is 5.74–5.98 GHz and a gain of about 9.4 dBi using gain absolute method whereas its experimental
input impedance is 51.071 − j1.09Ω. Also, the theoretical and experimental return loss results of the
proposed and the microstrip patch planar antenna array were given in Figure 6(b). The figure shows
that the experimental pattern bandwidth of the proposed antenna is 5.72–5.87 GHz with a gain of
19.79 dBi, whereas the experimental input impedance was 49.58− j1.08 with a VSWR of 1.081:1 which
is around 50 Ohms with marginal reactive component of 1.09 Ω indicating good impedance match. This

(a) (b)

Figure 6. Theoretical and experimental return loss of the proposed. (a) Single element, (b) proposed
and patch antenna array.
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is supported by Figure 7 which shows the simulated and measured voltage standing wave ratio (VSWR)
of the proposed and the patch array antennas.

The area occupied by the proposed antenna can be determined by Eqs. (37) and (38).

A(x, y) =

m=9∫
xi

n=10∫
yi

A(xi, yi)(x, y)dxdy (37)

A(x, y) =
m=9∑
xi

n=10∑
yi

[(lyi + 0.159) (bxi + 0.162)] (38)

where ly and bx are the length and breadth of the radiating elements respectively. Using Figure 2(a),
the length and breadth of the proposed is determined by

ly(x, y) = (0.112 + 0.159)λ5.8 GHz × 10 = 2.71λ5.8 GHz

bx(x, y) = (0.108 + 0.162)λ5.8 GHz × 9 = 2.43λ5.8 GHz

and thus the area can be stated as 2.71λ5.8 GHz × 2.43λ5.8 GHz. Hence, the estate area of the patch can

Figure 7. Theoretical and experimental voltage standing wave ratio.

(a) (b) (c)

Figure 8. The capture of the fabricated antennas. (a) Proposed, (b) patch, (c) the coupling mechanism.
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Table 1. Performance comparison of the proposed antenna.

Antenna

Types

Sizes

(sq. mm)

Resonance

Freq. (GHz)

Measured

Bandwidth (MHz)

Measured

Gain (dBi)

Quasi

Lumped

Element

2.71λ0 × 2.43λ0 5.80 190 19.79

Microstrip

Patch
4.1λ0 × 4.42λ0 5.80 100 17.92

Antenna

Types

Return

Loss (dB)

Beamwidth

(degree)
VSWR

Aperture

Efficiency

Radiation

Efficiency

Quasi

Lumped

Element

34.00 13 1.081:1 72.80 69.18

Microstrip

Patch
38.00 41 1.044:1 65.80 65.56

subsequently be determined similarly.

ly(x, y) = (0.251 + 0.159)λ5.8 GHz × 10 = 4.1λ5.8 GHz

bx(x, y) = (0.329 + 0.162)λ5.8 GHz × 9 = 4.42λ5.8 GHz

Thus given estate area of 4.1λ5.8 GHz×4.42λ5.8 GHz. Comparing the proposed area with the patch antenna
as shown in Figure 8 therefore gives area reduction of about 63.86%.

Table 1 gives further performance profile comparison summary of the proposed antenna with respect
to the patch antenna. It is conspicuous that the proposed antenna real estate is 57.42% better that the
patch, with a bandwidth of 47.37%, a marginal gain of 10.44%, but with an inferior return loss of 23.6%
and VSWR (shown in Figure 7) of 3.42%. With the inferior return loss and VSWR notwithstanding,
both the return loss and VSWR of the proposed antenna were very significant.

4. CONCLUSION

An experimental design of a compact quasi-lumped element resonator planar antenna array with fixed
beam has been presented. The proposed antenna array is fed by a coaxial feed probe network to
provide even excitation distributions. It exhibits significant antenna real estate reduction of 74.74%
over the microstrip patch antenna, better gain differential of 13% and a moderate side lobes level.
These results are promising, and the architecture can easily be integrated with printed structures. In
essence therefore, the volume of the proposed antenna is sizeable and as such becomes cost effective (as
the antenna construction cost is proportional to antenna volume). Besides, the effective aperture size
(notwithstanding its compact size) allows for optimal efficiency due to the associated capacitive and
inductive contributions from the antenna elements.
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