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Effects of Chaotic Perturbation on a Periodic Gunn Oscillator
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Abstract—We have studied dynamics of a periodic X-band Gunn oscillator (GO) forced by microwave
chaotic signals through numerical simulation and by hardware experiment. The chaos used as forcing
signal is generated in a periodically driven non-oscillatory GO. Numerical simulation results indicate
that the forced periodic GO becomes chaotic for a moderate strength of forcing chaos. The generated
chaos in driven GO is found to become phase or general synchronized to the forcing chaos depending
on strength of the latter one. Hardware experiments are performed in X-band of microwave frequency.
It shows generation of chaos in driven GO due to forcing. Moreover, synchronization between forcing
and generated chaos is indirectly verified.

1. INTRODUCTION

Dynamics of forced nonlinear oscillators has been studied over decades with different kinds of forcing
signals [1–5]. The behaviour of forced oscillators primarily depends on relative strength and time
domain nature of forcing signals. Several nonlinear responses like, synchronization, quasi periodicity
and chaotic oscillations, are observed in the dynamics of forced oscillators [6, 7]. The quiescent operating
condition of a driven system during forcing has important role in the ultimate state of dynamics. Several
studies have reported asymmetric frequency locking, lock-in amplification, tracking noise filtering as
well as synchronous angle demodulation properties of forced microwave oscillators [8–11]. In microwave
frequency band, Gunn oscillators (GOs) are popular signal sources; they have low inherent noise and
mechanical as well as electronic tuning facility [12, 13]. As such, nonlinear dynamics of forced GOs
has drawn attention of the researchers [14–16]. Experimental studies presented in [17] have shown that
building up and quenching phenomena of oscillation in a GO due to the variation of operating dc bias
voltage show hysteresis. Also an under-biased GO (i.e., a GO biased below the threshold dc bias voltage
required for normal oscillation) breaks into chaotic oscillation under the influence of an external periodic
signal of appropriate frequency. The generation of microwave frequency chaos by this technique could be
qualitatively proved with numerical simulation of mathematical model of the forced under biased GO.
This technique of chaos generation is similar to parameter tuning technique of a forced non-oscillatory
Rayleigh-Duffing oscillator [18, 19]. The onset of chaotic oscillations in different microwave oscillators
has also been reported in the literature [20–24]. Further, in the condition of unilateral and bi-lateral
coupling, two chaotic oscillators become synchronized. The required conditions for synchronization are
(i) the oscillators are of nearly same frequency band, (ii) coupling strength is strong and (iii) generators
use similar type of nonlinear devices [25, 26].

However, effects of forcing a periodic microwave oscillator with microwave frequency chaos have
not been reported much, if any, and experimental results on this problem could hardly be found. In
the present paper, we report our observations on the effect of forcing chaotic signal on a periodic
GO. Our study incorporates experimental results obtained at X-band of microwave frequency. We
have established the possibility of inducing chaotic oscillations in a forced GO through numerical
integration of system equations. Also, we qualitatively prove the occurrence of generalised and phase
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synchronization between the forcing and generated chaos. The experimental study has established the
fact that chaos could be induced in a periodic GO by forcing with chaotic signal of comparable frequency.
The experimental evidence of synchronization between these two chaos signals has also been indirectly
examined. The study reported in the paper would be useful in designing lock-in chaos amplifiers,
modulators and demodulators for coherent chaos based communication systems, etc..

The rest of the paper is organized in the following way. Mathematical model of chaotic GO has
been formulated in Section 2. Also system equations describing a periodic GO forced by chaotic signals
are given in this section. The approach adopted in numerical solution and the results obtained thereof
have been described in Section 3. Section 4 gives an account of the experimental study. In Section 5,
some concluding remarks regarding numerical and experimental studies are incorporated.

2. FORMULATION OF MATHEMATICAL MODEL

In this section we present system equations of chaotic and periodic GO connected in a master slave
configuration. The coupling between these GOs is made in practice by using circulators and attenuators.
In the mathematical model, we consider the coupling as a diffusive one [6]. In Subsection 2.1 we represent
system equation of a chaotic GO (CGO) and the same for the coupled system is presented in the next
Subsection 2.2.

2.1. System Equation of a Chaotic GO (CGO)

Circuit theoretic model of a free running GO is shown in Fig. 1(a) and its mathematical equation in
normalized form can be written as [27],
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Here, τ is normalized time given by ωrt where ωr is the resonant angular frequency of the cavity
and q the instantaneous charge normalized to unit charge. Parameters a, b, c and d depend on wave
guide cavity geometry and biasing conditions of the device. It is similar to the equation of a Rayleigh-
Duffing (R-D) oscillator [18]. For sustained oscillatory solution of (1) numerical values of parameters
a, b, c, d should be positive [27]. In present study, we design a chaotic GO by forcing an under
biased GO with a weak external microwave signal of comparable frequency. The GO is kept in positive
differential resistance zone by applying a dc bias voltage less than threshold value required for NDR
region of operation. Mathematically, this is ensured by a negative value of parameter c in (1) for non-
oscillatory state of GO. Forcing it by an external signal of amplitude and normalized frequency, qs and
Ω, respectively, one gets chaotic oscillations. Thus the equation of GO capable of producing chaotic
oscillations is [17],
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2.2. System Equation for a PGO Forced by a CGO

The block diagram of coupled GO system is shown in Fig. 1(b). The arrangement for forcing a PGO
by a CGO is designed with the help of three port circulators since a GO is a one port system. The
mathematical model of this system can be derived considering the physics of operation of a forced GO
by an external signal [28]. We use suffices 1 and 2 for the state variable q and system parameters a, b,
c and d in the equations of CGO and PGO respectively. Thus, we get two equations as written below.

For forcing CGO:
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and for forced PGO:
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(a) (b)

Figure 1. (a) A circuit theoretic equivalent representation of the Gunn oscillator used to formulate
system Equation (1). The Gunn diode is represented by a series combination of voltage dependent
resistor r(v) and capacitor c(v); R, C, L, RL are lumped parameters equivalent to distributed circuit
components of the wave guide type resonant cavity. (b) A functional block diagram of the system under
study: a chaotic Gunn oscillator and a periodic Gunn oscillator are connected in a master-slave fashion.

kf indicates the strength of coupling between CGO (master) and PGO (slave) systems. Values of
parameters c1 and c2 are taken negative and positive quantities, respectively.

3. NUMERICAL SIMULATION AND RESULTS

We get the time domain dynamics of an isolated CGO by solving (2) with properly chosen GO and
forcing signal parameters. As has been mentioned in Section 2.1, the value of parameter c is to be taken
negative to ensure operation of the GO in under biased condition. We decompose (2) into two first
order ODEs introducing a new state variable p, defined as the time derivative of q. Thus (2) is written
as,

dq

dτ
= p (5)

dp

dτ
= aq − bq3 + cp − dp3 + qs cos Ωτ (6)

Here we substitute a new variable θ in place of Ωτ in (6) and get a third ODE as,
dθ

dτ
= Ω (7)

Time evolution of q and p are obtained by integrating (5), (6) and (7) using fourth order Runge-
Kutta technique. Time increment steps are taken as 0.01 and initial values q0 and p0 are properly
chosen. A sufficient number of solution points are discarded at the beginning of each simulation run,
to obtain steady state dynamics of the system. Time domain variation of state variable q and phase
plane diagram of p − q are examined to understand the nature of oscillations of the GO. Moreover,
frequency spectrum of q is obtained by taking fast Fourier transform (FFT) of the time series data.
In numerical simulation, we take value of the parameter c negative (−0.002) to have below threshold
operation (as noted in 2.1) and values of other parameters (a, b, d) are chosen from the knowledge of
the dynamics of a GO reported in [22–24]. Note that a and b determine the oscillating frequency and d
bounds the growth of sustained oscillation amplitude [22]. Among these parameters, c is most sensitive
to bias voltage variation. So the tuning of value of c is taken in simulation study [17]. Values of Ω and
qs are taken equal to 1.27 and 0.15 for a set of simulation. This ensures the external forcing signal to
be weak and of frequency equal to the resonant frequency of the cavity. In Figs. 2(a) and 2(b), the time
development of q and its frequency domain representations are respectively given. It is evident from
the figures that GO is oscillating in chaotic mode.

We derive Lyapunov exponent (LE) spectrum of forced GO described by (5)–(7) with the help of
algorithm of Wolf et al. [29]. The system would have three LEs and a positive value of an LE would
indicate chaotic oscillations. In Fig. 2(c) we depict the Lyapunov spectrum of the GO with c as a control
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(a) (b)

(c) (d)

Figure 2. Numerical simulation results showing dynamics of a periodically driven under biased GO.
(a) Time domain variation of the state variable q1. (b) Frequency spectrum of the state variable q1.
(c) Lyapunov exponent spectrum with the bias voltage control parameter c. (d) Lyapunov exponent
spectrum with the normalized frequency of the external driving signal [In Figs. 1(a) and 1(b) values
of other system parameters taken are a1 = 1, b1 = 1, c1 = −0.002, d1 = 0.015, qs = 0.15, Ω = 1.271,
in Fig. 1(c) parameter c and in Fig. 1(d) Ω are varied keeping other system parameters same as in
Figs. 1(a) and 1(b) respectively].

parameter. Here we find that one of the LEs is positive when the value of c is around zero. This means
that the chaotic oscillation of the GO occurs when the GO is biased close to the threshold bias (c = 0)
and is driven by an external signal. However, when c is positive with a larger value, no LE is positive
indicating non-chaotic oscillation. Fig. 2(d) depicts effect of variation of external signal frequency with
negative value of c. Here we get one of the LEs positive for a particular range of Ω around the resonant
frequency of the cavity. From these results we conclude that a driven under biased GO can be used as
a microwave frequency chaos generator.

The dynamics of slave PGO forced by the output of the master CGO (henceforth mentioned as
chaos-1) is obtained by solving the set of equations given in Section 2.2. Here, we would get a set of
five ODEs, three for the non autonomous CGO having state variables q1, p1 and θ, while two ODEs for
the driven PGO with state variables q2 and p2. The set of system equations is given as below.

dq1

dτ
= p1 (8)

dp1

dτ
= aq1 − bq3

1 + cp1 − dp3
1 + qs cos θ (9)
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Numerical integration of the state equations is performed with the master GO in chaotic (c1 is
negative) and slave GO in periodic (c2 is positive) mode. Variation of the value of parameter kf is used
to control the dynamics of forced PGO by chaos-1. The time series data of q1 and q2 are analysed to
observe the state of forced PGO. LE spectrum of the coupled system with kf as control parameter is
shown in Fig. 3(a). It is observed that for a parameter set of CGO and PGO mentioned in the caption
of Fig. 3, oscillations of driven PGO (slave system) becomes chaotic (henceforth mentioned as chaos-2)
when kf is more than 0.025. It is evident from a positive value of a second LE. The first positive LE is
obtained due to chaos-1 from master GO.

Numerical simulations also indicate that chaos-1 and chaos-2 would become phase synchronized for

(a) (b)

(c) (d)

Figure 3. Numerically obtained results showing the dynamics of chaotic GO and periodic GO connected
in master-slave configuration: (a) Lyapunov exponent spectrum with coupling factor (kf ) as control
parameter. (b) State space trajectories (q1 − q2) for kf = 4.0. (c) Generalized autocorrelation function
(GAF) of the state variables q1 and q2 for kf = 4.0. (d) Time variation of the error variables e1, e2 and
e between the chaotically perturbed slave system and its auxiliary part for kf = 1.0 [Values of other
system parameters taken are a1 = a2 = 1, b1 = b2 = 1, c1 = −0.002, c2 = 0.05, d1 = d2 = 0.015,
qs = 0.15, Ω = 1.271].
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a range of values of kf . We have plotted time series data of q1 and corresponding q2 along x-axis and
y-axis respectively of Cartesian coordinate for different value of kf . In case of phase synchronization, the
plot of q1-q2 in Cartesian x-y coordinate system would be a straight line having 45◦ slope or an elliptic
curve whose major axis is inclined at a fixed angle with the x-axis. Fig. 3(b) shows that chaos-2 is phase
synchronized (PS) to chaos-1 for kf = 4.0. But, they are not in PS condition for smaller values of kf .
Further, we can perform recurrence analysis on the time series data of q1 and q2 and estimate generalised
auto-correlation function (GAF) and correlation of probability of recurrence (CPR). We write R1(t) and
R2(t) as GAF of q1 and q2 respectively according to the definition given in [30, 31]. Plotting R1(t) and
R2(t) on same graph and noting their coincidence we conclude regarding PS. Similarly for PS, CPR
should be close to unity [30, 31]. Plots of generalized auto correlation function (GAF) of q1 and q2 are
shown in same time scale in Fig. 3(c). The superposition of GAFs of q1 and q2 for kf = 4.0 is observed.
This is an indication of PS. We have also computed the CPR values for different kf and find that these
values become close to unity for larger value of kf . For example, with kf values 0.5, 1.0, 1.5 and 4.0
the computed CPR values are 0.9782, 0.9828, 0.9866 and 0.9912 respectively.

We examine the possibility of generalized synchronization (GS) between chaos-1 and chaos-2 by
auxiliary system approach [32, 33]. In this approach, we consider two slave PGOs driven by the same
chaotic signal obtained from the master CGO. All design parameters of the two slaves are identical, but
they have different initial conditions. Two state variables for the first and the second slave systems are
respectively taken as q2, p2, and q′2, p′2. Thus state equations of the second slave would be given by (11)
and (12), only, replacing q2 with q′2 and p2 with p′2. Now we define two instantaneous error variables
e1 and e2 as (q2 − q′2) and (p2 − p′2) respectively. After performing a bit of manipulation we obtain the
time evolution equations for e1 and e2 as:

de1

dτ
= e2 (13)

de2

dτ
= a2e1 − b2e

3
1 − 3b2e1q

′
2q2 + c2e2 − d2e

3
2 − 3d2e2p2p

′
2 − kfe2 (14)

The time development of e1 and e2 is numerically obtained by solving a set of nine first order
ODEs, three for the master CGO as given in (8)–(10), four for two slave systems (two for each slave
with different initial conditions as (11) and (12)) and two for error variables ((13) and (14)). If e1 and
e2 tend to zero asymptotically, occurrence of GS is confirmed. Intuitively, average distance between the
system trajectories of the two slave systems in phase space is e =

√
e2
1 − e2

2. In the condition of GS, two
slaves would follow the master in identical manner and this will make the average distance between the
trajectories zero asymptotically. Fig. 3(d) depicts time domain variation of e1, e2 and e for kf = 1.0.
It has been observed that for kf = 0.1 the error variables do not converge to zero for increasing time.
Thus there is no possibility of GS with such amount of coupling factor; but for kf = 1.0, error variables
converge to zero asymptotically in time and GS is ensured. We note that for PS we need larger value
of kf compared to those required for GS.

4. EXPERIMENTAL STUDY

We perform a hardware experiment to study the dynamics of a driven GO with chaotic signal of
comparable frequency and to observe the state of synchronization between the driving and generated
chaos (chaos-1 and chaos-2). But we cannot experimentally measure the state of synchronization in
real time due to non-availability of time domain instrument in X band microwave frequency in our
laboratory. So we adopt an alternative indirect proof of synchronization using a correlator-averager
arrangement. Here we multiply two signals whose relative states are to be obtained and take time
average of the product. In synchronized condition, we get a dc voltage as the averager output.

4.1. Experimental Arrangement

Figure 4 shows block diagram of experimental setup. Here, GO-1 generates forcing chaos signal (chaos-
1) and GO-2 operates as the driven periodic oscillator. As such, GO-1 is operated in the under biased
condition with an injected RF field into its cavity. This RF signal is taken from a microwave signal
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source (MSS). Chaos-1 is taken out through circulator CR-1 and is power amplified using an X-band
microwave power amplifier (MPA). An attenuator (ATN) is used to vary the strength of chaos-1 to be
injected into GO-2 through circulator CR-2. The output of GO-2 (chaos-2) is taken out at port 3 of
CR-2. To compare the state of oscillation of chaos-2 with respect to chaos-1, we use a phase comparator
circuit (PCC) [34]. It is designed using a magic tee, two diode detectors, a difference amplifier (DA)
and a low pass filter (LPF) as shown in Fig. 4. The output dc voltage of PCC is a measure of phase
difference between two inputs applied to the PCC.

Figure 4. Block diagram of the experimental arrangement used in the study.

(a) (b)

Figure 5. Experimentally obtained output power frequency spectrum of master and slave GOs in
isolated condition, (a) chaotic GO (operating dc bias voltage is 4.76 Volt and it is driven by an external
RF signal of frequency 10.025 GHz and power 0 dBm, (b) periodic GO (operating dc bias voltage 9.20
Volt, frequency and output power of the generated periodic signal are 10 GHz and 11 dBm respectively).
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4.2. Experimental Results

A properly biased GO would produce periodic signal. At operating dc bias voltage 9.2 volts, we adjust
cavity dimension to get GO oscillation frequency 10 GHz. The output power is measured as 11 dBm and
its spectrum is shown in Fig. 5(a). Adjusting dc bias at 4.62 volts (below the threshold voltage 6.2 volts
required for oscillation) and applying an external signal of frequency 10.25 GHz and power 0 dBm, we
obtain chaotic oscillations in the GO and it is shown in Fig. 5(b). It has a 20 dBm bandwidth of amount
100 MHz.

In coupled system, power of chaos-1 is varied using an attenuator shown in the experimental
arrangement (Fig. 4). The output spectrum of the driven GO is shown in Figs. 6(a) to 6(d) for

(a) (b)

(c) (d)

Figure 6. Experimentally obtained output power frequency spectrum of the driven GO for different
strengths of the injected chaotic signal. The amounts of injected power are respectively, (a) 0.1%, (b)
0.9%, (c) 15% and (d) 57.8% of the output power of the forcing GO. Frequency and output power of
the isolated driven PGO are 10 GHz and 11 dBm respectively.
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different strengths of chaos-1. It shows that with the increase of strength of injected chaos, output
spectrum of driven GO gradually changes from a line spectrum to a broad band spectrum. The broad
band spectrum of driven GO output proves the generation of chaotic oscillations (chaos-2) and this is
obtained for reasonably strong injected chaotic signal.

Finally, we adopt following indirect method to experimentally verify synchronization between chaos-
1 and chaos-2. We find time average of the product of chaos-1 and chaos-2 and when this time average
signal is a dc voltage (with small fluctuations), we infer the occurrence of synchronization between
them. At first a reference observation is made studying the phenomenon of forced synchronization
of a PGO to a sinusoidal forcing signal. The forcing signal is taken from a GO operating in normal

(a) (b)

Figure 7. Experimentally obtained PCC output dc voltage vs frequency of the driven PGO (obtained
by varying its wave guide dimension) curves. Forcing signal is (a) sinusoidal, (b) chaotic.

(a) (b)

Figure 8. Experimentally obtained output power spectrum of: (a) driving chaos, (b) generated chaos
in the anticipated synchronized condition of two chaotic oscillations.
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condition. The frequency of driven PGO is changed by varying the length of GO cavity. Frequencies
of two signals are directly measured using two spectrum analysers. Fig. 7(a) shows the variation of
time averaged product at this condition. Here we get a zone of synchronization where master and
slave GOs have same frequencies. In this zone of same frequency of two GO (indicated in Fig. 7(a)),
the time average of PCC output is found to vary monotonically with frequency of driven GO. The
presence of this range of monotonic dc voltage variation is an indirect proof of synchronization. Next
we perform the same experiment with a chaotic injected signal. Frequency of slave PGO is varied in a
similar way and we note a zone of monotonic variation of time averaged PCC output. Results obtained
for this part of experiment are shown in Fig. 7(b). The nature of the curve shown in Fig. 7(b) has
a qualitative similarity with that shown in Fig. 7(a) for a range of frequency. When the dc voltage
varies monotonically, we conclude (from indirect evidence) that synchronization between chaos-1 and
chaos-2 has taken place. We note that synchronization occurs when (i) power of injected chaos is at
least 30% of power of driven GO, and (ii) frequency band of injected chaos is to be around the driven
PGO frequency. Fig. 8 shows representative frequency spectrum of driving chaos and generated chaos
within the anticipated synchronization zone.

5. CONCLUSION

The present paper reports results of our study regarding effects of chaotic perturbation on a periodic
GO. The study has been carried out by numerical simulation of system equations and by hardware
experiment. The findings of simulation study are as given below: (i) periodic GO becomes chaotic due
to chaotic perturbation; (ii) generated chaos in driven GO becomes synchronized in general sense with
moderately strong driving chaos; (iii) phase synchronization between these two chaotic signals occurs
for increased power of driving chaos. In simulation study GS is established by well-known technique of
auxiliary system approach. PS is proved by finding GAF and CPR from time series data of driving and
driven chaos.

The paper incorporates results of our experimental studies performed using X-band GOs. The
obtained experimental results confirm following observations of simulation study: (i) generation of
microwave chaos is possible using under biased periodically driven GOs; (ii) a periodically oscillating
GO becomes chaotic due to perturbation by chaotic signal; (iii) synchronization between forcing chaotic
signal and generated chaos in a forced GO is experimentally examined through indirect method. Due to
non-availability of time domain experimental results, comparison of simulation and experimental results
could not be quantitatively made. Moreover, in the present work, we have not attempted to identify
route to chaos in the dynamics of chaotically perturbed periodic GO.
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